Pairwise comparable or disjoint elemets in a poset

Eszter K. Horváth, Szeged

Co-author: Sándor Radeleczki

2018. September.

Grid

Grid, height function

Grid, height function, water level: 2

Grid, height function, water level: 4

Grid, height function, island system

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or \mathbb{P} is without 0 and the elements *a* and *b* have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$, or $x \perp y$ holds.

The elements *a* and *b* are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or \mathbb{P} is without 0 and the elements *a* and *b* have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$, or $x \perp y$ holds.

The elements *a* and *b* are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or \mathbb{P} is without 0 and the elements *a* and *b* have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$, or $x \perp y$ holds.

The elements *a* and *b* are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or \mathbb{P} is without 0 and the elements *a* and *b* have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$, or $x \perp y$ holds.

The elements *a* and *b* are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or \mathbb{P} is without 0 and the elements *a* and *b* have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$, or $x \perp y$ holds.

Definition

A nonempty set D of nonzero elements of P is called a *set of pairwise* disjoint element in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$; if \mathbb{P} has 0-element, then $\{0\}$ is considered to be a set of pairwise disjont elements, too.

D is a set of pairwise disjoint elements if and only if it is a CD-independent antichain in \mathbb{P} .

Definition

A nonempty set D of nonzero elements of P is called a *set of pairwise* disjoint element in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$; if \mathbb{P} has 0-element, then $\{0\}$ is considered to be a set of pairwise disjont elements, too.

D is a set of pairwise disjoint elements if and only if it is a CD-independent antichain in \mathbb{P} .

Definition

A nonempty set D of nonzero elements of P is called a *set of pairwise* disjoint element in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$; if \mathbb{P} has 0-element, then $\{0\}$ is considered to be a set of pairwise disjont elements, too.

D is a set of pairwise disjoint elements if and only if it is a CD-independent antichain in $\mathbb P.$

Let $X \subseteq P$.

The order ideal $\{y \in P \mid y \leq x \text{ for some } x \in X\}$ is denoted by $\downarrow X$.

The order-ideals of any poset form a (distributive) lattice with respect to \subseteq .

So, the antichains of a poset can be ordered as follows:

Definition

Let $X \subseteq P$.

The order ideal $\{y \in P \mid y \leq x \text{ for some } x \in X\}$ is denoted by $\downarrow X$.

The order-ideals of any poset form a (distributive) lattice with respect to ⊆.

So, the antichains of a poset can be ordered as follows:

Definition

Let $X \subseteq P$.

The order ideal $\{y \in P \mid y \leq x \text{ for some } x \in X\}$ is denoted by $\downarrow X$.

The order-ideals of any poset form a (distributive) lattice with respect to \subseteq .

So, the antichains of a poset can be ordered as follows:

Definition

Let $X \subseteq P$.

The order ideal $\{y \in P \mid y \leq x \text{ for some } x \in X\}$ is denoted by $\downarrow X$.

The order-ideals of any poset form a (distributive) lattice with respect to \subseteq .

So, the antichains of a poset can be ordered as follows:

Definition

Let $X \subseteq P$.

The order ideal $\{y \in P \mid y \leq x \text{ for some } x \in X\}$ is denoted by $\downarrow X$.

The order-ideals of any poset form a (distributive) lattice with respect to \subseteq .

So, the antichains of a poset can be ordered as follows:

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if $\downarrow A_1 \subseteq \downarrow A_2$.

Let $X \subseteq P$.

The order ideal $\{y \in P \mid y \le x \text{ for some } x \in X\}$ is denoted by $\downarrow X$.

The order-ideals of any poset form a (distributive) lattice with respect to \subseteq .

So, the antichains of a poset can be ordered as follows:

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if $\downarrow A_1 \subseteq \downarrow A_2$.

Let $X \subseteq P$.

The order ideal $\{y \in P \mid y \le x \text{ for some } x \in X\}$ is denoted by $\downarrow X$.

The order-ideals of any poset form a (distributive) lattice with respect to \subseteq .

So, the antichains of a poset can be ordered as follows:

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if $\downarrow A_1 \subseteq \downarrow A_2$.

Let $X \subseteq P$.

The order ideal $\{y \in P \mid y \leq x \text{ for some } x \in X\}$ is denoted by $\downarrow X$.

The order-ideals of any poset form a (distributive) lattice with respect to \subseteq .

So, the antichains of a poset can be ordered as follows:

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if $\downarrow A_1 \subseteq \downarrow A_2$.

Remark

 \leq is a partial order.

Let $\mathcal{D}(\mathbb{P})$ denote the set of all sets of pairwise disjont elements of \mathbb{P} .

As sets of pairwise disjont elements of $\mathbb P$ are also antichains, restricting \leqslant to $\mathcal D(\mathbb P)$, we obtain a poset $(\mathcal D(\mathbb P), \leqslant)$.

The connection between CD-bases of a poset \mathbb{P} and the poset $(\mathcal{D}(\mathbb{P}), \leq)$ is shown by the next theorem:

Let $\mathcal{D}(\mathbb{P})$ denote the set of all sets of pairwise disjont elements of \mathbb{P} .

As sets of pairwise disjont elements of \mathbb{P} are also antichains, restricting \leq to $\mathcal{D}(\mathbb{P})$, we obtain a poset $(\mathcal{D}(\mathbb{P}), \leq)$.

The connection between CD-bases of a poset \mathbb{P} and the poset $(\mathcal{D}(\mathbb{P}), \leq)$ is shown by the next theorem:

Let $\mathcal{D}(\mathbb{P})$ denote the set of all sets of pairwise disjont elements of \mathbb{P} .

As sets of pairwise disjont elements of \mathbb{P} are also antichains, restricting \leq to $\mathcal{D}(\mathbb{P})$, we obtain a poset $(\mathcal{D}(\mathbb{P}), \leq)$.

