Lemma 1. Let \mathcal{H} be a subset of $\mathcal{T}(n)$. Then the following two conditions are equivalent:

- (i) There exists mapping $A: T_0 \mapsto \mathbb{R}, t \to a_t$ such that $\mathcal{H} = \mathcal{S}_{tr}(A)$.
- (ii) $T_0 \in \mathcal{H}$, and for any $T_1, T_2 \in \mathcal{H}$ either $T_1 \subseteq T_2$, or $T_2 \subseteq T_1$, or T_1 and T_2 are far fom each other.

Proof. Suppose $\mathcal{H} = S_{tr}(A)$ for some mapping A, according to (i). Then $T_0 \in \mathcal{H}$ is evident. If the rest of (ii) fails, then there exists a cell $\hat{t}_2 \in T_2 \setminus T_1$ which is neighbouring with some cell of T_1 . Since T_1 is a full triangular segment, we have $a_{\hat{t}_2} < \min \{a_{t_1} : t_1 \in T_1\}$. Similarly, there exists a cell $\hat{t}_1 \in T_1 \setminus T_2$ which is neighbouring with some cell of T_2 . Since T_2 is a full triangular segment, we have $a_{\hat{t}_1} < \min \{a_{t_2} : t_2 \in T_2\}$. Hence $a_{\hat{t}_2} < \min \{a_{t_1} : t_1 \in T_1\} \le a_{\hat{t}_1} < \min \{a_{t_2} : t_2 \in T_2\}$ contradicts $\hat{t}_2 \in T_2$. This proves (i) \Rightarrow (ii).

The converse implication will be proved via induction on n. For n = 1 or $|\mathcal{H}|=1$ everything is clear. Suppose n > 1, $|\mathcal{H}|>1$ and (ii) holds for \mathcal{H} . Let M_1, \ldots, M_k be the maximal elements of $\mathcal{H}\setminus\{T_0\}$. Clearly, $\mathcal{H}_i = \{T \in \mathcal{H}: T \subseteq M_i\}$ satisfies (ii) for the triangle M_i , $1 \leq i \leq k$. Hence, by the induction hypothesis, there is a mapping $A_i : M_i \mapsto \mathbb{R}$ such that $\mathcal{S}_{tr}(A_i) = \mathcal{H}_i$ for each $i \in \{1, \ldots, k\}$ now chose an $r \in \mathbb{R}$ such that r is strictly less than the minimum of the image values of A_i for all $i \in \{1, \ldots, k\}$. Then the union of the A_i $1 \leq i \leq k$, and the constant mapping $T_0 \setminus (M_1 \cup \ldots \cup M_k) \to \{r\}$ is a $T_0 \mapsto \mathbb{R}$ mapping A. Since the M_i are pairwise far fom each other, obviously $\mathcal{H} \subseteq \mathcal{S}_{tr}(A)$. But those cells that have images r belong only to the full triangular segment T_0 . Q.E.D.

Subsets \mathcal{H} satisfying the equivalent conditions of Lemma 1 will be called systems of full triangular segments.

Let $L = (L; \lor, \land)$ be a finite distributive lattice. A subset H of L is called *weakly independent*, if for any $k \in \mathbb{N}$ and $h, h_1, \ldots, h_k \in H$ which satisfy $h \leq h_1 \lor \ldots \lor h_k$ there exists an $i \in \{1, \ldots, k\}$ such that $h \leq h_i$. Maximal week independent subsets are called *weak bases* of L. The set $J_0(L)$ of join-irreducible elements and all maximal chains are weak bases of L.

Lemma 2 [Czédli, Huhn, Schmidt]. Any two weak bases of a finite distributive lattice have the same number of elements.

The lattice of all subsets of T_0 is a distributive lattice, which will be denoted by $\mathcal{P}(T_0) = (\mathcal{P}(T_0); \cup, \cap).$

Lemma 3. Let \mathcal{H} be a system of triangular segments of T_0 . Then \mathcal{H} is a weakly independent subset of $\mathcal{P}(T_0)$. Consequently, $|\mathcal{H}| \leq n^2$.

