Lemma 1. Let \mathcal{H} be a subset of $\mathcal{T}(n)$. Then the following two conditions are equivalent:
(i) There exists mapping $A: T_{0} \mapsto \mathbb{R}, t \rightarrow a_{t}$ such that $\mathcal{H}=\mathcal{S}_{\operatorname{tr}}(A)$.
(ii) $T_{0} \in \mathcal{H}$, and for any $T_{1}, T_{2} \in \mathcal{H}$ either $T_{1} \subseteq T_{2}$, or $T_{2} \subseteq T_{1}$, or T_{1} and T_{2} are far fom each other.

Proof. Suppose $\mathcal{H}=\mathcal{S}_{\mathrm{tr}}(A)$ for some mapping A, according to (i). Then $T_{0} \in \mathcal{H}$ is evident. If the rest of (ii) fails, then there exists a cell $\hat{t_{2}} \in T_{2} \backslash T_{1}$ which is neighbouring with some cell of T_{1}. Since T_{1} is a full triangular segment, we have $a_{\hat{t}_{2}}<\min \left\{a_{t_{1}}: t_{1} \in T_{1}\right\}$. Similarly, there exists a cell $\hat{t_{1}} \in T_{1} \backslash T_{2}$ which is neighbouring with some cell of T_{2}. Since T_{2} is a full triangular segment, we have $a_{\hat{t}_{1}}<\min \left\{a_{t_{2}}: t_{2} \in T_{2}\right\}$. Hence $a_{\hat{t_{2}}}<\min \left\{a_{t_{1}}: t_{1} \in T_{1}\right\} \leq a_{\hat{t_{1}}}<\min \left\{a_{t_{2}}: t_{2} \in T_{2}\right\}$ contradicts $\hat{t_{2}} \in T_{2}$. This proves (i) \Rightarrow (ii).

The converse implication will be proved via induction on n. For $n=1$ or $|\mathcal{H}|=1$ everything is clear. Suppose $n>1,|\mathcal{H}|>1$ and (ii) holds for \mathcal{H}. Let M_{1}, \ldots, M_{k} be the maximal elements of $\mathcal{H} \backslash\left\{T_{0}\right\}$. Clearly, $\mathcal{H}_{i}=\left\{T \in \mathcal{H}: T \subseteq M_{i}\right\}$ satisfies (ii) for the triangle $M_{i}, 1 \leq i \leq k$. Hence, by the induction hypothesis, there is a mapping $A_{i}: M_{i} \mapsto \mathbb{R}$ such that $\mathcal{S}_{\mathrm{tr}}\left(A_{i}\right)=\mathcal{H}_{i}$ for each $i \in\{1, \ldots, k\}$ now chose an $r \in \mathbb{R}$ such that r is strictly less than the minimum of the image values of A_{i} for all $i \in\{1, \ldots, k\}$. Then the union of the $A_{i} 1 \leq i \leq k$, and the constant mapping $T_{0} \backslash\left(M_{1} \cup \ldots \cup M_{k}\right) \rightarrow\{r\}$ is a $T_{0} \mapsto \mathbb{R}$ mapping A. Since the M_{i} are pairwise far fom each other, obviously $\mathcal{H} \subseteq \mathcal{S}_{\operatorname{tr}}(A)$. But those cells that have images r belong only to the full triangular segment T_{0}. Q.E.D.

Subsets \mathcal{H} satisfying the equivalent conditions of Lemma 1 will be called systems of full triangular segments.

Let $L=(L ; \vee, \wedge)$ be a finite distributive lattice. A subset H of L is called weakly independent, if for any $k \in \mathbb{N}$ and $h, h_{1}, \ldots, h_{k} \in H$ which satisfy $h \leq h_{1} \vee \ldots \vee h_{k}$ there exists an $i \in\{1, \ldots, k\}$ such that $h \leq h_{i}$. Maximal week independent subsets are called weak bases of L. The set $J_{0}(L)$ of join-irreducible elements and all maximal chains are weak bases of L.

Lemma 2 [Czédli, Huhn, Schmidt]. Any two weak bases of a finite distributive lattice have the same number of elements.

The lattice of all subsets of T_{0} is a distributive lattice, which will be denoted by $\mathcal{P}\left(T_{0}\right)=$ $\left(\mathcal{P}\left(T_{0}\right) ; \cup, \cap\right)$.

Lemma 3. Let \mathcal{H} be a system of triangular segments of T_{0}. Then \mathcal{H} is a weakly independent subset of $\mathcal{P}\left(T_{0}\right)$. Consequently, $|\mathcal{H}| \leq n^{2}$.

