Pairwise comparable or disjoint elemets in a poset

Eszter K. Horváth, Szeged
Co-author: Sándor Radeleczki

2018. September.

Island

Digital islands

Grid

Digital islands

1	1	1	1	1
1	8	8	1	1
1	1	1	1	1
1	3	3	3	1
1	6	6	3	1
1	6	6	3	1
1	3	3	3	1
1	1	1	1	1

Grid, height function

Digital islands

1	1	1	1	1
1	8	8	1	1
1	1	1	1	1
1	3	3	3	1
1	6	6	3	1
1	6	6	3	1
1	3	3	3	1
1	1	1	1	1

Grid, height function, water level: 2

Digital islands

1	1	1	1	1
1	8	8	1	1
1	1	1	1	1
1	3	3	3	1
1	6	6	3	1
1	6	6	3	1
1	3	3	3	1
1	1	1	1	1

Grid, height function, water level: 4

Digital islands

1	1	1	1	1
1	8	8	1	1
1	1	1	1	1
1	3	3	3	1
1	6	6	3	1
1	6	6	3	1
1	3	3	3	1
1	1	1	1	1

Grid, height function, island system

Digital islands

CD-independent: Comparable or Disjoint

Digital islands

CD-independent: Comparable or Disjoint

Tree

CD-independent: Comparable or Disjoint

CD-independent: Comparable or Disjoint

Tree

CD-independent: Comparable or Disjoint

Tree

CD-independent: Comparable or Disjoint

Tree

CD-independent: Comparable or Disjoint

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

If all finite lattices in a lattice variety have this property, then the variety
must coincide with the variety of distributive lattices.

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

If all finite lattices in a lattice variety have this property, then the variety must coincide with the variety of distributive lattices.

CD-independent subsets in posets

Let $\mathbb{P}=(P, \leq)$ be a partially ordered set, and let $a, b \in P$. The elements a and b are called disjoint and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf \{a, b\}=0$, or \mathbb{P} is without 0 and the elements a and b have no common lowerbound.

CD-independent subsets in posets

Let $\mathbb{P}=(P, \leq)$ be a partially ordered set, and let $a, b \in P$.
The elements a and b are called disjoint and we write $a \perp b$ if

CD-independent subsets in posets

Let $\mathbb{P}=(P, \leq)$ be a partially ordered set, and let $a, b \in P$.
The elements a and b are called disjoint and we write $a \perp b$ if
either \mathbb{P} has least element $0 \in P$ and $\inf \{a, b\}=0$, or \mathbb{P} is without 0 and the elements a and b have no common lowerbound.

A nonempty set $X \subseteq P$ is called $C D$-independent if for any $x, y \in X$, Maximal CD-independent sets (with respect to \subseteq) are called CD-bases in

CD-independent subsets in posets

Let $\mathbb{P}=(P, \leq)$ be a partially ordered set, and let $a, b \in P$.
The elements a and b are called disjoint and we write $a \perp b$ if
either \mathbb{P} has least element $0 \in P$ and $\inf \{a, b\}=0$, or \mathbb{P} is without 0 and the elements a and b have no common lowerbound.

A nonempty set $X \subseteq P$ is called $C D$-independent if for any $x, y \in X$, $x \leq y$ or $y \leq x$, or $x \perp y$ holds.

CD-independent subsets in posets

Let $\mathbb{P}=(P, \leq)$ be a partially ordered set, and let $a, b \in P$.
The elements a and b are called disjoint and we write $a \perp b$ if
either \mathbb{P} has least element $0 \in P$ and $\inf \{a, b\}=0$, or \mathbb{P} is without 0 and the elements a and b have no common lowerbound.

A nonempty set $X \subseteq P$ is called $C D$-independent if for any $x, y \in X$, $x \leq y$ or $y \leq x$, or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called CD-bases in \mathbb{P}.

Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a set of pairwise disjoint element in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$; if \mathbb{P} has 0 -element, then $\{0\}$ is considered to be a set of pairwise disjont elements, too.

Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a set of pairwise disjoint element in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$; if \mathbb{P} has 0 -element, then $\{0\}$ is considered to be a set of pairwise disjont elements, too.

Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a set of pairwise disjoint element in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$; if \mathbb{P} has 0 -element, then $\{0\}$ is considered to be a set of pairwise disjont elements, too.
D is a set of pairwise disjoint elements if and only if it is a CD-independent antichain in \mathbb{P}.

Order ideals

Let $X \subseteq P$.

The order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$.

The order-ideals of any poset form a (distributive) lattice with respect to

Order ideals

$$
\text { Let } X \subseteq P \text {. }
$$

The order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$. The order-ideals of any poset form a (distributive) lattice with respect to

Order ideals

$$
\text { Let } X \subseteq P \text {. }
$$

The order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$.
The order-ideals of any poset form a (distributive) lattice with respect to \subseteq.

So, the antichains of a poset can be ordered as follows Definition

Order ideals

$$
\text { Let } X \subseteq P \text {. }
$$

The order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$.
The order-ideals of any poset form a (distributive) lattice with respect to \subseteq.

So, the antichains of a poset can be ordered as follows:

Order ideals

$$
\text { Let } X \subseteq P \text {. }
$$

The order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$.
The order-ideals of any poset form a (distributive) lattice with respect to \subseteq.

So, the antichains of a poset can be ordered as follows:

Definition

Order ideals

Let $X \subseteq P$.
The order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$.
The order-ideals of any poset form a (distributive) lattice with respect to \subseteq.

So, the antichains of a poset can be ordered as follows:

Definition

If A_{1}, A_{2} are antichains in \mathbb{P}, then we say that A_{1} is dominated by A_{2}, and we denote it by $A_{1} \leqslant A_{2}$ if $\downarrow A_{1} \subseteq \downarrow A_{2}$.