The connection between CD-bases of a poset \mathbb{P} and the poset $(\mathcal{D}(\mathbb{P}), \leq)$ is shown by the next theorem:

Let B be a CD-base of a finite poset (P, \leq) , and let |B| = n.

Then there exists a maximal chain $\{D_i\}_{1 \le i \le n}$ in $\mathcal{D}(P)$ such that $B = \bigcup_{i=1}^{n} D_i.$

Moreover, for any maximal chain $\{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^{m} D_i$ is a CD-base in (P, \le) with |D| = m. Let B be a CD-base of a finite poset (P, \leq) , and let |B| = n.

Then there exists a maximal chain $\{D_i\}_{1 \le i \le n}$ in $\mathcal{D}(P)$ such that $B = \bigcup_{i=1}^{n} D_i$.

Moreover, for any maximal chain $\{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^{m} D_i$ is a CD-base in (P, \le) with |D| = m.

21 / 76

23 / 76

24 / 76

 \mathbb{P}_1 és $\mathcal{D}(\mathbb{P}_1)$

 \mathbb{P}_1 és $\mathcal{D}(\mathbb{P}_1)$

\mathbb{P}_1 és $\mathcal{D}(\mathbb{P}_1)$, maximális lánc $\mathcal{D}(\mathbb{P}_1)$ -ben

\mathbb{P}_1 és $\mathcal{D}(\mathbb{P}_1)$, maximális lánc $\mathcal{D}(\mathbb{P}_1)$ -ben

\mathbb{P}_2 és $\mathcal{D}(\mathbb{P}_2)$, maximális lánc $\mathcal{D}(\mathbb{P}_2)$ -ben

\mathbb{P}_3 és $\mathcal{D}(\mathbb{P}_3)$, maximális lánc $\mathcal{D}(\mathbb{P}_3)$ -ban

\mathbb{P}_3 és $\mathcal{D}(\mathbb{P}_3)$, maximális lánc $\mathcal{D}(\mathbb{P}_3)$ -ban

Proof

Any poset (P, \leq) without least element becomes a poset with 0 by adding

a new element 0 to P. In this way both the number of the elements in the CD-bases of \mathbb{P} and the length of the maximal chains in $\mathcal{D}(P)$ are increased by one. Therefore, without loss of generality we may assume that \mathbb{P} contains 0 and $|P| \ge 2$.

To prove the first part of Theorem 1.5, assume that B is a CD-base in \mathbb{P} . Then clearly $0 \in B$ and $|B| \ge 2$. Let $D_1 = \max(B)$. Take any $m_1 \in D_1$ and form $D_2 = \max(B \setminus \{m_1\})$. Then, in view of Lemma 1.7, $D_1, D_2 \in \mathcal{D}(P), D_1 \succ D_2$, and D_1 is a maximal element in $\mathcal{D}(P)$. Further, suppose that we already have a sequence $(D_i, m_i), 1 \le i \le k \ (k \ge 2)$ such that $m_i \in D_i$, $D_1 \succ \cdots \succ D_k$ in $\mathcal{D}(P)$ and

 $D_k = \max(B \setminus \{m_1, \ldots, m_{k-1}\}).$

We show that for all $i \in \{1, ..., k-1\}$ and $d \in D_k$ we have $d \not\geq m_i$.

This is clear for i = 1 since $m_1 \in \max(B)$ and $d \in B$, $d \neq m_1$. If $2 \leq i \leq k - 1$, then $m_i \in \max(B \setminus \{m_1, \dots, m_{i-1}\})$, and since $d \in B \setminus \{m_1, \dots, m_{i-1}\}$, $d \geq m_i$ would imply $m_i = d \in B \setminus \{m_1, \dots, m_i, \dots, m_{k-1}\}$, a contradiction. Further, if $|B \setminus \{m_1, \dots, m_{k-1}\}| \geq 2$, then form the next set $D_{k+1} := \max(B \setminus \{m_1, \dots, m_{k-1}, m_k\})$ and let $m_{k+1} \in D_{k+1}$. Since D_{k+1} is an antichain in the CD-base B, it is a disjoint set, and clearly $D_{k+1} \neq D_k$. In order to prove $D_k \succ D_{k+1}$, consider the subposet $(I(D_k), \leq)$. By Proposition 1.4, $B_k := B \cap I(D_k)$ is a CD-base in $(I(D_k), \leq)$. We claim that

 $B_k = B \setminus \{m_1, \ldots, m_{k-1}\}.$

Indeed, $D_k = \max(B \setminus \{m_1, ..., m_{k-1}\})$ implies $B \setminus \{m_1, ..., m_{k-1}\} \subseteq B \cap \{D_k\} = B_k$. On the other hand, (5) implies $\{m_1, ..., m_{k-1}\} \cap I(D_k) = \emptyset$, whence we get $B_k \subseteq B \setminus \{m_1, ..., m_{k-1}\}$, proving our claim. Hence $D_k = \max(B_k)$, and $D_{k+1} = \max(B \setminus \{m_1, ..., m_{k-1}, m_k\}) = \max(B_k \setminus \{m_k\})$. Now, by applying Lemma 1.7, we obtain that $D_{k+1} \prec D_k$ holds in $\mathcal{D}(I(D_k))$. Finally, observe that any $S \in \mathcal{D}(P)$ with $S \leq D_k$ is also a disjoint set in $(I(D_k), \leq)$ according to (A). Moreover, since $D_{k+1} \prec D_k$ holds in $\mathcal{D}(I(D_k))$, $D_{k+1} \leq S \in D_k$ implies either $S = D_k$ or $S = D_{k+1}$. This means that $D_{k+1} \prec D_k$ holds in $\mathcal{D}(P)$, too. Thus we conclude by induction that the chain $D_1 \succ \dots \succ D_k \succ \dots$ can be continued as long as the condition $|B \setminus \{m_1, ..., m_{k-1}\}| \geq 2$ is still valid. Since P is finite, the process stops after finite - let say n - 1 steps, when $|B \setminus \{m_1, ..., m_{n-1}\}| = 1$, and the last set is $D_n = B \setminus \{m_1, ..., m_{n-1}\}$. As $0 \in B$, and since $0 \notin \max(X)$ whenever $|X| \geq 2$, we get $\{0\} = B \setminus \{m_1, ..., m_{n-1}\}| = D_n$. As D_1 is a maximal element and $D_n = \{0\}$ is the least element in $\mathcal{D}(P)$. $D_1 \succ \dots \succ D_n$ is a maximal chain in $\mathcal{D}(P)$. Since $B = \{m_1, ..., m_{n-1}\}$, Q_k wo obtain |B| = n.

