
Lemma 1. Let H be a subset of T (n). Then the following two conditions are equivalent:

(i) There exists mapping A : T0 �→ R, t → at such that H = Str(A).
(ii) T0 ∈ H, and for any T1, T2 ∈ H either T1 ⊆ T2, or T2 ⊆ T1, or T1 and T2 are far fom each

other.

Proof. Suppose H = Str(A) for some mapping A, according to (i). Then T0 ∈ H is evident.
If the rest of (ii) fails, then there exists a cell t̂2 ∈ T2 \ T1 which is neighbouring with some cell of
T1. Since T1 is a full triangular segment, we have at̂2

< min {at1 : t1 ∈ T1}. Similarly, there exists
a cell t̂1 ∈ T1 \T2 which is neighbouring with some cell of T2. Since T2 is a full triangular segment,
we have at̂1

< min {at2 : t2 ∈ T2}. Hence at̂2
< min {at1 : t1 ∈ T1} ≤ at̂1

< min {at2 : t2 ∈ T2}
contradicts t̂2 ∈ T2. This proves (i) ⇒ (ii).

The converse implication will be proved via induction on n. For n = 1 or | H |=1 everything
is clear. Suppose n > 1, | H |>1 and (ii) holds for H. Let M1, . . . , Mk be the maximal elements
of H\{T0}. Clearly, Hi = {T ∈ H: T ⊆ Mi} satisfies (ii) for the triangle Mi, 1 ≤ i ≤ k. Hence,
by the induction hypothesis, there is a mapping Ai : Mi �→ R such that Str(Ai) = Hi for each
i ∈ {1, . . . , k} now chose an r ∈ R such that r is strictly less than the minimum of the image
values of Ai for all i ∈ {1, . . . , k}. Then the union of the Ai 1 ≤ i ≤ k, and the constant mapping
T0 \ (M1 ∪ . . .∪Mk) → {r} is a T0 �→ R mapping A. Since the Mi are pairwise far fom each other,
obviously H ⊆ Str(A). But those cells that have images r belong only to the full triangular
segment T0. Q.E.D.

Subsets H satisfying the equivalent conditions of Lemma 1 will be called systems of full
triangular segments.

Let L = (L;∨,∧) be a finite distributive lattice. A subset H of L is called weakly independent ,
if for any k ∈ N and h, h1, . . . , hk ∈ H which satisfy h ≤ h1∨ . . .∨hk there exists an i ∈ {1, . . . , k}
such that h ≤ hi. Maximal week independent subsets are called weak bases of L. The set J0(L) of
join-irreducible elements and all maximal chains are weak bases of L.

Lemma 2 [Czédli, Huhn, Schmidt]. Any two weak bases of a finite distributive lattice have
the same number of elements.

The lattice of all subsets of T0 is a distributive lattice, which will be denoted by P(T0) =
(P(T0);∪,∩).

Lemma 3. Let H be a system of triangular segments of T0. Then H is a weakly independent
subset of P(T0). Consequently, | H|≤ n2.

Proof. Suppose
T ⊆ T1 ∪ . . . ∪ Tk, (1)

where T, T1 ∪ . . .∪Tk ∈ H. We can assume that this inclusion is irredundant, i.e. no i ∈ {1, . . . , k}
with T ⊆ T1 ∪ . . . ∪ Ti−1 ∪ Ti+1 ∪ . . . ∪ Tk. Then no Ti is disjoint from T and the Ti are pairwise
incomparable. If T ⊆ Ti for some i, then we are done. In the opposite case k ≥ 2 and Ti ⊂ T for
all i ∈ {1, . . . , k}. Then there is a cell c of T neighbouring with Ti. Since the Tj for 1 < j are far
from T1, c does not belong to T1 ∪ . . . ∪ Tk. This contradicts (1). Consequently, H is a weakly
independent subset of P(T0).

Now, we extend H to a weak basis H′ of P(T0), and consider a maximal chain C in P(T0).
Then C has n2 + 1 elements and it is also a weak basis. Hence we obtain from Lemma 2 that
| H′|= n2 + 1. On the other hand, the empty set belongs to every weak basis but not to H,
consequently | H|≤| H′| −1 = n2. Q.E.D.
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5. Lower estimate

First, if we draw subtriangles into the big triangle in such a way that, that the sizes of the
subtriangles are are ”as different as possible”, then we may use the recursive relation of Lemma 4
as follows

f(n) ≥ f(n − 3) + n + 1.

It is clear that the functions

gc(n) :=
1
6
n2 +

5
6
n + c

satisfy the recursive relation

gc(n) = gc(n − 3) + n + 1.