Order ideals

Let $X \subseteq P$.
The order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$.
The order-ideals of any poset form a (distributive) lattice with respect to \subseteq.

So, the antichains of a poset can be ordered as follows:

Definition

If A_{1}, A_{2} are antichains in \mathbb{P}, then we say that A_{1} is dominated by A_{2}, and we denote it by $A_{1} \leqslant A_{2}$ if $\downarrow A_{1} \subseteq \downarrow A_{2}$.

Order ideals

Let $X \subseteq P$.
The order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$.
The order-ideals of any poset form a (distributive) lattice with respect to \subseteq.

So, the antichains of a poset can be ordered as follows:

Definition

If A_{1}, A_{2} are antichains in \mathbb{P}, then we say that A_{1} is dominated by A_{2}, and we denote it by $A_{1} \leqslant A_{2}$ if $\downarrow A_{1} \subseteq \downarrow A_{2}$.

Remark

\leqslant is a partial order.

$\mathcal{D}(\mathbb{P})$

Let $\mathcal{D}(\mathbb{P})$ denote the set of all sets of pairwise disjont elements of \mathbb{P}. shown by the next theorem

$\mathcal{D}(\mathbb{P})$

Let $\mathcal{D}(\mathbb{P})$ denote the set of all sets of pairwise disjont elements of \mathbb{P}.

As sets of pairwise disjont elements of \mathbb{P} are also antichains, restricting \leqslant to $\mathcal{D}(\mathbb{P})$, we obtain a poset $(\mathcal{D}(\mathbb{P}), \leqslant)$.

Let $\mathcal{D}(\mathbb{P})$ denote the set of all sets of pairwise disjont elements of \mathbb{P}.

As sets of pairwise disjont elements of \mathbb{P} are also antichains, restricting \leqslant to $\mathcal{D}(\mathbb{P})$, we obtain a poset $(\mathcal{D}(\mathbb{P}), \leqslant)$.

The connection between CD-bases of a poset \mathbb{P} and the poset $(\mathcal{D}(\mathbb{P}), \leqslant)$ is shown by the next theorem:

Theorem (E. K. H., S. Radeleczki)

Let B be a CD-base of a finite poset (P, \leq), and let $|B|=n$.

Then there exists a maximal chain $\left\{D_{i}\right\}_{1 \leq i \leq n}$ in $\mathcal{D}(P)$ such that $B=\bigcup_{i=1}^{n} D_{i}$.

Theorem (E. K. H., S. Radeleczki)

Let B be a $C D$-base of a finite poset (P, \leq), and let $|B|=n$.

Then there exists a maximal chain $\left\{D_{i}\right\}_{1 \leq i \leq n}$ in $\mathcal{D}(P)$ such that $B=\bigcup_{i=1}^{n} D_{i}$.

Moreover, for any maximal chain $\left\{D_{i}\right\}_{1 \leq i \leq m}$ in $\mathcal{D}(P)$ the set $D=\bigcup_{i=1}^{m} D_{i}$ is a $C D$-base in (P, \leq) with $|D|=m$.

\mathbb{P}_{1} és $\mathcal{D}\left(\mathbb{P}_{1}\right)$

\mathbb{P}_{1} és $\mathcal{D}\left(\mathbb{P}_{1}\right)$, maximális lánc $\mathcal{D}\left(\mathbb{P}_{1}\right)$-ben

\mathbb{P}_{1} és $\mathcal{D}\left(\mathbb{P}_{1}\right)$, maximális lánc $\mathcal{D}\left(\mathbb{P}_{1}\right)$-ben

\mathbb{P}_{2} and $\mathcal{D}\left(\mathbb{P}_{2}\right)$

\mathbb{P}_{2} és $\mathcal{D}\left(\mathbb{P}_{2}\right)$, maximális lánc $\mathcal{D}\left(\mathbb{P}_{2}\right)$-ben

\mathbb{P}_{3} and $\mathcal{D}\left(\mathbb{P}_{3}\right)$

\mathbb{P}_{3} és $\mathcal{D}\left(\mathbb{P}_{3}\right)$, maximális lánc $\mathcal{D}\left(\mathbb{P}_{3}\right)$-ban

\mathbb{P}_{3} és $\mathcal{D}\left(\mathbb{P}_{3}\right)$, maximális lánc $\mathcal{D}\left(\mathbb{P}_{3}\right)$-ban

Proof

Any poset (P, \leq) without least element becomes a poset with 0 by adding

Proof

Any poset (P, \leq) without least element becomes a poset with 0 by adding a new element 0 to P. In this way both the number of the elements in the CD-bases of \mathbb{P} and the length of the maximal chains

 in $\mathcal{D}(P)$ are increased by one. Therefore, without loss of generality we may assume that \mathbb{P} contains 0 and $|P| \geq 2$.To prove the first part of Theorem 1.5, assume that B is a CD-base in \mathbb{P}. Then clearly $0 \in B$ and $|B| \geq 2$. Let $D_{1}=\max (B)$. Take any $m_{1} \in D_{1}$ and form $D_{2}=\max \left(B \backslash\left\{m_{1}\right\}\right)$. Then, in view of Lemma $1.7, D_{1}, D_{2} \in \mathcal{D}(P), D_{1} \succ D_{2}$, and D_{1} is a maximal element in $\mathcal{D}(P)$. Further, suppose that we already have a sequence $\left(D_{i}, m_{i}\right), 1 \leq i \leq k(k \geq 2)$ such that $m_{i} \in D_{i}$, $D_{1} \succ \ldots \succ D_{k}$ in $\mathcal{D}(P)$ and

$$
\begin{equation*}
D_{k}=\max \left(B \backslash\left\{m_{1}, \ldots, m_{k-1}\right\}\right) \tag{5}
\end{equation*}
$$