Proof

Any poset (P, \leq) without least element becomes a poset with 0 by adding a new element 0 to P. In this way both the number of the elements in the CD-bases of \mathbb{P} and the length of the maximal chains in $\mathcal{D}(P)$ are increased by one. Therefore, without loss of generality we may assume that \mathbb{P} contains 0 and $|P| \geq 2$.

To prove the first part of Theorem 1.5, assume that *B* is a CD-base in \mathbb{P} . Then clearly $0 \in B$ and $|B| \geq 2$. Let $D_1 = \max(B)$. Take any $m_1 \in D_1$ and form $D_2 = \max(B \setminus \{m_1\})$. Then, in view of Lemma 1.7, $D_1, D_2 \in \mathcal{D}(P), D_1 \succ D_2$, and D_1 is a maximal element in $\mathcal{D}(P)$. Further, suppose that we already have a sequence $(D_i, m_i), 1 \leq i \leq k \ (k \geq 2)$ such that $m_i \in D_i$, $D_1 \succ \dots \succ D_k$ in $\mathcal{D}(P)$ and

$$D_k = \max(B \setminus \{m_1, ..., m_{k-1}\}).$$

We show that for all $i \in \{1, ..., k-1\}$ and $d \in D_k$ we have $d \ngeq m_i$. (5)

This is clear for i = 1 since $m_1 \in \max(B)$ and $d \in B$, $d \neq m_1$. If $2 \leq i \leq k - 1$, then $m_i \in \max(B \setminus \{m_1, ..., m_{i-1}\})$, and since $d \in B \setminus \{m_1, ..., m_{i-1}\}$, $d \geq m_i$ would imply $m_i = d \in B \setminus \{m_1, ..., m_i, ..., m_{k-1}\}$, a contradiction. Further, if $|B \setminus \{m_1, ..., m_{k-1}\}| \geq 2$, then form the next set $D_{k+1} := \max(B \setminus \{m_1, ..., m_{k-1}, m_k\})$ and let $m_{k+1} \in D_{k+1}$. Since D_{k+1} is an antichain in the CD-base B, it is a disjoint set, and clearly $D_{k+1} \neq D_k$. In order to prove $D_k \succ D_{k+1}$, consider the subposet $(I(D_k), \leq)$. By Proposition 1.4, $B_k := B \cap I(D_k)$ is a CD-base in $(I(D_k), \leq)$.

$$B_k = B \setminus \{m_1, \ldots, m_{k-1}\}.$$

Indeed, $D_k = \max\{B \setminus \{m_1, ..., m_{k-1}\}\)$ implies $B \setminus \{m_1, ..., m_{k-1}\} \subseteq B \cap I(D_k) = B_k$. On the other hand, (5) implies $\{m_1, ..., m_{k-1}\} \cap I(D_k) = \emptyset$, whence we get $B_k \subseteq B \setminus \{m_1, ..., m_{k-1}\}$, proving our claim. Hence $D_k = \max(B_k)$, and $D_{k+1} = \max(B \setminus \{m_1, ..., m_{k-1}\}) = \max(B_k \setminus \{m_k\})$. Now, by applying Lemma 1.7, we obtain that $D_{k+1} \prec D_k$ holds in $\mathcal{D}(I(D_k))$. Finally, observe that any $S \in \mathcal{D}(P)$ with $S \leq D_k$ is also a disjoint set in $(I(D_k), \leq)$ according to (A). Moreover, since $D_{k+1} \prec D_k$ holds in $\mathcal{D}(I(D_k))$, $D_{k+1} \leq S \leq D_k$ implies either $S = D_k$ or $S = D_{k+1}$. This means that $D_{k+1} \prec D_k$ holds in $\mathcal{D}(P)$, too. Thus we conclude by induction that the chain $D_1 \succ \dots \succ D_k \succ \dots$ can be continued as long as the condition $|B \setminus \{m_1, ..., m_{n-1}\}| \ge 2$ is still valid. Since P is finite, the process stops after finite - let say n - 1 steps, when $|B \setminus \{m_1, ..., m_{n-1}\}| = 1$, and the last set is $D_n = B \setminus \{m_1, ..., m_{n-1}\}$. As $0 \in B$, and since $0 \notin \max(X)$ whenever $|X| \ge 2$, we get $\{0\} = B \setminus \{m_1, ..., m_{n-1}\} = D_n$. As D_1 is a maximal element and $D_n = \{0\}$ is the least element in $\mathcal{D}(P)$, $D_1 \succ \dots \succ D_n$ is a maximal chain in $\mathcal{D}(P)$.