Proof. Suppose

$$T \subseteq T_1 \cup \ldots \cup T_k,\tag{1}$$

where $T, T_1 \cup \ldots \cup T_k \in \mathcal{H}$. We can assume that this inclusion is irredundant, i.e. no $i \in \{1, \ldots, k\}$ with $T \subseteq T_1 \cup \ldots \cup T_{i-1} \cup T_{i+1} \cup \ldots \cup T_k$. Then no T_i is disjoint from T and the T_i are pairwise incomparable. If $T \subseteq T_i$ for some i, then we are done. In the opposite case $k \geq 2$ and $T_i \subset T$ for all $i \in \{1, \ldots, k\}$. Then there is a cell c of T neighbouring with T_i . Since the T_j for 1 < j are far from T_1, c does not belong to $T_1 \cup \ldots \cup T_k$. This contradicts (1). Consequently, \mathcal{H} is a weakly independent subset of $\mathcal{P}(T_0)$.

Now, we extend \mathcal{H} to a weak basis \mathcal{H}' of $\mathcal{P}(T_0)$, and consider a maximal chain \mathcal{C} in $\mathcal{P}(T_0)$. Then C has $n^2 + 1$ elements and it is also a weak basis. Hence we obtain from Lemma 2 that $|\mathcal{H}'| = n^2 + 1$. On the other hand, the empty set belongs to every weak basis but not to \mathcal{H} , consequently $|\mathcal{H}| \leq |\mathcal{H}'| - 1 = n^2$. Q.E.D. 5. Lower estimate

First, if we draw subtriangles into the big triangle in such a way that, that the sizes of the subtriangles are are "as different as possible", then we may use the recursive relation of Lemma 4 as follows

$$f(n) \ge f(n-3) + n + 1.$$

It is clear that the functions

$$g_c(n) := \frac{1}{6}n^2 + \frac{5}{6}n + c$$

satisfy the recursive relation

$$g_c(n) = g_c(n-3) + n + 1.$$

Moreover, if we choose $c := -\frac{1}{3}$, then then the relations for the initial values

$$g_c(1) \le 1, \ g_c(2) \le 2, \ g_c(3) \le 4$$

are fulfilled, so, it is clear, that

$$f(n) \ge \frac{1}{6}n^2 + \frac{5}{6}n - \frac{1}{3},$$

so we may write

$$\frac{f(n)}{n^2} \ge \frac{1}{6}.$$

Remark. Finding inequalities between f(n) and f(n-k) where k > 3 instead of the one in Lemma 4 would probably result in a better estimation, but the obtaining inequality analogous to the one in Lemma 4 seems very complicated if possible at all.

In the second case we draw subtriangles into the big triangle in such a way that, the sizes of which are "as same as possible". This way we obtained the relations of Lemma 5 and Lemma 6, which are our starting points now:

$$f(2n+2) \ge 3f(n) + f(n+1) + 1$$
$$f(2n+1) \ge 3f(n) + f(n-1) + 1$$

Now we define quadratic functions

$$g_c(n) := \frac{3c+1}{6}n^2 + \frac{3c+1}{2}n + c.$$

Easy calculation gives that the equalities

$$g_c(2n+2) = 3g_c(n) + g_c(n+1) + 1,$$

$$g_c(2n+1) = 3g_c(n) + g_c(n-1) + 1$$

hold; moreover, if we choose $c := \frac{1}{18}$, then the initial conditions

$$g(1) \le 1, \ g(2) \le 2$$

are fulfilled.

Finally, it is clear, that

$$f(n) \ge \frac{7}{36}n^2 + \frac{7}{12}n + \frac{1}{18}.$$

We observe, that this estimate is slightly closer then the previous one.

$$\begin{split} d(n) &= d(\mathcal{H}) = |\mathcal{C}| \\ &= \sum_{i}^{k} |(\mathcal{C}_{i})| + |\operatorname{out}(\mathcal{H})| - 1 \\ &= \sum_{i}^{k} |(\mathcal{C}_{i})| + \mu(G) - 3n - \frac{5}{2} \\ &= -3n - \frac{5}{2} + \sum_{i}^{k} |(\mathcal{C}_{i})| + \sum_{i}^{k} \mu(T_{i}^{*} \setminus T_{i}) + \mu(\mathcal{E}) \\ &= -3n - \frac{5}{2} + \mu(\mathcal{E}) + \sum_{i}^{k} (|(\mathcal{C}_{i})| + \mu(T_{i}^{*} \setminus T_{i})) \\ &\geq -3n - \frac{5}{2} + \mu(\mathcal{E}) + \sum_{i}^{k} (d(a_{i}) + 3a_{i} + \frac{3}{2}) \\ &\geq -3n - \frac{5}{2} + \mu(\mathcal{E}) + \sum_{i}^{k} [e_{a_{i}}a_{i}^{2} + (e_{a_{i}} - 1)(3a_{i} + \frac{3}{2})], \end{split}$$