We show that for all $i \in\{1, \ldots, k-1\}$ and $d \in D_{k}$ we have $d \nsupseteq m_{i}$.
This is clear for $i=1$ since $m_{1} \in \max (B)$ and $d \in B, d \neq m_{1}$. If $2 \leq i \leq k-1$, then $m_{i} \in \max \left(B \backslash\left\{m_{1}, \ldots, m_{i-1}\right\}\right)$, and since $d \in B \backslash\left\{m_{1}, \ldots, m_{i-1}\right\}, d \geq m_{i}$ would imply $m_{i}=d \in B \backslash\left\{m_{1}, \ldots, m_{i}, \ldots, m_{k-1}\right\}$, a contradiction. Further, if $\left|B \backslash\left\{m_{1}, \ldots, m_{k-1}\right\}\right| \geq 2$, then form the next set $D_{k+1}:=\max \left(B \backslash\left\{m_{1}, \ldots, m_{k-1}, m_{k}\right\}\right)$ and let $m_{k+1} \in D_{k+1}$. Since D_{k+1} is an antichain in the CD-base B, it is a disjoint set, and clearly $D_{k+1} \neq D_{k}$. In order to prove $D_{k} \succ D_{k+1}$, consider the subposet $\left(I\left(D_{k}\right), \leq\right)$. By Proposition 1.4, $B_{k}:=B \cap I\left(D_{k}\right)$ is a CD-base in $\left(I\left(D_{k}\right), \leq\right)$. We claim that

$$
B_{k}=B \backslash\left\{m_{1}, \ldots, m_{k-1}\right\} .
$$

Indeed, $D_{k}=\max \left(B \backslash\left\{m_{1}, \ldots, m_{k-1}\right\}\right)$ implies $B \backslash\left\{m_{1}, \ldots, m_{k-1}\right\} \subseteq B \cap I\left(D_{k}\right)=B_{k}$. On the other hand, (5) implies $\left\{m_{1}, \ldots, m_{k-1}\right\} \cap I\left(D_{k}\right)=\emptyset$, whence we get $B_{k} \subseteq B \backslash\left\{m_{1}, \ldots, m_{k-1}\right\}$, proving our claim. Hence $D_{k}=\max \left(B_{k}\right)$, and $D_{k+1}=\max \left(B \backslash\left\{m_{1}, \ldots, m_{k-1}, m_{k}\right\}\right)=\max \left(B_{k} \backslash\left\{m_{k}\right\}\right)$.
Now, by applying Lemma 1.7 , we obtain that $D_{k+1} \prec D_{k}$ holds in $\mathcal{D}\left(I\left(D_{k}\right)\right)$. Finally, observe that any $S \in \mathcal{D}(P)$ with $S \leqslant D_{k}$ is also a disjoint set in $\left(I\left(D_{k}\right), \leq\right)$ according to (A). Moreover, since $D_{k+1} \prec D_{k}$ holds in $\mathcal{D}\left(I\left(D_{k}\right)\right)$,
$D_{k+1} \leqslant S \leqslant D_{k}$ implies either $S=D_{k}$ or $S=D_{k+1}$. This means that $D_{k+1} \prec D_{k}$ holds in $\mathcal{D}(P)$, too.
Thus we conclude by induction that the chain $D_{1} \succ \ldots \succ D_{k} \succ \ldots$ can be continued as long as the condition $\left|B \backslash\left\{m_{1}, \ldots, m_{k-1}\right\}\right| \geq 2$ is still valid. Since P is finite, the process stops after finite - let say $n-1$ steps, when $\left|B \backslash\left\{m_{1}, \ldots, m_{n-1}\right\}\right|=1$, and the last set is $D_{n}=B \backslash\left\{m_{1}, \ldots, m_{n-1}\right\}$. As $0 \in B$, and since $0 \notin \max (X)$ whenever $|X| \geq 2$, we get $\{0\}=B \backslash\left\{m_{1}, \ldots, m_{n-1}\right\}=D_{n}$. As D_{1} is a maximal element and $D_{n}=\{0\}$ is the least element in $\mathcal{D}(P), D_{1} \succ \ldots \succ D_{n}$ is a maximal chain in $\mathcal{D}(P)$. Since $B=\left\{m_{1}, \ldots, m_{n-1}, 0\right\}$, we obtain $|B|=n$.

Bizonyítás

To prove the second part of Theorem 1.5, assume that the disjoint sets D_{1}, \ldots, D_{m} form a maximal chain \mathcal{C} :

$$
D_{1} \prec \ldots \prec D_{m}
$$

in $\mathcal{D}(P)$. Then $D_{1}=\{0\}$. Let $D=\bigcup_{i=1}^{m} D_{i}$. First, we prove that the set D is CD-independent. Indeed, take any $x, y \in D$, i.e. $x \in D_{i}$ and $y \in D_{j}$ for some $1 \leq i \leq j \leq m$. Then $x \leq z$ for some $z \in D_{j}$ by (A). Assume that x and y are not comparable. Then $z \neq y$, and $z \perp y$ implies $x \perp y$ by (1). This means that D is CD-independent.
Now, assume that D is not a CD-base. Then there is an $x \in P \backslash D$ such that $D \cup\{x\}$ is CD-independent. Next, consider the set

$$
\mathcal{E}=\left\{D_{i} \in \mathcal{C} \mid x \not \leq d \text { for all } d \in D_{i}\right\}
$$

