Some new aspects of islands

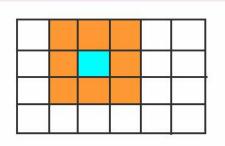
Eszter K. Horváth, Szeged

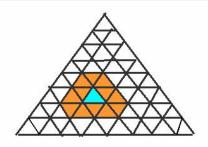
Coauthors: Péter Hajnal, Branimir Šešelja, Andreja Tepavčević

AAA 77, Potsdam

Definition/1

Grid, neighbourhood relation

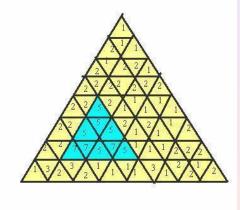




Definition/2

We call a rectangle/triangle an *island*, if for the cell t, if we denote its height by a_t , then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}} < min\{a_t : t \in T\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	Ĩ
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1



Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Coding theory

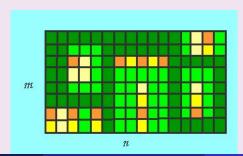
S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n)=\left[\frac{mn+m+n-1}{2}\right].$$

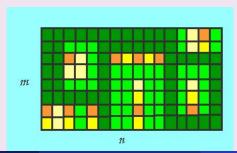


Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn + m + n - 1}{2}\right].$$

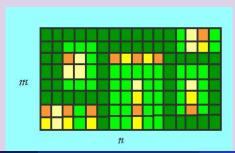


Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n)=\left[\frac{mn+m+n-1}{2}\right].$$



Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

Rectangular islands in higher dimensions

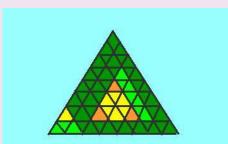
G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

Triangular islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34.

Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.

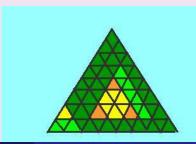


Triangular islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34.

Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.

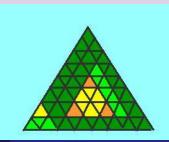


Triangular islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34.

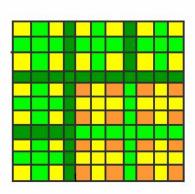
Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.



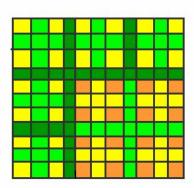
Square islands (also in higher dimensions)

E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., submitted. Available at http://www.math.u-szeged.hu/~horvath



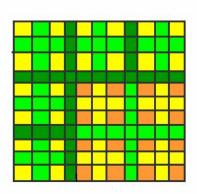
Square islands (also in higher dimensions)

E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., submitted. Available at http://www.math.u-szeged.hu/~horvath



Square islands (also in higher dimensions)

E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., submitted. Available at http://www.math.u-szeged.hu/~horvath



Some exact formulas

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$$p(m,n) = f(m,n) = [(mn+m+n-1)/2].$$

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K Horváth):

If $n \ge 2$, then $h_2(m, n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Some exact formulas

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m,n) = f(m,n) = [(mn+m+n-1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K Horváth):

If $n \ge 2$, then $h_2(m, n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Some exact formulas

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m,n) = f(m,n) = [(mn+m+n-1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If $n \ge 2$, then $h_2(m,n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \geq 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Some exact formulas

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m,n) = f(m,n) = [(mn+m+n-1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If $n \geq 2$, then $h_2(m,n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \geq 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, available online 16 April 2008

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, available online 16 April 2008.

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0,1\}^n$.

We consider two cells neighbouring if their Hamming distance is $oldsymbol{1}$

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

Theorem 1 $b(n) = 1 + 2^{n-1}$.

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0,1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

Theorem 1 $b(n) = 1 + 2^{n-1}$.

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0,1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0,1\}^n$ by b(n).

Theorem 1 $b(n) = 1 + 2^{n-1}$.

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0,1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0,1\}^n$ by b(n).

Theorem 1

$$b(n) = 1 + 2^{n-1}$$
.

Theorem 1

$$b(n) = 1 + 2^{n-1}.$$

Proof

 $b(n) \ge 1 + 2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1-s.

We show $b(n) \le 1 + 2^{n-1}$ by induction on n. For n = 0, 1 the statement is easy to check.

For $n \ge 2$, we cut the hypercube into two half-hypercubes, of size 2^{n-1} . If one of them is an island, then the other cannot contain island.

