Some new aspects of islands

Eszter K. Horváth, Szeged

Coauthors: Péter Hajnal, Branimir Šešelja, Andreja Tepavčević

AAA 77, Potsdam

Definition/1

Grid, neighbourhood relation

Definition/2

We call a rectangle/triangle an island, if for the cell t, if we denote its height by a_{t}, then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}}<\min \left\{a_{t}: t \in T\right\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1

History/1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of

History/1

Coding theory
S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

History/2

Rectangular islands
G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

History/2

Rectangular islands
G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

Abstract

The maximum number of rectangular islands in a $m \times n$ rectangular board

 on square grid:

History/2

Rectangular islands
G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$
f(m, n)=\left[\frac{m n+m+n-1}{2}\right] .
$$

History/3

Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

History/3

Rectangular islands in higher dimensions
G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

History/4

Triangular islands

> E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25-34.

> Available at http://www.math.u-szeged.hu/~horvath

History/4

Triangular islands
E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25-34.

Available at http://www.math.u-szeged.hu/~horvath

History/4

Triangular islands
E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25-34.

Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length $n, \frac{n^{2}+3 n}{5} \leq f(n) \leq \frac{3 n^{2}+9 n+2}{14}$ holds.

History/5

Square islands (also in higher dimensions)

square islands on a rectangular sea, Acta Sci. Math., submitted.
 Available at http: / /www.math.u-szeged.hu/ ~horvath

History/5

Square islands (also in higher dimensions)
E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., submitted. Available at http://www.math.u-szeged.hu/~horvath

History/5

Square islands (also in higher dimensions)
E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., submitted. Available at http://www.math.u-szeged.hu/~horvath

History/6

Some exact formulas
Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

History/6

Some exact formulas
Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

History/6

Some exact formulas
Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

History/6

Some exact formulas
Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \geq 2$, then $t(m, n)=\left[\frac{m n}{2}\right]$.

History/7

Further results on rectangular islands

> Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, available online 16 April 2008.

History/7

Further results on rectangular islands
Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, available online 16 April 2008.

Islands in Boolean algebras, i.e. in hypercubes /1

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

Islands in Boolean algebras, i.e. in hypercubes /1

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

Islands in Boolean algebras, i.e. in hypercubes /1

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

We denote the maximum number of islands in $B A=\{0,1\}^{n}$ by $b(n)$.

Islands in Boolean algebras, i.e. in hypercubes /1

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

We denote the maximum number of islands in $B A=\{0,1\}^{n}$ by $b(n)$.

Theorem 1

$b(n)=1+2^{n-1}$.

Islands in Boolean algebras, i.e. in hypercubes /2

Theorem 1
$b(n)=1+2^{n-1}$.

Islands in Boolean algebras, i.e. in hypercubes /2

Theorem 1
$b(n)=1+2^{n-1}$.

Proof:

Islands in Boolean algebras, i.e. in hypercubes /2

> Theorem 1
> $b(n)=1+2^{n-1}$.

Proof:
$b(n) \geq 1+2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1 -s.

Islands in Boolean algebras, i.e. in hypercubes /2

Theorem 1

$b(n)=1+2^{n-1}$.

Proof:
$b(n) \geq 1+2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1 -s.

We show $b(n) \leq 1+2^{n-1}$ by induction on n. For $n=0,1$ the statement is easy to check.
For $n \geq 2$, we cut the hypercube into two half-hypercubes, of size 2^{n-1}. If one of them is an island, then the other cannot contain island.
If neither of them is an island, then by the induction hypothesis, in both half-hypercubes, the maximum cardinality of a system of islands is at most 2^{n-2}.

Rectangular fuzzy relations/1

Joint work with Branimir Šešelja and Andreja Tepavčević
Let A and B nonempty sets and L a lattice. Then a fuzzy relation ρ is a mapping from $A \times B$ to L.

Rectangular fuzzy relations/1

Joint work with Branimir Šešelja and Andreja Tepavčević
Let A and B nonempty sets and L a lattice. Then a fuzzy relation ρ is a mapping from $A \times B$ to L.

For every $p \in L$, cut relation is an ordinary relation ρ_{p} on $A \times B$ defined by

$$
(x, y) \in \rho_{p} \text { if and only if } \rho(x, y) \geq p
$$

Rectangular fuzzy relations/1

Joint work with Branimir Šešelja and Andreja Tepavčević
Let A and B nonempty sets and L a lattice. Then a fuzzy relation ρ is a mapping from $A \times B$ to L.