Clearly, $D_{1}=\{0\} \in \mathcal{E}$ since $x \not \leq 0$. Let $D_{i} \in \mathcal{E}$. Then $d \perp x$ or $d<x$ holds for each $d \in D_{i}$ because $D \cup\{x\}$ is CD-independent. Thus $T_{i}:=\{x\} \cup\left\{d \in D_{i} \mid d \nless x\right\}$ is a disjoint set, and $d<x$ or $d \in T_{i}$ holds for all $d \in D_{i}$. Hence

$$
\begin{equation*}
D_{i}<T_{i} \tag{6}
\end{equation*}
$$

in view of (A) and $x \notin D_{i}$. Observe that $D_{m} \notin \mathcal{E}$ since $D_{m}<T_{m}$ is not possible because \mathcal{C} is a maximal chain. Thus, there exists a $k \leq m-1$ such that $D_{k} \in \mathcal{E}$ but $D_{k+1} \notin \mathcal{E}$. This means that $x \not \leq d$ for all $d \in D_{k}$, and $x \leq z$ holds for some $z \in D_{k+1}$. Then $T_{k}=\{x\} \cup\left\{d \in D_{k} \mid d \nless x\right\} \in \mathcal{D}(P)$ satisfies $D_{k}<T_{k}$ in virtue of (6). Since $T_{k} \backslash\{x\} \subseteq D_{k}<D_{k+1}$ and $x \leq z$, for each $t \in T_{k}$ there is a $v \in D_{k+1}$ with $t \leq v$. In view of (A) we get $D_{k}<T_{k}<D_{k+1}$ because $x \notin D_{k+1} \subseteq D$. Since this fact contradicts $D_{k} \prec D_{k+1}$, we conclude that D is a CD-base.
Further, in view of (4), it follows that any set $D_{i} \backslash D_{i-1}, 2 \leq i \leq m$ contains exactly one element, let say, a_{i}. Observe also that

$$
D=\bigcup_{i=1}^{m} D_{i}=D_{1} \cup\left(\bigcup_{i=2}^{m}\left(D_{i} \backslash D_{i-1}\right)\right)
$$

Since $D_{1}=\{0\}$ and $D_{i} \backslash D_{i-1}=\left\{a_{i}\right\}$, we get $D=\left\{0, a_{2}, \ldots, a_{m}\right\}$. We prove that all the elements $0, a_{2}, \ldots, a_{m}$ are different: Clearly, $0 \notin\left\{a_{2}, \ldots, a_{m}\right\}$. Take any $i, j \in\{2, \ldots, m\}, i<j$. Then $D_{i} \leqslant D_{j-1} \prec D_{j}$. As $a_{i} \in D_{i}$, there is a $b \in D_{j-1}$ with $0<a_{i} \leq b$ by (A). As $a_{j} \in D_{j} \backslash D_{j-1}, b<a_{j}$ or $b \perp a_{j}$ holds by (2). Since both facts imply $a_{i} \neq a_{j}$, we conclude that D contains m different elements.

Lemma 1

If $D_{1} \prec D_{2}$ in $\mathcal{D}(P)$, then $D_{2}=\{a\} \cup\left\{y \in D_{1} \backslash\{0\} \mid y \perp a\right\}$ for some minimal element a of the set

$$
S=\left\{s \in P \backslash\left(D_{1} \cup\{0\}\right) \mid y \perp s \text { or } y<s \text { for all } y \in D_{1}\right\} .
$$

Moreover, $D_{1} \prec\{a\} \cup\left\{y \in D_{1} \backslash\{0\} \mid y \perp a\right\}$ holds for any minimal element a of the set S.

Illustration for Lemma 1

Lemma 2

Assume that B is a $C D$-base with at least two elements in a finite poset $\mathbb{P}=(P, \leq), M=\max (B)$, and $m \in M$. Then M and $N:=\max (B \backslash\{m\})$ are disjoint sets.

Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Illustration for Lemma 2

Illustration for Lemma 2

Illustration for Lemma 2

Illustration for Lemma 2

Corollary

Let $\mathbb{P}=(P, \leq)$ be a finite poset.
The poset \mathbb{P} is called graded, if all its maximal chains have the same

Corollary

Let $\mathbb{P}=(P, \leq)$ be a finite poset.
The poset \mathbb{P} is called graded, if all its maximal chains have the same cardinality.

Corollary

Let $\mathbb{P}=(P, \leq)$ be a finite poset.
The poset \mathbb{P} is called graded, if all its maximal chains have the same cardinality.

The CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Corollary

Let $B \subseteq P$ be a CD-base of \mathbb{P}, and (B, \leq) the poset under the restricted ordering.

Corollary

Let $B \subseteq P$ be a CD-base of \mathbb{P}, and (B, \leq) the poset under the restricted ordering.

Then any maximal chain $\mathcal{C}=\left\{D_{i}\right\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$

Corollary

Let $B \subseteq P$ be a CD-base of \mathbb{P}, and (B, \leq) the poset under the restricted ordering.

Then any maximal chain $\mathcal{C}=\left\{D_{i}\right\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

Illustration: P and $\mathcal{D}(P)$

Illustration: P and $\mathcal{D}(P), B$ and $\mathcal{D}(B)$

Illustration: P and $\mathcal{D}(P), B$ and $\mathcal{D}(B)$; a maximal chain

Illustration: P and $\mathcal{D}(P), B$ and $\mathcal{D}(B)$; other

$\mathcal{D C}(P)$

A set of pairwise disjoint elements D of a poset (P, \leq) is called complete, if there is no $p \in P \backslash D$ such that $D \cup\{p\}$ is also a set of pairwise disjoint elements.

$P, \mathcal{D}(P)$ and $\mathcal{D C}(P)$

Equivalent conditions

Let $\mathbb{P}=(P, \leq)$ be a finite poset with 0 . Then the following conditions are equivalent:
(i) The CD-bases of \mathbb{P} have the same number of elements,

Equivalent conditions

Let $\mathbb{P}=(P, \leq)$ be a finite poset with 0 . Then the following conditions are equivalent:
(i) The CD-bases of \mathbb{P} have the same number of elements,
(ii) $\mathcal{D}(P)$ is graded.