If neither of them is an island, then by the induction hypothesis, in both half-hypercubes, the maximum cardinality of a system of islands is at most 2^{n-2} .

Theorem 1

$$b(n) = 1 + 2^{n-1}.$$

Proof:

 $b(n) \ge 1 + 2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1-s.

We show $b(n) \le 1 + 2^{n-1}$ by induction on n. For n = 0, 1 the statement is easy to check.

For $n \ge 2$, we cut the hypercube into two half-hypercubes, of size 2^{n-1} . If one of them is an island, then the other cannot contain island.

If neither of them is an island, then by the induction hypothesis, in both half-hypercubes, the maximum cardinality of a system of islands is at most 2^{n-2} .

Theorem 1

$$b(n)=1+2^{n-1}.$$

Proof:

 $b(n) \ge 1 + 2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1-s.

We show $b(n) \le 1 + 2^{n-1}$ by induction on n. For n = 0, 1 the statement is easy to check.

For $n \ge 2$, we cut the hypercube into two half-hypercubes, of size 2^{n-1} . If one of them is an island, then the other cannot contain island.

If neither of them is an island, then by the induction hypothesis, in both half-hypercubes, the maximum cardinality of a system of islands is at most 2^{n-2} .

Theorem 1

$$b(n) = 1 + 2^{n-1}.$$

Proof:

 $b(n) \ge 1 + 2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1-s.

We show $b(n) \le 1 + 2^{n-1}$ by induction on n. For n = 0, 1 the statement is easy to check.

For $n \ge 2$, we cut the hypercube into two half-hypercubes, of size 2^{n-1} . If one of them is an island, then the other cannot contain island. If neither of them is an island, then by the induction hypothesis, in both half-hypercubes, the maximum cardinality of a system of islands is at most

 2^{n-2}

Joint work with Branimir Šešelja and Andreja Tepavčević

Let A and B nonempty sets and L a lattice. Then a fuzzy relation ρ is a mapping from $A\times B$ to L.

For every $p \in L$, cut relation is an ordinary relation ρ_p on $A \times B$ defined by

$$(x,y)\in
ho_p$$
 if and only if $ho(x,y)\geq p$

We consider special lattice valued fuzzy relations:

The set $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$, $m, n \in \mathbb{N}$, is called a table of size $m \times n$. Such a table is the domain of a fuzzy relation Γ :

$$\Gamma: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}.$$

The co-domain is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively

Joint work with Branimir Šešelja and Andreja Tepavčević

Let A and B nonempty sets and L a lattice. Then a fuzzy relation ρ is a mapping from $A\times B$ to L.

For every $p \in L$, cut relation is an ordinary relation ρ_p on $A \times B$ defined by

$$(x,y) \in \rho_p$$
 if and only if $\rho(x,y) \ge p$.

We consider special lattice valued fuzzy relations:

The set $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$, $m, n \in \mathbb{N}$, is called a table of size $m \times n$. Such a table is the domain of a fuzzy relation Γ :

$$\Gamma: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}.$$

The co-domain is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural number under the usual ordering \leq and suprema and infima are max and min, respectively.

Joint work with Branimir Šešelja and Andreja Tepavčević

Let A and B nonempty sets and L a lattice. Then a fuzzy relation ρ is a mapping from $A\times B$ to L.

For every $p \in L$, cut relation is an ordinary relation ρ_p on $A \times B$ defined by

$$(x,y) \in \rho_p$$
 if and only if $\rho(x,y) \ge p$.

We consider special lattice valued fuzzy relations:

The set $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$, $m, n \in \mathbb{N}$, is called a table of size $m \times n$. Such a table is the domain of a fuzzy relation Γ :

$$\Gamma: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}.$$

The co-domain is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively

We say that two rectangles $\{\alpha,...,\beta\} \times \{\gamma,...,\delta\}$ and $\{\alpha_1,...,\beta_1\} \times \{\gamma_1,...,\delta_1\}$ are distant if they are disjoint and for every two cells, namely (a,b) from the first rectangle and (c,d) from the second, we have $(a-c)^2+(b-d)^2\geq 4$.

Fuzzy relation Γ is called *rectangular* if for every $p \in \mathbb{N}$, every nonempty p-cut of Γ is a union of distant rectangles.

We say that two rectangles $\{\alpha,...,\beta\} \times \{\gamma,...,\delta\}$ and $\{\alpha_1,...,\beta_1\} \times \{\gamma_1,...,\delta_1\}$ are distant if they are disjoint and for every two cells, namely (a,b) from the first rectangle and (c,d) from the second, we have $(a-c)^2+(b-d)^2\geq 4$.