For every $p \in L$, cut relation is an ordinary relation ρ_{p} on $A \times B$ defined by

$$
(x, y) \in \rho_{p} \text { if and only if } \rho(x, y) \geq p
$$

We consider special lattice valued fuzzy relations: The set $\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}, m, n \in \mathbb{N}$, is called a table of size $m \times n$. Such a table is the domain of a fuzzy relation Γ :

$$
\Gamma:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N} .
$$

The co-domain is the lattice (\mathbb{N}, \leq), where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

Rectangular fuzzy relations/2

We say that two rectangles $\{\alpha, \ldots, \beta\} \times\{\gamma, \ldots, \delta\}$ and $\left\{\alpha_{1}, \ldots, \beta_{1}\right\} \times\left\{\gamma_{1}, \ldots, \delta_{1}\right\}$ are distant if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a-c)^{2}+(b-d)^{2} \geq 4$.

Rectangular fuzzy relations/2

We say that two rectangles $\{\alpha, \ldots, \beta\} \times\{\gamma, \ldots, \delta\}$ and $\left\{\alpha_{1}, \ldots, \beta_{1}\right\} \times\left\{\gamma_{1}, \ldots, \delta_{1}\right\}$ are distant if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a-c)^{2}+(b-d)^{2} \geq 4$.

Fuzzy relation Γ is called rectangular if for every $p \in \mathbb{N}$, every nonempty p-cut of Γ is a union of distant rectangles.

Rectangular fuzzy relations/3

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

Rectangular fuzzy relations/3

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

$$
\begin{aligned}
& S_{1}=\{1,2,3,4,5\} \times\{1,2,3\}, \\
& S_{2}=\{1,2,3,4,5\} \times\{1,2,3\} \backslash\{(3,1)\}, \\
& S_{3}=\{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\
& S_{4}=\{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text { and } \\
& S_{5}=\{(1,3),(2,3),(4,3),(5,3)\}
\end{aligned}
$$

Rectangular fuzzy relations/4

Theorem 2

For every fuzzy relation $\Gamma:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Phi:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, having the same islands.

Rectangular fuzzy relations/4

Theorem 2

For every fuzzy relation $\Gamma:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Phi:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, having the same islands.

Rectangular fuzzy relations/5

Theorem 3

For every rectangular fuzzy relation $\Phi:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Psi:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, having the same islands and in Ψ every island appears exactly in one cut.

Rectangular fuzzy relations/5

Theorem 3

For every rectangular fuzzy relation $\Phi:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Psi:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, having the same islands and in Ψ every island appears exactly in one cut.

If a fuzzy rectangular relation Ψ has the property that each island appears exactly in one cut, then we call it standard fuzzy rectangular relation. We denote by $\Lambda(m, n)$ the maximum number of different p-cuts of a standard fuzzy rectangular relation on the rectangular table of size $m \times n$.

Rectangular fuzzy relations/5

Theorem 3

For every rectangular fuzzy relation $\Phi:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\psi:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, having the same islands and in Ψ every island appears exactly in one cut.

If a fuzzy rectangular relation Ψ has the property that each island appears exactly in one cut, then we call it standard fuzzy rectangular relation. We denote by $\Lambda(m, n)$ the maximum number of different p-cuts of a standard fuzzy rectangular relation on the rectangular table of size $m \times n$.

```
Theorem 4
\Lambda(m,n)=m+n-1.
```


Rectangular fuzzy relations/6

We have further results, e.g.
Characterisation Theorem for rectangular fuzzy relations, Constructing Algorithm which constructs rectangular fuzzy relation for a given arbitrary fuzzy relation with the same islands.

Rectangular fuzzy relations/6

We have further results, e.g.
Characterisation Theorem for rectangular fuzzy relations, Constructing Algorithm which constructs rectangular fuzzy relation for a given arbitrary fuzzy relation with the same islands.

Probably we present more details on next conferences.

Rectangular fuzzy relations/6

We have further results, e.g.
Characterisation Theorem for rectangular fuzzy relations, Constructing Algorithm which constructs rectangular fuzzy relation for a given arbitrary fuzzy relation with the same islands.

Probably we present more details on next conferences.

Thanks for the attention.