Equivalent conditions

Let $\mathbb{P}=(P, \leq)$ be a finite poset with 0 . Then the following conditions are equivalent:
(i) The CD-bases of \mathbb{P} have the same number of elements,
(ii) $\mathcal{D}(P)$ is graded.
(iii) $\mathcal{D C}(P)$ is graded.

Weakly 0-modular lattices

A poset with least element 0 and greatest element 1 is called bounded. We know that that the tolerance lattices of algebras belonging to congruence distributive varieties are 0-modular (but not necessarily modular)

Weakly 0-modular lattices

A poses with least element 0 and greatest element 1 is called bounded.
A lattice $\mathbb{L}=(L, \leq)$ with 0 is called 0 -modular if for all $a, b, c \in L$

$$
\begin{equation*}
a \leq b \text { and } b \wedge c=0 \text { imply } b \wedge(a \vee c)=a \tag{0}
\end{equation*}
$$

Weakly 0-modular lattices

A poset with least element 0 and greatest element 1 is called bounded.
A lattice $\mathbb{L}=(L, \leq)$ with 0 is called 0 -modular if for all $a, b, c \in L$

$$
\begin{equation*}
a \leq b \text { and } b \wedge c=0 \text { imply } b \wedge(a \vee c)=a \tag{0}
\end{equation*}
$$

We know that that the tolerance lattices of algebras belonging to congruence distributive varieties are 0-modular (but not necessarily modular).

Weakly 0-modular lattices

A poset with least element 0 and greatest element 1 is called bounded.
A lattice $\mathbb{L}=(L, \leq)$ with 0 is called 0 -modular if for all $a, b, c \in L$

$$
\begin{equation*}
a \leq b \text { and } b \wedge c=0 \text { imply } b \wedge(a \vee c)=a \tag{0}
\end{equation*}
$$

We know that that the tolerance lattices of algebras belonging to congruence distributive varieties are 0-modular (but not necessarily modular).

If $\left(\mathrm{M}_{0}\right)$ is satisfied under the assumptions that a is an atom and $c \prec b \vee c$, then L is called weakly 0 -modular.

Weakly 0-modular lattices

L is called lower-semimodular if for all $a, b, c \in L, b \prec c$ implies $a \wedge b \preceq a \wedge c$.

It belongs to the folklore that join-semidistributivity and lower semimodularity characterize the closure lattices of finite convex geometries.

It is easy to see that any lower-semimodular lattice and any 0-modular lattice is weakly 0 -modular.

We say that a poset \mathbb{P} with 0 is weakly 0 -modular if the above weak form of $\left(\mathrm{M}_{0}\right)$ holds whenever $\sup \{a, c\}$ and $\sup \{b, c\}$ exist in \mathbb{P}.

If \mathbb{P} is a finite bounded poset

Let \mathbb{P} be a finite bounded poset.

If all the principal ideals \downarrow a of \mathbb{P} are weakly 0 -modular, then $A(\mathbb{P}) \cup C$ is a CD-base for every maximal chain C in \mathbb{P}.

If \mathbb{P} is a finite bounded poset

Let \mathbb{P} be a finite bounded poset.

If all the principal ideals \downarrow a of \mathbb{P} are weakly 0 -modular, then $A(\mathbb{P}) \cup C$ is a CD-base for every maximal chain C in \mathbb{P}.

If each principal ideal of \mathbb{P} is weakly 0 -modular and $\mathcal{D}(\mathbb{P})$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains $|A(\mathbb{P})|+l(\mathbb{P})$ elements.

Poset with 0

Lemma

Let \mathbb{P} be a poset with 0 . Assume that $K \neq \varnothing$ is an index set and, for each $k \in K, D_{k}$ is a set of pairwise disjoint elements in \mathbb{P}. If for every choice function $f \in \prod_{k \in K} D_{k}$ the meet $\bigwedge_{k \in K} f(k)$ exists in \mathbb{P}, then
$\wedge D_{k}$ exists in $\mathcal{D}(\mathbb{P})$. $k \in K$

Poset with 0

Lemma

Let \mathbb{P} be a poset with 0 . Assume that $K \neq \varnothing$ is an index set and, for each $k \in K, D_{k}$ is a set of pairwise disjoint elements in \mathbb{P}. If for every choice function $f \in \prod_{k \in K} D_{k}$ the meet $\bigwedge_{k \in K} f(k)$ exists in \mathbb{P}, then
$\wedge D_{k}$ exists in $\mathcal{D}(\mathbb{P})$. $k \in K$

Poset with 0

Lemma

Let \mathbb{P} be a poset with 0 . Assume that $K \neq \varnothing$ is an index set and, for each $k \in K, D_{k}$ is a set of pairwise disjoint elements in \mathbb{P}. If for every choice function $f \in \prod_{k \in K} D_{k}$ the meet $\bigwedge_{k \in K} f(k)$ exists in \mathbb{P}, then
$\wedge D_{k}$ exists in $\mathcal{D}(\mathbb{P})$.
$k \in K$

In particular, for $K=\{1,2\}$ and $D_{1}=\left\{a_{i} \mid i \in I\right\}, D_{2}=\left\{b_{j} \mid j \in J\right\} \in$ $\mathcal{D}(\mathbb{P})$ such that all the $a_{i} \wedge b_{j}$ exists, we have

$$
D_{1} \wedge D_{2}=\left\{\begin{array}{l}
M\} \text { if } M \neq \emptyset \\
\{0\} \text { otherwise }
\end{array}\right.
$$

where $M:=\left\{a_{i} \wedge b_{j} \mid i \in I, j \in J, a_{i} \wedge b_{j} \neq 0\right.$

CD-bases in semilattices and lattices / 2

Let $\mathbb{P}=(P, \wedge)$ be a semilattice with 0 .