Proof. Suppose

$$
\begin{equation*}
T \subseteq T_{1} \cup \ldots \cup T_{k} \tag{1}
\end{equation*}
$$

where $T, T_{1} \cup \ldots \cup T_{k} \in \mathcal{H}$. We can assume that this inclusion is irredundant, i.e. no $i \in\{1, \ldots, k\}$ with $T \subseteq T_{1} \cup \ldots \cup T_{i-1} \cup T_{i+1} \cup \ldots \cup T_{k}$. Then no T_{i} is disjoint from T and the T_{i} are pairwise incomparable. If $T \subseteq T_{i}$ for some i, then we are done. In the opposite case $k \geq 2$ and $T_{i} \subset T$ for all $i \in\{1, \ldots, k\}$. Then there is a cell c of T neighbouring with T_{i}. Since the T_{j} for $1<j$ are far from T_{1}, c does not belong to $T_{1} \cup \ldots \cup T_{k}$. This contradicts (1). Consequently, \mathcal{H} is a weakly independent subset of $\mathcal{P}\left(T_{0}\right)$.

Now, we extend \mathcal{H} to a weak basis \mathcal{H}^{\prime} of $\mathcal{P}\left(T_{0}\right)$, and consider a maximal chain \mathcal{C} in $\mathcal{P}\left(T_{0}\right)$. Then C has $n^{2}+1$ elements and it is also a weak basis. Hence we obtain from Lemma 2 that $\left|\mathcal{H}^{\prime}\right|=n^{2}+1$. On the other hand, the empty set belongs to every weak basis but not to \mathcal{H}, consequently $|\mathcal{H}| \leq\left|\mathcal{H}^{\prime}\right|-1=n^{2}$. Q.E.D.

First, if we draw subtriangles into the big triangle in such a way that, that the sizes of the subtriangles are are "as different as possible", then we may use the recursive relation of Lemma 4 as follows

$$
f(n) \geq f(n-3)+n+1
$$

It is clear that the functions

$$
g_{c}(n):=\frac{1}{6} n^{2}+\frac{5}{6} n+c
$$

satisfy the recursive relation

$$
g_{c}(n)=g_{c}(n-3)+n+1
$$

Moreover, if we choose $c:=-\frac{1}{3}$, then then the relations for the initial values

$$
g_{c}(1) \leq 1, g_{c}(2) \leq 2, g_{c}(3) \leq 4
$$

are fulfilled, so, it is clear, that

$$
f(n) \geq \frac{1}{6} n^{2}+\frac{5}{6} n-\frac{1}{3}
$$

so we may write

$$
\frac{f(n)}{n^{2}} \geq \frac{1}{6} .
$$

Remark. Finding inequalities between $f(n)$ and $f(n-k)$ where $k>3$ instead of the one in Lemma 4 would probably result in a better estimation, but the obtaining inequality analogous to the one in Lemma 4 seems very complicated if possible at all.

In the second case we draw subtriangles into the big triangle in such a way that, the sizes of which are "as same as possible". This way we obtained the relations of Lemma 5 and Lemma 6, which are our starting points now:

$$
\begin{aligned}
& f(2 n+2) \geq 3 f(n)+f(n+1)+1 \\
& f(2 n+1) \geq 3 f(n)+f(n-1)+1
\end{aligned}
$$

Now we define quadratic functions

$$
g_{c}(n):=\frac{3 c+1}{6} n^{2}+\frac{3 c+1}{2} n+c .
$$

Easy calculation gives that the equalities

$$
\begin{aligned}
& g_{c}(2 n+2)=3 g_{c}(n)+g_{c}(n+1)+1, \\
& g_{c}(2 n+1)=3 g_{c}(n)+g_{c}(n-1)+1
\end{aligned}
$$

hold; moreover, if we choose $c:=\frac{1}{18}$, then the initial conditions

$$
g(1) \leq 1, g(2) \leq 2
$$

are fulfilled.
Finally, it is clear, that

$$
f(n) \geq \frac{7}{36} n^{2}+\frac{7}{12} n+\frac{1}{18} .
$$

We observe, that this estimate is slightly closer then the previous one.

$$
\begin{aligned}
d(n) & =d(\mathcal{H})=|\mathcal{C}| \\
& =\sum_{i}^{k}\left|\left(\mathcal{C}_{\mathrm{i}}\right)\right|+|\operatorname{out}(\mathcal{H})|-1 \\
& =\sum_{i}^{k}\left|\left(\mathcal{C}_{\mathrm{i}}\right)\right|+\mu(\mathrm{G})-3 \mathrm{n}-\frac{5}{2} \\
& =-3 n-\frac{5}{2}+\sum_{i}^{k}\left|\left(\mathcal{C}_{\mathrm{i}}\right)\right|+\sum_{\mathrm{i}}^{\mathrm{k}} \mu\left(\mathrm{~T}_{\mathrm{i}}^{*} \backslash \mathrm{~T}_{\mathrm{i}}\right)+\mu(\mathcal{E}) \\
& =-3 n-\frac{5}{2}+\mu(\mathcal{E})+\sum_{\mathrm{i}}^{\mathrm{k}}\left(\left|\left(\mathcal{C}_{\mathrm{i}}\right)\right|+\mu\left(\mathrm{T}_{\mathrm{i}}^{*} \backslash \mathrm{~T}_{\mathrm{i}}\right)\right) \\
& \geq-3 n-\frac{5}{2}+\mu(\mathcal{E})+\sum_{\mathrm{i}}^{\mathrm{k}}\left(\mathrm{~d}\left(\mathrm{a}_{\mathrm{i}}\right)+3 \mathrm{a}_{\mathrm{i}}+\frac{3}{2}\right) \\
& \geq-3 n-\frac{5}{2}+\mu(\mathcal{E})+\sum_{\mathrm{i}}^{\mathrm{k}}\left[\mathrm{e}_{\mathrm{a}_{\mathrm{i}}} \mathrm{a}_{\mathrm{i}}^{2}+\left(\mathrm{e}_{\mathrm{a}_{\mathrm{i}}}-1\right)\left(3 \mathrm{a}_{\mathrm{i}}+\frac{3}{2}\right)\right],
\end{aligned}
$$