Bizonyítás

To prove the second part of Theorem 1.5, assume that the disjoint sets D_1, \ldots, D_m form a maximal chain C:

$$D_1 \prec \ldots \prec D_m$$

in $\mathcal{D}(P)$. Then $D_1 = \{0\}$. Let $D = \bigcup_{i=1}^{m} D_i$. First, we prove that the set D is CD-independent. Indeed, take any $x, y \in D$, i.e. $x \in D_i$ and $y \in D_j$ for some $1 \leq i \leq j \leq m$. Then $x \leq z$ for some $z \in D_j$ by (A). Assume that x and y are not comparable. Then $z \neq y$, and $z \perp y$ implies $x \perp y$ by (1). This means that D is CD-independent. Now, assume that D is not a CD-base. Then there is an $x \in P \setminus D$ such that $D \cup \{x\}$ is CD-independent. Next, consider the set

$$\mathcal{E} = \{ D_i \in \mathcal{C} \mid x \nleq d \text{ for all } d \in D_i \}$$

Clearly, $D_1 = \{0\} \in \mathcal{E}$ since $x \nleq 0$. Let $D_i \in \mathcal{E}$. Then $d \perp x$ or d < x holds for each $d \in D_i$ because $D \cup \{x\}$ is CD-independent. Thus $T_i := \{x\} \cup \{d \in D_i \mid d \nleq x\}$ is a disjoint set, and d < x or $d \in T_i$ holds for all $d \in D_i$. Hence

$$D_i < T_i$$
, (6)

in view of (A) and $x \notin D_i$. Observe that $D_m \notin \mathcal{E}$ since $D_m < T_m$ is not possible because \mathcal{C} is a maximal chain. Thus, there exists a $k \leq m-1$ such that $D_k \in \mathcal{E}$ but $D_{k+1} \notin \mathcal{E}$. This means that $x \notin d$ for all $d \in D_k$, and $x \leq z$ holds for some $z \in D_{k+1}$. Then $T_k = \{x\} \cup \{d \in D_k \mid d \notin x\} \in \mathcal{D}(P)$ satisfies $D_k < T_k$ in virtue of (6). Since $T_k \setminus \{x\} \subseteq D_k < D_{k+1}$ and $x \leq z$, for each $t \in T_k$ there is a $v \in D_{k+1}$ with $t \leq v$. In view of (A) we get $D_k < T_k < D_{k+1}$ because $x \notin D_{k+1} \subseteq D$. Since this fact contradicts $D_k \prec D_{k+1}$, we conclude that D is a CD-base.

Further, in view of (4), it follows that any set $D_i \setminus D_{i-1}$, $2 \le i \le m$ contains exactly one element, let say, a_i . Observe also that

$$D = \bigcup_{i=1}^{m} D_i = D_1 \cup \left(\bigcup_{i=2}^{m} (D_i \setminus D_{i-1}) \right).$$

Since $D_1 = \{0\}$ and $D_i \setminus D_{i-1} = \{a_i\}$, we get $D = \{0, a_2, ..., a_m\}$. We prove that all the elements $0, a_2, ..., a_m$ are different: Clearly, $0 \notin \{a_2, ..., a_m\}$. Take any $i, j \in \{2, ..., m\}$, i < j. Then $D_i \leq D_{j-1} \prec D_j$. As $a_i \in D_i$, there is a $b \in D_{j-1}$ with $0 < a_i \leq b$ by (A). As $a_j \in D_i \setminus D_{j-1}$, $b < a_j$ or $b \perp a_j$ holds by (2). Since both facts imply $a_i \neq a_j$, we conclude that D contains m different elements.

Eszter K. Horváth, Szeged

If $D_1 \prec D_2$ in $\mathcal{D}(P)$, then $D_2 = \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ for some minimal element a of the set

$$S = \{s \in P \setminus (D_1 \cup \{0\}) \mid y \perp s \text{ or } y < s \text{ for all } y \in D_1\}.$$

Moreover, $D_1 \prec \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ holds for any minimal element a of the set S.

37 / 76

38 / 76

Assume that B is a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq)$, $M = \max(B)$, and $m \in M$. Then M and $N := \max(B \setminus \{m\})$ are disjoint sets.

Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

The CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

The CD-bases of P have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

The CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of $\mathbb P$, and (B, \leq) the poset under the restricted ordering.

Then any maximal chain $C = \{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

48 / 76

Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering.

Then any maximal chain $C = \{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

- Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering.
- Then any maximal chain $C = \{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

Illustration: P and $\mathcal{D}(P)$

49 / 76

Illustration: P and $\mathcal{D}(P)$, B and $\mathcal{D}(B)$

Illustration: P and $\mathcal{D}(P)$, B and $\mathcal{D}(B)$; a maximal chain

Illustration: P and $\mathcal{D}(P)$, B and $\mathcal{D}(B)$; other

A set of pairwise disjoint elements D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a set of pairwise disjoint elements.

$P, \mathcal{D}(P)$ and $\mathcal{DC}(P)$

54 / 76

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

(iii) $\mathcal{DC}(P)$ is graded.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

(iii) $\mathcal{DC}(P)$ is graded.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

(iii) $\mathcal{DC}(P)$ is graded.

A lattice $\mathbb{L}=(L,\leq)$ with 0 is called 0-modular if for all $a,b,c\in L$

$$a \leq b$$
 and $b \wedge c = 0$ imply $b \wedge (a \vee c) = a$ (M₀,)

We know that that the tolerance lattices of algebras belonging to congruence distributive varieties are 0-modular (but not necessarily modular).

A lattice $\mathbb{L} = (L, \leq)$ with 0 is called 0-*modular* if for all $a, b, c \in L$

$$a \leq b$$
 and $b \wedge c = 0$ imply $b \wedge (a \lor c) = a$ (M₀,)

We know that that the tolerance lattices of algebras belonging to congruence distributive varieties are 0-*modular* (but not necessarily modular).