We say that (P, \wedge) is dp-distributive (distributive with respect to disjoint pairs) if any pair $a, b \in P$ with $a \wedge b=0$ is a distributive pair.

CD-bases in semilattices and lattices / 2

Let $\mathbb{P}=(P, \wedge)$ be a semilattice with 0 .
A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a distributive pair if $(c \wedge a) \vee(c \wedge b)$ exists in \mathbb{P} for all $c \in P$, and $c \wedge(a \vee b)=(c \wedge a) \vee(c \wedge b)$.

CD-bases in semilattices and lattices / 2

Let $\mathbb{P}=(P, \wedge)$ be a semilattice with 0 .
A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a distributive pair if $(c \wedge a) \vee(c \wedge b)$ exists in \mathbb{P} for all $c \in P$, and $c \wedge(a \vee b)=(c \wedge a) \vee(c \wedge b)$.

We say that (P, \wedge) is dp-distributive (distributive with respect to disjoint pairs) if any pair $a, b \in P$ with $a \wedge b=0$ is a distributive pair.

Theorem 2. (E. K. H., S. Radeleczki)

CD-bases in semilattices and lattices / 2

Let $\mathbb{P}=(P, \wedge)$ be a semilattice with 0 .
A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a distributive pair if $(c \wedge a) \vee(c \wedge b)$ exists in \mathbb{P} for all $c \in P$, and $c \wedge(a \vee b)=(c \wedge a) \vee(c \wedge b)$.

We say that (P, \wedge) is dp-distributive (distributive with respect to disjoint pairs) if any pair $a, b \in P$ with $a \wedge b=0$ is a distributive pair.

Theorem 2. (E. K. H., S. Radeleczki)

(i) If $\mathbb{P}=(P, \wedge)$ is a semilattice with 0 , then $\mathcal{D}(\mathbb{P})$ is a dp-distributive semilattice. Furthermore, for all $D_{1}, D_{2} \in \mathcal{D}(\mathbb{P})$, if $D_{1} \cup D_{2}$ is a CD-independent set, then D_{1}, D_{2} is a distributive pair in $\mathcal{D}(\mathbb{P})$.

CD-bases in semilattices and lattices / 2

Let $\mathbb{P}=(P, \wedge)$ be a semilattice with 0 .
A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a distributive pair if $(c \wedge a) \vee(c \wedge b)$ exists in \mathbb{P} for all $c \in P$, and $c \wedge(a \vee b)=(c \wedge a) \vee(c \wedge b)$.

We say that (P, \wedge) is dp-distributive (distributive with respect to disjoint pairs) if any pair $a, b \in P$ with $a \wedge b=0$ is a distributive pair.

Theorem 2. (E. K. H., S. Radeleczki)

(i) If $\mathbb{P}=(P, \wedge)$ is a semilattice with 0 , then $\mathcal{D}(\mathbb{P})$ is a dp-distributive semilattice. Furthermore, for all $D_{1}, D_{2} \in \mathcal{D}(\mathbb{P})$, if $D_{1} \cup D_{2}$ is a CD-independent set, then D_{1}, D_{2} is a distributive pair in $\mathcal{D}(\mathbb{P})$.
(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(\mathbb{P})$ is a dp-distributive complete lattice.

CD-bases in semilattices and lattices / 3

Let (P, \leq) be a poset and $A \subseteq P .(A, \leq)$ is called a sublattice of (P, \leq), if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq).

Theorem 3. (E. K. H., S. Radeleczki)

Let $\mathbb{P}=(P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leqslant)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leqslant)$.

CD-bases in semilattices and lattices / 3

Let (P, \leq) be a poset and $A \subseteq P .(A, \leq)$ is called a sublattice of (P, \leq), if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq).

Theorem 3. (E. K. H., S. Radeleczki)

Let $\mathbb{P}=(P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leqslant)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leqslant)$.

CD-bases in semilattices and lattices / 3

Let (P, \leq) be a poset and $A \subseteq P .(A, \leq)$ is called a sublattice of (P, \leq), if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq).

Theorem 3. (E. K. H., S. Radeleczki)

Let $\mathbb{P}=(P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leqslant)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leqslant)$.

If \mathbb{P} is a \wedge-semilattice, then for any $D \in \mathcal{D}(P)$ and $D_{1}, D_{2} \in \mathcal{D}(B)$ we have

$$
\left(D_{1} \vee D_{2}\right) \wedge D=\left(D_{1} \wedge D\right) \vee\left(D_{2} \wedge D\right)
$$

in $(\mathcal{D}(P), \leqslant)$.

CD-bases in particular lattice classes

Let $\mathbb{L}=(L, \leq)$ be a lattice. We say that \mathbb{L} is 0 -distributive, that is, for all $a, b, x \in L, x \wedge a=0$ and $x \wedge b=0$ imply $x \wedge(a \vee b)=0$.

We say that \mathbb{L} is weakly 0-distributive if this implication holds under the

CD-bases in particular lattice classes

Let $\mathbb{L}=(L, \leq)$ be a lattice. We say that \mathbb{L} is 0 -distributive, that is, for all $a, b, x \in L, x \wedge a=0$ and $x \wedge b=0$ imply $x \wedge(a \vee b)=0$.

We say that \mathbb{L} is weakly 0 -distributive if this implication holds under the condition $a \wedge b=0$.

CD-bases in particular lattice classes

Let $\mathbb{L}=(L, \leq)$ be a lattice. We say that \mathbb{L} is 0 -distributive, that is, for all $a, b, x \in L, x \wedge a=0$ and $x \wedge b=0$ imply $x \wedge(a \vee b)=0$.