keeping in mind the monotonicity of e_{n} and observing the fact that the formula in the square brackets is equal to $e_{a_{i}}\left(a_{i}^{2}+3 a_{i}+\frac{3}{2}\right)$, we have

$$
\begin{aligned}
& \geq-3 n-\frac{5}{2}+\mu(\mathcal{E})+\mathrm{e}_{\mathrm{n}-1} \sum_{\mathrm{i}}^{\mathrm{k}} \mu\left(\mathrm{~T}_{\mathrm{i}}^{*}\right) \\
& \geq-3 n-\frac{5}{2}+\left(1-e_{n-1}\right) \mu(\mathcal{E})+\mathrm{e}_{\mathrm{n}-1}\left(\mu(\mathcal{E})+\sum_{\mathrm{i}}^{\mathrm{k}} \mu\left(\mathrm{~T}_{\mathrm{i}}^{*}\right)\right)=(*),
\end{aligned}
$$

Observing the facts that $1-e_{n-1}>0, \mu(\mathcal{E}) \geq 0$ and

$$
\mu(\mathcal{E})+\sum_{\mathrm{i}}^{\mathrm{k}} \mu\left(\mathrm{~T}_{\mathrm{i}}^{*}\right)=\mu\left(\mathrm{T}_{0}^{*}\right)=\mathrm{n}^{2}+3 \mathrm{n}+\frac{3}{2},
$$

we have

$$
\begin{aligned}
(*) & =-3 n-\frac{5}{2}+e_{n-1}\left(n^{2}+3 n+\frac{3}{2}\right) \\
& =e_{n-1} n^{2}+\left(e_{n-1}-1\right)\left(3 n+\frac{3}{2}\right)-1 \\
& =e_{n-1}\left(n^{2}+3 n+\frac{3}{2}\right)-3 n-\frac{3}{2}-1 .
\end{aligned}
$$

If we put

$$
e_{n-1}\left(n^{2}+3 n+\frac{3}{2}\right)-3 n-\frac{3}{2}-1:=h(n)=e_{n}\left(n^{2}+3 n+\frac{3}{2}\right)-3 n-\frac{3}{2}
$$

then we obtain the recursive relation

$$
e_{n}=e_{n-1}-\frac{1}{n^{2}+3 n+\frac{3}{2}},
$$

which means that

$$
e_{n}=\frac{9}{11}-\sum_{2}^{\infty} \frac{1}{k^{2}+3 k+\frac{3}{2}}
$$

The series

$$
\sum_{2}^{\infty} \frac{1}{k^{2}+3 k+\frac{3}{2}}
$$

converges, moreover, it is well known, that

$$
\begin{aligned}
\sum_{2}^{\infty} \frac{1}{k^{2}+3 k+\frac{3}{2}} & =-\frac{2}{3}-\frac{2}{11}+\sum_{2}^{\infty} \frac{1}{k^{2}+3 k+\frac{3}{2}} \\
& =-\frac{2}{3}-\frac{2}{11}+\sum_{2}^{\infty} \frac{1}{\left[k+\left(\frac{3}{2}-\frac{\sqrt{3}}{2}\right)\right]\left[k+\left(\frac{3}{2}+\frac{\sqrt{3}}{2}\right)\right]} \\
& =-\frac{2}{3}-\frac{2}{11}+\frac{1}{-\sqrt{3}}\left[\Psi\left(\frac{3}{2}+\frac{\sqrt{3}}{2}\right)-\Psi\left(\frac{3}{2}-\frac{\sqrt{3}}{2}\right)\right]
\end{aligned}
$$

here $\Psi(x)$ is the so-called digamma function, see, for example [PBM1.] Calculating the value $\lim e_{n}$ numerically gives

$$
\lim e_{n}=0.47 \ldots,
$$

which leads us to the upper estimate

$$
\frac{f(n)}{n^{2}} \leq 0,52 \ldots
$$

for all n .
Remark. If we use $\mu(\mathcal{E}) \geq \frac{3}{2}$ instead of $\mu(\mathcal{E}) \geq 0$ (which is proven to be true), then in the same way as the above one, we can obtain the following estimation:

$$
\begin{aligned}
& e_{1}=\frac{9}{11} \\
& e_{n}=\frac{\left(2 n^{2}+6 n\right) e_{n-1}+1}{2 n^{2}+6 n+3}
\end{aligned}
$$

This is a better estimation then the previous one, so this must be also convergent.