Fuzzy relation Γ is called *rectangular* if for every $p \in \mathbb{N}$, every nonempty p-cut of Γ is a union of distant rectangles.

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

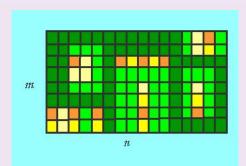
```
\begin{split} S_1 &= \{1,2,3,4,5\} \times \{1,2,3\}, \\ S_2 &= \{1,2,3,4,5\} \times \{1,2,3\} \setminus \{(3,1)\}, \\ S_3 &= \{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\ S_4 &= \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text{ and } \\ S_5 &= \{(1,3),(2,3),(4,3),(5,3)\} \end{split}
```

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

$$\begin{split} S_1 &= \{1,2,3,4,5\} \times \{1,2,3\}, \\ S_2 &= \{1,2,3,4,5\} \times \{1,2,3\} \setminus \{(3,1)\}, \\ S_3 &= \{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\ S_4 &= \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text{ and } \\ S_5 &= \{(1,3),(2,3),(4,3),(5,3)\} \end{split}$$

Theorem 2

For every fuzzy relation $\Gamma: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N}$, there is a rectangular fuzzy relation $\Phi: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N}$, having the same islands.



Theorem 2

For every fuzzy relation $\Gamma: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N}$, there is a rectangular fuzzy relation $\Phi: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N}$, having the same islands.



Theorem 3

For every rectangular fuzzy relation $\Phi: \{1,2,...,n\} \times \{1,2,...,m\} \to \mathbb{N}$, there is a rectangular fuzzy relation $\Psi: \{1,2,...,n\} \times \{1,2,...,m\} \to \mathbb{N}$, having the same islands and in Ψ every island appears exactly in one cut.

If a fuzzy rectangular relation Ψ has the property that each island appears exactly in one cut, then we call it *standard fuzzy rectangular relation*. We denote by $\Lambda(m,n)$ the maximum number of different p-cuts of a standard fuzzy rectangular relation on the rectangular table of size $m \times n$.

Theorem 4

$$\Lambda(m,n)=m+n-1.$$

Theorem 3

For every rectangular fuzzy relation $\Phi: \{1,2,...,n\} \times \{1,2,...,m\} \to \mathbb{N}$, there is a rectangular fuzzy relation $\Psi: \{1,2,...,n\} \times \{1,2,...,m\} \to \mathbb{N}$, having the same islands and in Ψ every island appears exactly in one cut.

If a fuzzy rectangular relation Ψ has the property that each island appears exactly in one cut, then we call it *standard fuzzy rectangular relation*. We denote by $\Lambda(m,n)$ the maximum number of different p-cuts of a standard fuzzy rectangular relation on the rectangular table of size $m \times n$.

Theorem 4 $\Lambda(m,n) = m+n-1$

Theorem 3

For every rectangular fuzzy relation $\Phi:\{1,2,...,n\}\times\{1,2,...,m\}\to\mathbb{N},$ there is a rectangular fuzzy relation $\Psi:\{1,2,...,n\}\times\{1,2,...,m\}\to\mathbb{N},$ having the same islands and in Ψ every island appears exactly in one cut.

If a fuzzy rectangular relation Ψ has the property that each island appears exactly in one cut, then we call it *standard fuzzy rectangular relation*. We denote by $\Lambda(m,n)$ the maximum number of different p-cuts of a standard fuzzy rectangular relation on the rectangular table of size $m \times n$.

Theorem 4

$$\Lambda(m,n)=m+n-1.$$

We have further results, e.g.

Characterisation Theorem for rectangular fuzzy relations, **Constructing Algorithm** which constructs rectangular fuzzy relation for a given arbitrary fuzzy relation with the same islands.

Probably we present more details on next conferences

Thanks for the attention.

We have further results, e.g.

Characterisation Theorem for rectangular fuzzy relations, **Constructing Algorithm** which constructs rectangular fuzzy relation for a given arbitrary fuzzy relation with the same islands.

Probably we present more details on next conferences.

Thanks for the attention.

We have further results, e.g.

Characterisation Theorem for rectangular fuzzy relations, **Constructing Algorithm** which constructs rectangular fuzzy relation for a given arbitrary fuzzy relation with the same islands.

Probably we present more details on next conferences.

Thanks for the attention.