We say that \mathbb{L} is weakly 0 -distributive if this implication holds under the condition $a \wedge b=0$.

Remark

If D is a set of pairwise disjoint elements in a weakly 0 -distributive lattice and $|D| \geq 2$, then it is easy to see that replacing two different elements $d_{1}, d_{2} \in D$ by their join $d_{1} \vee d_{2}$, we obtain again a set of pairwise disjoint elements.

CD-bases in particular lattice classes

Lemma

Let \mathbb{L} be a finite weakly 0 -distributive lattice and D a dual atom of the poset $\mathcal{D}(\mathbb{L})$.

CD-bases in particular lattice classes

Lemma

Let \mathbb{L} be a finite weakly 0 -distributive lattice and D a dual atom of the poset $\mathcal{D}(\mathbb{L})$.

Then either $D=\{d\}$ for some $d \in L$ with $d \prec 1$, or D consist of two

CD-bases in particular lattice classes

Lemma

Let \mathbb{L} be a finite weakly 0 -distributive lattice and D a dual atom of the poset $\mathcal{D}(\mathbb{L})$.

Then either $D=\{d\}$ for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ with $d_{1} \vee d_{2}=1$.

CD-bases in particular lattice classes

Lemma

Let \mathbb{L} be a finite weakly 0-distributive lattice and D a dual atom of the poset $\mathcal{D}(\mathbb{L})$.

Then either $D=\{d\}$ for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ with $d_{1} \vee d_{2}=1$.

Let \mathbb{L} be a graded lattice, and $a \in L$. Then the height of a is the length of the interval $[0, a]$, denoted by $I(a)$.

CD-bases in particular lattice classes

Lemma

Let \mathbb{L} be a finite weakly 0-distributive lattice and D a dual atom of the poset $\mathcal{D}(\mathbb{L})$.

Then either $D=\{d\}$ for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ with $d_{1} \vee d_{2}=1$.

Let \mathbb{L} be a graded lattice, and $a \in L$. Then the height of a is the length of the interval $[0, a]$, denoted by $I(a)$.

A graded lattice \mathbb{L} is 0 -modular, whenever $I(a)+I(b)=I(a \vee b)$ holds for all $a, b \in L$ with $a \wedge b=0$.

CD-bases in particular lattice classes

Theorem 4. (E. K. H., S. Radeleczki)

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

CD-bases in particular lattice classes

Theorem 4. (E. K. H., S. Radeleczki)

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a)+I(b)=I(a \vee b)$ holds for all $a, b \in L$ with $a \wedge b=0$.

CD-bases in particular lattice classes

Theorem 4. (E. K. H., S. Radeleczki)

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a)+I(b)=I(a \vee b)$ holds for all $a, b \in L$ with $a \wedge b=0$.
- (ii) L is 0 -modular, and the CD-bases of L have the same number of elements.

Modular pair

We say that two elements $a, b \in L$ form a modular pair in the lattice L and we write $(a, b) M$ if for all $x \in L, x \leq b$ implies $x \vee(a \wedge b)=(x \vee a) \wedge b$.

Also, a and b form a dual-modular pair if for all $x \in L, x \geq b$ implies $x \wedge(a \vee b)=(x \wedge a) \vee b$. This is denoted by $(a, b) M^{*}$.

Clearly, if a and b form a distributive pair, then $(a, b) M^{*}$ is satisfied.
By means of modular pairs, the 0-modularity condition can be reformulated as follows: For all $a, b \in L$,

Lemma (M. Stern) In a graded lattice of finite length, $(a, b) M$ implies $I(a)+I(b) \leq I(a \wedge b)+I(a \vee b)$.

CD-bases

With the help of the previous Lemma of M. Stern above, using an N_{5} sublattice containing 0 as well as the dual lattice, we obtain

Proposition If \mathbb{L} is a lattice with 0 such that $(a, b) M^{*}$ holds for all $a, b \in L$ with $a \wedge b=0$, then L is 0 -modular. If in addition \mathbb{L} is a graded lattice of finite length, then $I(a \vee b)=I(a)+I(b)$ holds for all $a, b \in L$ with $a \wedge b=0$.

Corollary (i) Let \mathbb{L} be a finite, weakly 0-distributive lattice such that for each $a, b \in L$ with $a \wedge b=0$, condition $(a, b) M^{*}$ holds. Then the CD-bases of \mathbb{L} have the same number of elements if and only if \mathbb{L} is graded.
(ii) If \mathbb{L} is a finite pseudocomplemented modular lattice, then the CD-bases of \mathbb{L} have the same number of elements.

dp-distributive lattices

As any dp-distributive lattice \mathbb{L} is weakly 0 -distributive, and $(a, b) M^{*}$ holds for all $a, b \in L$ with $a \wedge b=0$ since (a, b) is a distributive pair, we obtain

Corollary

(i) Any dp-distributive lattice is 0 -modular. If \mathbb{L} is a dp-distributive graded lattice with finite length, then $I(a \vee b)=I(a)+I(b)$ holds for all $a, b \in L$ with $a \wedge b=0$.
(ii) The CD-bases in a finite dp-distributive lattice \mathbb{L} have the same number of elements if and only if \mathbb{L} is graded.

Interval system

An interval system (V, \mathcal{I}) is an algebraic closure system satisfying the axioms:
($\left.I_{0}\right)\{x\} \in \mathcal{I}$ for all $x \in V$, and $\emptyset \in \mathcal{I}$;
($\left.\mathrm{I}_{1}\right) A, B \in \mathcal{I}$ and $A \cap B \neq \emptyset$ imply $A \cup B \in \mathcal{I}$;
$\left(\mathrm{I}_{2}\right)$ For any $A, B \in \mathcal{I}$ the relations $A \cap B \neq \emptyset, A \nsubseteq B$ and $B \nsubseteq A$ imply $A \backslash B \in \mathcal{I}$ (and $B \backslash A \in \mathcal{I})$.