A lattice $\mathbb{L} = (L, \leq)$ with 0 is called 0-modular if for all $a, b, c \in L$

$$a \le b$$
 and $b \land c = 0$ imply $b \land (a \lor c) = a$ (M₀,)

We know that that the tolerance lattices of algebras belonging to congruence distributive varieties are 0-modular (but not necessarily modular).

A lattice $\mathbb{L} = (L, \leq)$ with 0 is called 0-modular if for all $a, b, c \in L$

$$a \le b$$
 and $b \land c = 0$ imply $b \land (a \lor c) = a$ (M₀,)

We know that that the tolerance lattices of algebras belonging to congruence distributive varieties are 0-modular (but not necessarily modular).

L is called *lower-semimodular* if for all $a, b, c \in L$, $b \prec c$ implies $a \land b \preceq a \land c$.

It belongs to the folklore that join-semidistributivity and lower semimodularity characterize the closure lattices of finite convex geometries.

It is easy to see that any lower-semimodular lattice and any 0-modular lattice is weakly 0-modular.

We say that a poset \mathbb{P} with 0 is *weakly* 0-*modular* if the above weak form of (M_0) holds whenever sup $\{a, c\}$ and sup $\{b, c\}$ exist in \mathbb{P} .

Let \mathbb{P} be a finite bounded poset.

If all the principal ideals $\downarrow a$ of \mathbb{P} are weakly 0-modular, then $A(\mathbb{P}) \cup C$ is a CD-base for every maximal chain C in \mathbb{P} .

If each principal ideal of \mathbb{P} is weakly 0-modular and $\mathcal{D}(\mathbb{P})$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains $|\mathcal{A}(\mathbb{P})| + l(\mathbb{P})$ elements.

Let \mathbb{P} be a finite bounded poset.

If all the principal ideals $\downarrow a$ of \mathbb{P} are weakly 0-modular, then $A(\mathbb{P}) \cup C$ is a CD-base for every maximal chain C in \mathbb{P} .

If each principal ideal of \mathbb{P} is weakly 0-modular and $\mathcal{D}(\mathbb{P})$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains $|A(\mathbb{P})| + I(\mathbb{P})$ elements.

Let \mathbb{P} be a poset with 0. Assume that $K \neq \emptyset$ is an index set and, for each $k \in K$, D_k is a set of pairwise disjoint elements in \mathbb{P} . If for every choice function $f \in \prod_{k \in K} D_k$ the meet $\bigwedge_{k \in K} f(k)$ exists in \mathbb{P} , then $\bigwedge_{k \in K} D_k$ exists in $\mathcal{D}(\mathbb{P})$.

In particular, for $K = \{1, 2\}$ and $D_1 = \{a_i \mid i \in I\}$, $D_2 = \{b_j \mid j \in J\} \in \mathcal{D}(\mathbb{P})$ such that all the $a_i \wedge b_j$ exists, we have

 $D_1 \wedge D_2 = \begin{cases} M & \text{if } M \neq \emptyset; \\ \{0\} & \text{otherwise,} \end{cases}$

where $M := \{a_i \land b_j \mid i \in I, j \in J, a_i \land b_j \neq 0\}$

Let \mathbb{P} be a poset with 0. Assume that $K \neq \emptyset$ is an index set and, for each $k \in K$, D_k is a set of pairwise disjoint elements in \mathbb{P} . If for every choice function $f \in \prod_{k \in K} D_k$ the meet $\bigwedge_{k \in K} f(k)$ exists in \mathbb{P} , then $\bigwedge_{k \in K} D_k$ exists in $\mathcal{D}(\mathbb{P})$.

In particular, for $K = \{1, 2\}$ and $D_1 = \{a_i \mid i \in I\}$, $D_2 = \{b_j \mid j \in J\} \in \mathcal{D}(\mathbb{P})$ such that all the $a_i \wedge b_j$ exists, we have

 $D_1 \wedge D_2 = \begin{cases} M & \text{if } M \neq \emptyset; \\ \{0\} & \text{otherwise,} \end{cases}$

where $M := \{a_i \land b_j \mid i \in I, j \in J, a_i \land b_j \neq 0\}$

Let \mathbb{P} be a poset with 0. Assume that $K \neq \emptyset$ is an index set and, for each $k \in K$, D_k is a set of pairwise disjoint elements in \mathbb{P} . If for every choice function $f \in \prod_{k \in K} D_k$ the meet $\bigwedge_{k \in K} f(k)$ exists in \mathbb{P} , then $\bigwedge_{k \in K} D_k$ exists in $\mathcal{D}(\mathbb{P})$.

In particular, for $K = \{1, 2\}$ and $D_1 = \{a_i \mid i \in I\}$, $D_2 = \{b_j \mid j \in J\} \in \mathcal{D}(\mathbb{P})$ such that all the $a_i \wedge b_j$ exists, we have

$$D_1 \wedge D_2 = \begin{cases} M & \text{if } M \neq \emptyset; \\ \{0\} & \text{otherwise,} \end{cases}$$

where $M := \{a_i \land b_j \mid i \in I, j \in J, a_i \land b_j \neq 0\}$

Let $\mathbb{P} = (P, \wedge)$ be a semilattice with 0.

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for all $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive* (*distributive with respect to disjoint pairs*) if any pair $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem 2. (E. K. H., S. Radeleczki)

(i) I(−P = (P, ∧) is a semilable with 0, then D(P) is a dp-distributive semilattice. Furthermore, for all D₁, D₂ ∈ D(P), if D₁ ∪ D₂ is a CD-independent set, then D₁, D₂ is a distributive pair in D(P).

(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(\mathbb{P})$ is a dp-distributive complete

Let $\mathbb{P} = (P, \wedge)$ be a semilattice with 0.

A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a *distributive* pair if $(c \wedge a) \vee (c \wedge b)$ exists in \mathbb{P} for all $c \in P$, and $c \wedge (a \vee b) = (c \wedge a) \vee (c \wedge b)$.