keeping in mind the monotonicity of e_n and observing the fact that the formula in the square brackets is equal to $e_{a_i}(a_i^2 + 3a_i + \frac{3}{2})$, we have

$$\geq -3n - \frac{5}{2} + \mu(\mathcal{E}) + e_{n-1} \sum_{i}^{k} \mu(T_{i}^{*})$$

$$\geq -3n - \frac{5}{2} + (1 - e_{n-1})\mu(\mathcal{E}) + e_{n-1}(\mu(\mathcal{E}) + \sum_{i}^{k} \mu(T_{i}^{*})) = (*),$$

Observing the facts that $1 - e_{n-1} > 0$, $\mu(\mathcal{E}) \ge 0$ and

$$\mu(\mathcal{E}) + \sum_{i}^{k} \mu(T_{i}^{*}) = \mu(T_{0}^{*}) = n^{2} + 3n + \frac{3}{2},$$

we have

$$(*) = -3n - \frac{5}{2} + e_{n-1}(n^2 + 3n + \frac{3}{2})$$
$$= e_{n-1}n^2 + (e_{n-1} - 1)(3n + \frac{3}{2}) - 1$$
$$= e_{n-1}(n^2 + 3n + \frac{3}{2}) - 3n - \frac{3}{2} - 1.$$

If we put

$$e_{n-1}(n^2+3n+\frac{3}{2})-3n-\frac{3}{2}-1:=h(n)=e_n(n^2+3n+\frac{3}{2})-3n-\frac{3}{2},$$

then we obtain the recursive relation

$$e_n = e_{n-1} - \frac{1}{n^2 + 3n + \frac{3}{2}},$$

which means that

The series

$$e_n = \frac{9}{11} - \sum_{2}^{\infty} \frac{1}{k^2 + 3k + \frac{3}{2}}.$$
$$\sum_{2}^{\infty} \frac{1}{k^2 + 3k + \frac{3}{2}}$$

converges, moreover, it is well known, that

$$\begin{split} \sum_{2}^{\infty} \frac{1}{k^2 + 3k + \frac{3}{2}} &= -\frac{2}{3} - \frac{2}{11} + \sum_{2}^{\infty} \frac{1}{k^2 + 3k + \frac{3}{2}} \\ &= -\frac{2}{3} - \frac{2}{11} + \sum_{2}^{\infty} \frac{1}{\left[k + \left(\frac{3}{2} - \frac{\sqrt{3}}{2}\right)\right] \left[k + \left(\frac{3}{2} + \frac{\sqrt{3}}{2}\right)\right]} \\ &= -\frac{2}{3} - \frac{2}{11} + \frac{1}{-\sqrt{3}} \left[\Psi\left(\frac{3}{2} + \frac{\sqrt{3}}{2}\right) - \Psi\left(\frac{3}{2} - \frac{\sqrt{3}}{2}\right)\right], \end{split}$$

here $\Psi(x)$ is the so-called digamma function, see, for example [PBM1.] Calculating the value $\lim e_n$ numerically gives

$$\lim e_n = 0.47\ldots,$$

which leads us to the upper estimate

$$\frac{f(n)}{n^2} \le 0, 52\dots$$

for all n.

Remark. If we use $\mu(\mathcal{E}) \geq \frac{3}{2}$ instead of $\mu(\mathcal{E}) \geq 0$ (which is proven to be true), then in the same way as the above one, we can obtain the following estimation:

$$e_1 = \frac{9}{11}$$
$$e_n = \frac{(2n^2 + 6n)e_{n-1} + 1}{2n^2 + 6n + 3}$$

This is a better estimation then the previous one, so this must be also convergent.