Moreover, if we choose c := −1
3
, then then the relations for the initial values

gc(1) ≤ 1, gc(2) ≤ 2, gc(3) ≤ 4

are fulfilled, so, it is clear, that

f(n) ≥ 1
6
n2 +

5
6
n − 1

3
,

so we may write

f(n)
n2

≥ 1
6
.

Remark. Finding inequalities between f(n) and f(n − k) where k > 3 instead of the one in
Lemma 4 would probably result in a better estimation, but the obtaining inequality analogous to
the one in Lemma 4 seems very complicated if possible at all.
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In the second case we draw subtriangles into the big triangle in such a way that, the sizes of
which are ”as same as possible”. This way we obtained the relations of Lemma 5 and Lemma 6,
which are our starting points now:

f(2n + 2) ≥ 3f(n) + f(n + 1) + 1

f(2n + 1) ≥ 3f(n) + f(n − 1) + 1

Now we define quadratic functions

gc(n) :=
3c + 1

6
n2 +

3c + 1
2

n + c.

Easy calculation gives that the equalities

gc(2n + 2) = 3gc(n) + gc(n + 1) + 1,

gc(2n + 1) = 3gc(n) + gc(n − 1) + 1

hold; moreover, if we choose c := 1
18

, then the initial conditions

g(1) ≤ 1, g(2) ≤ 2

are fulfilled.

Finally, it is clear, that

f(n) ≥ 7
36

n2 +
7
12

n +
1
18

.

We observe, that this estimate is slightly closer then the previous one.
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d(n) = d(H) =| C |

=
k∑
i

| (Ci) | + | out(H) | −1

=
k∑
i

| (Ci) | +µ(G) − 3n − 5
2

= −3n − 5
2

+
k∑
i

| (Ci) | +
k∑
i

µ(T∗
i \ Ti) + µ(E)

= −3n − 5
2

+ µ(E) +
k∑
i

(| (Ci) | +µ(T∗
i \ Ti))

≥ −3n − 5
2

+ µ(E) +
k∑
i

(d(ai) + 3ai +
3
2
)

≥ −3n − 5
2

+ µ(E) +
k∑
i

[eaia
2
i + (eai − 1)(3ai +

3
2
)],

keeping in mind the monotonicity of en and observing the fact that the formula in the square
brackets is equal to eai

(a2
i + 3ai + 3

2
), we have

≥ −3n − 5
2

+ µ(E) + en−1

k∑
i

µ(T∗
i )

≥ −3n − 5
2

+ (1 − en−1)µ(E) + en−1(µ(E) +
k∑
i

µ(T∗
i )) = (∗),

Observing the facts that 1 − en−1 > 0, µ(E) ≥ 0 and

µ(E) +
k∑
i

µ(T∗
i ) = µ(T∗

0) = n2 + 3n +
3
2
,

we have

(∗) = −3n − 5
2

+ en−1(n2 + 3n +
3
2
)

= en−1n
2 + (en−1 − 1)(3n +

3
2
) − 1

= en−1(n2 + 3n +
3
2
) − 3n − 3

2
− 1.

If we put

en−1(n2 + 3n +
3
2
) − 3n − 3

2
− 1 := h(n) = en(n2 + 3n +

3
2
) − 3n − 3

2
,

then we obtain the recursive relation
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en = en−1 −
1

n2 + 3n + 3
2

,

which means that

en =
9
11

−
∞∑
2

1
k2 + 3k + 3

2

.

The series ∞∑
2

1
k2 + 3k + 3

2

converges, moreover, it is well known, that

∞∑
2

1
k2 + 3k + 3

2

= −2
3
− 2

11
+

∞∑
2

1
k2 + 3k + 3

2

= −2
3
− 2

11
+

∞∑
2

1[
k +

(
3
2 −

√
3

2

)] [
k +

(
3
2 +

√
3

2

)]

= −2
3
− 2

11
+

1
−
√

3

[
Ψ

(
3
2

+
√

3
2

)
− Ψ

(
3
2
−

√
3

2

)]
,

here Ψ(x) is the so-called digamma function, see, for example [PBM1.] Calculating the value lim en

numerically gives
lim en = 0.47 . . . ,

which leads us to the upper estimate

f(n)
n2

≤ 0, 52 . . .

for all n.
Remark. If we use µ(E) ≥ 3

2
instead of µ(E) ≥ 0 (which is proven to be true), then in the

same way as the above one, we can obtain the following estimation:

e1 =
9
11

en =
(2n2 + 6n)en−1 + 1

2n2 + 6n + 3
.

This is a better estimation then the previous one, so this must be also convergent.
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