We say that (P, \wedge) is *dp-distributive* (*distributive with respect to disjoint pairs*) if any pair $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem 2. (E. K. H., S. Radeleczki)

(i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(\mathbb{P})$ is a dp-distributive semilattice. Furthermore, for all $D_1, D_2 \in \mathcal{D}(\mathbb{P})$, if $D_1 \cup D_2$ is a CD-independent set, then D_1, D_2 is a distributive pair in $\mathcal{D}(\mathbb{P})$.

(ii) If P is a complete lattice, then $\mathcal{D}(\mathbb{P})$ is a dp-distributive complete

Let $\mathbb{P} = (P, \wedge)$ be a semilattice with 0.

A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a *distributive* pair if $(c \wedge a) \vee (c \wedge b)$ exists in \mathbb{P} for all $c \in P$, and $c \wedge (a \vee b) = (c \wedge a) \vee (c \wedge b)$.

We say that (P, \wedge) is *dp-distributive* (*distributive with respect to disjoint pairs*) if any pair $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem 2. (E. K. H., S. Radeleczki)

(i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(\mathbb{P})$ is a dp-distributive semilattice. Furthermore, for all $D_1, D_2 \in \mathcal{D}(\mathbb{P})$, if $D_1 \cup D_2$ is a CD-independent set, then D_1, D_2 is a distributive pair in $\mathcal{D}(\mathbb{P})$.

(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(\mathbb{P})$ is a dp-distributive complete lattice.

Let $\mathbb{P} = (P, \wedge)$ be a semilattice with 0.

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for all $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive* (*distributive with respect to disjoint pairs*) if any pair $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem 2. (E. K. H., S. Radeleczki)

(i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(\mathbb{P})$ is a dp-distributive semilattice. Furthermore, for all $D_1, D_2 \in \mathcal{D}(\mathbb{P})$, if $D_1 \cup D_2$ is a CD-independent set, then D_1, D_2 is a distributive pair in $\mathcal{D}(\mathbb{P})$.

(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(\mathbb{P})$ is a dp-distributive complete lattice.

Let $\mathbb{P} = (P, \wedge)$ be a semilattice with 0.

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for all $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive* (*distributive with respect to disjoint pairs*) if any pair $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem 2. (E. K. H., S. Radeleczki)

(i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(\mathbb{P})$ is a dp-distributive semilattice. Furthermore, for all $D_1, D_2 \in \mathcal{D}(\mathbb{P})$, if $D_1 \cup D_2$ is a CD-independent set, then D_1, D_2 is a distributive pair in $\mathcal{D}(\mathbb{P})$.

(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(\mathbb{P})$ is a dp-distributive complete lattice.

Eszter K. Horváth, Szeged

Let (P, \leq) be a poset and $A \subseteq P$. (A, \leq) is called a *sublattice* of (P, \leq) , if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq) .

Theorem 3. (E. K. H., S. Radeleczki)

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leq)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leq)$.

If \mathbb{P} is a \wedge -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have

$$(D_1 \lor D_2) \land D = (D_1 \land D) \lor (D_2 \land D)$$

in $(\mathcal{D}(P), \leq)$.

Let (P, \leq) be a poset and $A \subseteq P$. (A, \leq) is called a *sublattice* of (P, \leq) , if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq) .

Theorem 3. (E. K. H., S. Radeleczki)

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leq)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leq)$.

If \mathbb{P} is a \wedge -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have

$$(D_1 \lor D_2) \land D = (D_1 \land D) \lor (D_2 \land D)$$

in $(\mathcal{D}(P), \leq)$.

Let (P, \leq) be a poset and $A \subseteq P$. (A, \leq) is called a *sublattice* of (P, \leq) , if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq) .

Theorem 3. (E. K. H., S. Radeleczki)

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leq)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leq)$.

If \mathbb{P} is a \wedge -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have

$$(D_1 \lor D_2) \land D = (D_1 \land D) \lor (D_2 \land D)$$

in $(\mathcal{D}(P), \leq)$.

Let $\mathbb{L} = (L, \leq)$ be a lattice. We say that \mathbb{L} is 0 *-distributive*, that is, for all $a, b, x \in L, x \land a = 0$ and $x \land b = 0$ imply $x \land (a \lor b) = 0$.

We say that \mathbb{L} is *weakly* 0-*distributive* if this implication holds under the condition $a \wedge b = 0$.

Remark

If D is a set of pairwise disjoint elements in a weakly 0-distributive lattice and $|D| \ge 2$, then it is easy to see that replacing two different elements $d_1, d_2 \in D$ by their join $d_1 \vee d_2$, we obtain again a set of pairwise disjoint elements.

62 / 76

Let $\mathbb{L} = (L, \leq)$ be a lattice. We say that \mathbb{L} is 0 *-distributive*, that is, for all $a, b, x \in L, x \land a = 0$ and $x \land b = 0$ imply $x \land (a \lor b) = 0$.

We say that \mathbb{L} is *weakly* 0-*distributive* if this implication holds under the condition $a \wedge b = 0$.

Remark

If D is a set of pairwise disjoint elements in a weakly 0-distributive lattice and $|D| \ge 2$, then it is easy to see that replacing two different elements $d_1, d_2 \in D$ by their join $d_1 \vee d_2$, we obtain again a set of pairwise disjoint elements. Let $\mathbb{L} = (L, \leq)$ be a lattice. We say that \mathbb{L} is 0 *-distributive*, that is, for all $a, b, x \in L$, $x \land a = 0$ and $x \land b = 0$ imply $x \land (a \lor b) = 0$.

We say that \mathbb{L} is *weakly* 0-*distributive* if this implication holds under the condition $a \wedge b = 0$.