The modules (X-sets, or autonomous sets) of an undirected graph $G=(V, E)$, the intervals of an n-ary relation $R \subseteq V^{n}$ on the set V for $n \geq 2$ - in particular, the usual intervals of a linearly ordered set (V, \leq) form interval systems.

Generalizing interval systems

Let us consider now the condition:

$$
\begin{aligned}
& (\mathcal{I I}) \text { If } a \wedge b \neq 0 \text {, then }(x \leq a \vee b \text { and } x \wedge a=0) \Rightarrow x \leq b \text { for all } \\
& a, b, x \in L .
\end{aligned}
$$

Lattices with 0 satisfying condition ($\mathcal{I I}$) and with the property that $\uparrow a$ is a modular lattice for all $a \in L, a \neq 0$, can be considered as a generalization of the lattice (\mathcal{I}, \subseteq) of an interval system (V, \mathcal{I}). To study their CD-bases, first we proved:
Lemma Let \mathbb{L} be an atomic lattice satisfying condition $(\mathcal{I I})$. Assume $D \in \mathcal{D}(\mathbb{L})$ and define $S_{D}=\{s \in L \backslash(D \cup\{0\}) \mid d \wedge s=0$ or $d<s$, for all $d \in D\}$. Then for all $b, c \in S_{D}$ with $b \wedge c \neq 0$ and all $d \in D$, $d \wedge(b \vee c) \neq 0$ if and only if $0<d<b$ or $0<d<c$ holds.

Generalizing interval systems

Let us consider now the condition:
Remark Let \mathbb{L} be a finite lattice and $D=\left\{d_{j} \mid j \in J\right\} \in \mathcal{D C}(\mathbb{L})$. If $D \prec D^{\prime}$ for some $D^{\prime} \in D(\mathbb{L})$; then, there is a minimal element $a \in S_{D}$ such that $D^{\prime}=\{a\} \cup\left\{d_{j} \in D \backslash\{0\} \mid d_{j} \wedge a=0\right\}$. In this case there exists a set $K \subseteq J$ such that
$K=\left\{j \in J \mid d_{j}<a\right\} \neq \emptyset$ and $D^{\prime}=\{a\} \cup\left\{d_{j} \mid j \in J \backslash K\right\}$.

Birkhoff's condition

It is well-known that a finite lattice \mathbb{L} is semimodular if and only if it satisfies Birkhoff's condition, namely, for all $a, b \in L$

$$
a \wedge b \prec a, b \text { implies } a, b \prec a \vee b .
$$

We also say that a pair $a, b \in L$ satisfies Birkhoff's condition if the above implication (Bi) is valid for a, b. It is known that any distributive pair $a, b \in L$ satisfies Birkhoff's condition.

Theorem 5. (K. H. E., Radeleczki S.) Let \mathbb{L} be a finite lattice satisfying condition $(\mathcal{I I})$ such that any principal filter $\uparrow a$ with $a \in L \backslash\{0\}$ is a modular lattice. Then $\mathcal{D C}(\mathbb{L})$ is a semimodular lattice.

CD-bases

Corollary (i) If \mathbb{L} is a finite distributive lattice, then $\mathcal{D C}(\mathbb{L})$ is a semimodular lattice.
(ii) If \mathbb{L} is a finite lattice that satisfies the conditions in Theorem 3 then its CD-bases have the same number of elements.

CD-bases

Corollary (i) If \mathbb{L} is a finite distributive lattice, then $\mathcal{D C}(\mathbb{L})$ is a semimodular lattice.
(ii) If \mathbb{L} is a finite lattice that satisfies the conditions in Theorem 3, then its CD-bases have the same number of elements.

By applying this to interval systems we obtain:

Corollary

If (V, \mathcal{I}) is a finite interval system, then the CD-bases of the lattice (\mathcal{I}, \subseteq) contain the same number of elements.

Island domain

$U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$
Let $h: U \rightarrow \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.
We say that S is an pre-island with respect to the triple $(\mathcal{C}, \mathcal{K}, h)$, if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

$$
\min h(K)<\min h(S) .
$$

Island domain

$U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$
Let $h: U \rightarrow \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.
We say that S is an pre-island with respect to the triple $(\mathcal{C}, \mathcal{K}, h)$, if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

$$
\min h(K)<\min h(S) .
$$

We say that S is a island with respect to the triple $(\mathcal{C}, \mathcal{K}, h)$, if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

$$
h(u)<\min h(S) \text { for all } u \in K \backslash S .
$$

Connective island domains

Definition

A pair $(\mathcal{C}, \mathcal{K})$ is an connective island domain if

$$
\forall A, B \in \mathcal{C}:(A \cap B \neq \emptyset \text { and } B \nsubseteq A) \Longrightarrow \exists K \in \mathcal{K}: A \subset K \subseteq A \cup B
$$

Connective island domains

Theorem 5. (S. Foldes, E. K. H., S. Radeleczki, T. Waldhauser)
The following three conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:
(i) $(\mathcal{C}, \mathcal{K})$ is a connective island domain.

Connective island domains

Theorem 5. (S. Foldes, E. K. H., S. Radeleczki, T. Waldhauser)
The following three conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:
(i) $(\mathcal{C}, \mathcal{K})$ is a connective island domain.
(ii) Every system of pre-islands corresponding to $(\mathcal{C}, \mathcal{K})$ is CD-independent.

Thank you for your attention!

Think, think, think.

Thank you for your attention!