Remark

If D is a set of pairwise disjoint elements in a weakly 0-distributive lattice and $|D| \ge 2$, then it is easy to see that replacing two different elements $d_1, d_2 \in D$ by their join $d_1 \vee d_2$, we obtain again a set of pairwise disjoint elements.

Let \mathbb{L} be a finite weakly 0-distributive lattice and D a dual atom of the poset $\mathcal{D}(\mathbb{L})$.

Then either $D = \{d\}$ for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ with $d_1 \lor d_2 = 1$.

Let \mathbb{L} be a graded lattice, and $a \in L$. Then the *height* of a is the length of the interval [0, a], denoted by I(a).

A graded lattice \mathbb{L} is 0-modular, whenever $l(a) + l(b) = l(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

Let \mathbb{L} be a finite weakly 0-distributive lattice and D a dual atom of the poset $\mathcal{D}(\mathbb{L})$.

Then either $D = \{d\}$ for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ with $d_1 \lor d_2 = 1$.

Let \mathbb{L} be a graded lattice, and $a \in L$. Then the *height* of a is the length of the interval [0, a], denoted by I(a).

A graded lattice \mathbb{L} is 0-modular, whenever $l(a) + l(b) = l(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

Let \mathbb{L} be a finite weakly 0-distributive lattice and D a dual atom of the poset $\mathcal{D}(\mathbb{L})$.

Then either $D = \{d\}$ for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ with $d_1 \lor d_2 = 1$.

Let \mathbb{L} be a graded lattice, and $a \in L$. Then the *height* of a is the length of the interval [0, a], denoted by l(a).

A graded lattice \mathbb{L} is 0-modular, whenever $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

Let \mathbb{L} be a finite weakly 0-distributive lattice and D a dual atom of the poset $\mathcal{D}(\mathbb{L})$.

Then either $D = \{d\}$ for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ with $d_1 \lor d_2 = 1$.

Let \mathbb{L} be a graded lattice, and $a \in L$. Then the *height* of a is the length of the interval [0, a], denoted by I(a).

A graded lattice \mathbb{L} is 0-modular, whenever $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

Let \mathbb{L} be a finite weakly 0-distributive lattice and D a dual atom of the poset $\mathcal{D}(\mathbb{L})$.

Then either $D = \{d\}$ for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ with $d_1 \lor d_2 = 1$.

Let \mathbb{L} be a graded lattice, and $a \in L$. Then the *height* of a is the length of the interval [0, a], denoted by I(a).

A graded lattice \mathbb{L} is 0-modular, whenever $l(a) + l(b) = l(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

63 / 76

Theorem 4. (E. K. H., S. Radeleczki)

Let L be a finite, weakly $\mathsf{O}\text{-}distributive$ lattice. Then the following are equivalent:

• (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

• (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Theorem 4. (E. K. H., S. Radeleczki)

Let L be a finite, weakly $0\mathchar`-distributive lattice. Then the following are equivalent:$

• (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

• (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Theorem 4. (E. K. H., S. Radeleczki)

Let L be a finite, weakly $\mathsf{O}\text{-}distributive$ lattice. Then the following are equivalent:

- (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.
- (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

We say that two elements $a, b \in L$ form a *modular pair* in the lattice L and we write (a, b)M if for all $x \in L$, $x \leq b$ implies $x \lor (a \land b) = (x \lor a) \land b$.

Also, a and b form a dual-modular pair if for all $x \in L$, $x \ge b$ implies $x \land (a \lor b) = (x \land a) \lor b$. This is denoted by $(a, b)M^*$.

Clearly, if a and b form a distributive pair, then $(a, b)M^*$ is satisfied.

By means of modular pairs, the 0-modularity condition can be reformulated as follows: For all $a, b \in L$,

Lemma (M. Stern) In a graded lattice of finite length, (a, b)M implies $l(a) + l(b) \le l(a \land b) + l(a \lor b)$.

With the help of the previous Lemma of M. Stern above, using an N_5 sublattice containing 0 as well as the dual lattice, we obtain

Proposition If \mathbb{L} is a lattice with 0 such that $(a, b)M^*$ holds for all $a, b \in L$ with $a \wedge b = 0$, then L is 0-modular. If in addition \mathbb{L} is a graded lattice of finite length, then $l(a \vee b) = l(a) + l(b)$ holds for all $a, b \in L$ with $a \wedge b = 0$.

Corollary (i) Let \mathbb{L} be a finite, weakly 0-distributive lattice such that for each $a, b \in L$ with $a \wedge b = 0$, condition $(a, b)M^*$ holds. Then the CD-bases of \mathbb{L} have the same number of elements if and only if \mathbb{L} is graded.

(ii) If \mathbb{L} is a finite pseudocomplemented modular lattice, then the CD-bases of \mathbb{L} have the same number of elements.

As any dp-distributive lattice \mathbb{L} is weakly 0-distributive, and $(a, b)M^*$ holds for all $a, b \in L$ with $a \wedge b = 0$ since (a, b) is a distributive pair, we obtain

Corollary

(i) Any dp-distributive lattice is 0-modular. If \mathbb{L} is a dp-distributive graded lattice with finite length, then $l(a \lor b) = l(a) + l(b)$ holds for all $a, b \in L$ with $a \land b = 0$.

(ii) The CD-bases in a finite dp-distributive lattice \mathbb{L} have the same number of elements if and only if \mathbb{L} is graded.

An *interval system* (V, \mathcal{I}) is an algebraic closure system satisfying the axioms:

 (I_0) $\{x\} \in \mathcal{I}$ for all $x \in V$, and $\emptyset \in \mathcal{I}$;

(I1) $A, B \in \mathcal{I}$ and $A \cap B \neq \emptyset$ imply $A \cup B \in \mathcal{I}$;

(I₂) For any $A, B \in \mathcal{I}$ the relations $A \cap B \neq \emptyset$, $A \nsubseteq B$ and $B \nsubseteq A$ imply $A \setminus B \in \mathcal{I}$ (and $B \setminus A \in \mathcal{I}$).

The modules (X-sets, or autonomous sets) of an undirected graph G = (V, E), the intervals of an *n*-ary relation $R \subseteq V^n$ on the set V for $n \ge 2$ – in particular, the usual intervals of a linearly ordered set (V, \le) – form interval systems.

Let us consider now the condition:

$$(\mathcal{II})$$
 If $a \wedge b \neq 0$, then $(x \leq a \vee b \text{ and } x \wedge a = 0) \Rightarrow x \leq b$ for all $a, b, x \in L$.

Lattices with 0 satisfying condition (\mathcal{II}) and with the property that $\uparrow a$ is a modular lattice for all $a \in L$, $a \neq 0$, can be considered as a generalization of the lattice (\mathcal{I}, \subseteq) of an interval system (V, \mathcal{I}) . To study their CD-bases, first we proved:

Lemma Let \mathbb{L} be an atomic lattice satisfying condition (\mathcal{II}) . Assume $D \in \mathcal{D}(\mathbb{L})$ and define $S_D = \{s \in L \setminus (D \cup \{0\}) \mid d \land s = 0 \text{ or } d < s, \text{ for all } d \in D\}$. Then for all $b, c \in S_D$ with $b \land c \neq 0$ and all $d \in D$, $d \land (b \lor c) \neq 0$ if and only if 0 < d < b or 0 < d < c holds.

69 / 76

Let us consider now the condition:

Remark Let \mathbb{L} be a finite lattice and $D = \{d_j \mid j \in J\} \in \mathcal{DC}(\mathbb{L})$. If $D \prec D'$ for some $D' \in D(\mathbb{L})$; then, there is a minimal element $a \in S_D$ such that $D' = \{a\} \cup \{d_j \in D \setminus \{0\} \mid d_j \land a = 0\}$. In this case there exists a set $K \subseteq J$ such that $K = \{j \in J \mid d_j < a\} \neq \emptyset$ and $D' = \{a\} \cup \{d_j \mid j \in J \setminus K\}$. (14)

It is well-known that a finite lattice \mathbb{L} is semimodular if and only if it satisfies *Birkhoff's condition*, namely, for all $a, b \in L$

(Bi)
$$a \wedge b \prec a, b$$
 implies $a, b \prec a \lor b$

We also say that a pair $a, b \in L$ satisfies Birkhoff's condition if the above implication (Bi) is valid for a, b. It is known that any distributive pair $a, b \in L$ satisfies Birkhoff's condition.

Theorem 5. (K. H. E., Radeleczki S.) Let \mathbb{L} be a finite lattice satisfying condition (\mathcal{II}) such that any principal filter $\uparrow a$ with $a \in L \setminus \{0\}$ is a modular lattice. Then $\mathcal{DC}(\mathbb{L})$ is a semimodular lattice.

Corollary (i) If \mathbb{L} is a finite distributive lattice, then $\mathcal{DC}(\mathbb{L})$ is a semimodular lattice.

(ii) If L is a finite lattice that satisfies the conditions in Theorem 3, then its CD-bases have the same number of elements.

By applying this to interval systems we obtain:

Corollary

If (V, \mathcal{I}) is a finite interval system, then the CD-bases of the lattice (\mathcal{I}, \subseteq) contain the same number of elements.

Corollary (i) If \mathbb{L} is a finite distributive lattice, then $\mathcal{DC}(\mathbb{L})$ is a semimodular lattice.

(ii) If \mathbb{L} is a finite lattice that satisfies the conditions in Theorem 3, then its CD-bases have the same number of elements.

By applying this to interval systems we obtain:

Corollary

If (V, \mathcal{I}) is a finite interval system, then the CD-bases of the lattice (\mathcal{I}, \subseteq) contain the same number of elements.

 $U\in\mathcal{C}\subseteq\mathcal{K}\subseteq\mathcal{P}\left(U\right)$

Let $h: U \to \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.

We say that S is an *pre-island* with respect to the triple (C, \mathcal{K}, h) , if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

 $\min h(K) < \min h(S).$

We say that S is a *island* with respect to the triple (C, \mathcal{K}, h) , if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

 $h(u) < \min h(S)$ for all $u \in K \setminus S$.

 $U\in\mathcal{C}\subseteq\mathcal{K}\subseteq\mathcal{P}\left(U\right)$

Let $h \colon U \to \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.

We say that S is an *pre-island* with respect to the triple (C, \mathcal{K}, h) , if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

 $\min h(K) < \min h(S).$

We say that S is a *island* with respect to the triple (C, \mathcal{K}, h) , if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

 $h(u) < \min h(S)$ for all $u \in K \setminus S$.

Definition

A pair $(\mathcal{C}, \mathcal{K})$ is an *connective island domain* if

 $\forall A, B \in \mathcal{C}: (A \cap B \neq \emptyset \text{ and } B \nsubseteq A) \implies \exists K \in \mathcal{K}: A \subset K \subseteq A \cup B.$

Theorem 5. (S. Foldes, E. K. H., S. Radeleczki, T. Waldhauser)

The following three conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:

(i) $(\mathcal{C}, \mathcal{K})$ is a connective island domain.

(ii) Every system of pre-islands corresponding to $(\mathcal{C}, \mathcal{K})$ is CD-independent.

Theorem 5. (S. Foldes, E. K. H., S. Radeleczki, T. Waldhauser)

The following three conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:

(i) $(\mathcal{C}, \mathcal{K})$ is a connective island domain.

(ii) Every system of pre-islands corresponding to $(\mathcal{C}, \mathcal{K})$ is CD-independent.

Thank you for your attention!

Thank you for your attention!