Islands and independence notions

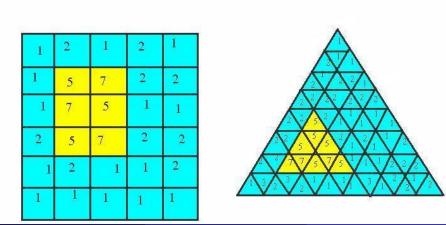
Eszter K. Horváth, Szeged

Co-authors: Stephan Foldes, Sándor Radeleczki, Tamás Waldhauser

Novi Sad, 2012, Oct 22.

Rectangular and triangular islands

We call a rectangle/triangle a rectangular/triangular island, if for the cell t, if we denote its height by a_t , then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}} < min\{a_t : t \in T\}$ holds.

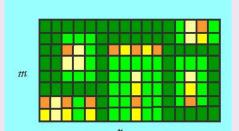


Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$

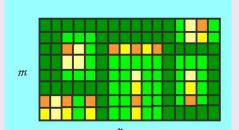


Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$

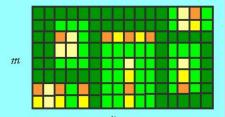


Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

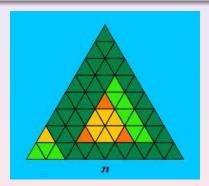
The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$



Triangular islands

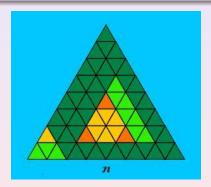
For the maximum number of triangular islands in an equilateral triangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.



E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid. Periodica Mathematica Hungarica. 58

Triangular islands

For the maximum number of triangular islands in an equilateral triangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.



E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34.

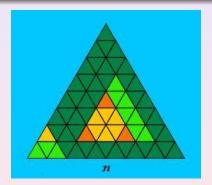
Eszter K. Horváth, Szeged

Islands and independence notions

Novi Sad, 2012, Oct 22.

Triangular islands

For the maximum number of triangular islands in an equilateral triangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.

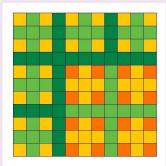


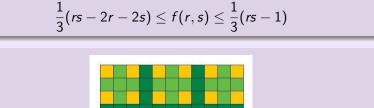
E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34.

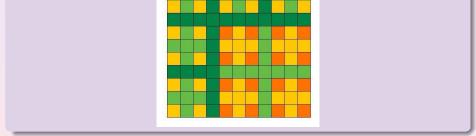
Eszter K. Horváth, Szeged

Islands and independence notions

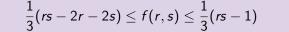
$$\frac{1}{3}(rs - 2r - 2s) \le f(r, s) \le \frac{1}{3}(rs - 1)$$

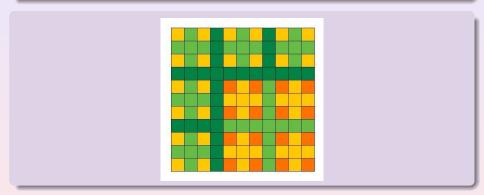






E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math.(Szeged) **76**

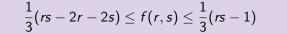


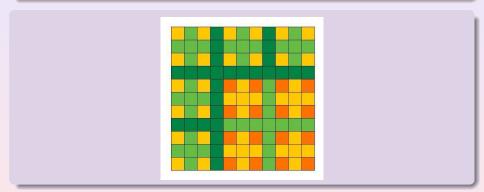


E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math.(Szeged) **76** (2010) 35-48.

Eszter K. Horváth, Szeged

Islands and independence notions





E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math.(Szeged) **76** (2010) 35-48.

Eszter K. Horváth, Szeged

Islands and independence notions

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$,

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called $\mathit{CD-bases}$ in $\mathbb{P}.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$,

or if \mathbb{P} is without 0, then a and b have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called $\mathit{CD-bases}$ in $\mathbb P.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$,

or if \mathbb{P} is without 0, then a and b have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called CD-bases in $\mathbb P.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$,

or if \mathbb{P} is without 0, then a and b have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called $\mathit{CD}\text{-}\mathit{bases}$ in $\mathbb{P}.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$,

or if \mathbb{P} is without 0, then a and b have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called $\mathit{CD}\text{-}\mathit{bases}$ in $\mathbb{P}.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$,

or if \mathbb{P} is without 0, then a and b have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called $\mathit{CD}\text{-}\mathit{bases}$ in $\mathbb{P}.$

If all finite lattices in a lattice variety have this property, then the variety must coincide with the variety of distributive lattices.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

If all finite lattices in a lattice variety have this property, then the variety must coincide with the variety of distributive lattices.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

If all finite lattices in a lattice variety have this property, then the variety must coincide with the variety of distributive lattices.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

If all finite lattices in a lattice variety have this property, then the variety must coincide with the variety of distributive lattices.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

 $U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$ Let $h: U \to \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.

We say that S is an *island* with respect to the triple (C, \mathcal{K}, h) , if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

 $\min h(K) < \min h(S).$

We say that S is a *strict island* with respect to the triple (C, \mathcal{K}, h) , if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

 $h\left(u
ight)<\min h\left(S
ight)$ for all $u\in K\setminus S$.

 $U \in \mathcal{C} \subseteq \mathcal{K} \subseteq \mathcal{P}(U)$ Let $h: U \to \mathbb{R}$ be a height function and let $S \in \mathcal{C}$ be a nonempty set.

We say that S is an *island* with respect to the triple (C, \mathcal{K}, h) , if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

 $\min h(K) < \min h(S).$

We say that S is a *strict island* with respect to the triple (C, \mathcal{K}, h) , if every $K \in \mathcal{K}$ with $S \prec K$ satisfies

 $h(u) < \min h(S)$ for all $u \in K \setminus S$.

Let G = (U, E) be a connected simple graph with vertex set U and edge set E; let \mathcal{K} consist of the connected subsets of U, and let $\mathcal{C} \subseteq \mathcal{K}$ such that $U \in \mathcal{C}$.

Example

Let A_1, \ldots, A_n be nonempty sets, and let $\mathcal{I} \subseteq A_1 \times \cdots \times A_n$. Let us define

$$U = A_1 \times \cdots \times A_n,$$

$$\mathcal{K} = \{B_1 \times \cdots \times B_n \colon \emptyset \neq B_i \subseteq A_i, \ 1 \le i \le n\}$$

$$\mathcal{C} = \{C \in \mathcal{K} \colon C \subseteq \mathcal{I}\} \cup \{U\},$$

and let $h: U \longrightarrow \{0,1\}$ be the height function given by

$$h(a_1,\ldots,a_n):=\begin{cases} 1, & \text{if } (a_1,\ldots,a_n)\in\mathcal{I};\\ 0, & \text{if } (a_1,\ldots,a_n)\in U\setminus\mathcal{I}; \end{cases} \text{ for all } (a_1,\ldots,a_n)\in U.$$

It is easy to see that the islands corresponding to the triple $(\mathcal{C}, \mathcal{K}, h)$ are exactly U and the maximal elements of the poset $(\mathcal{C} \setminus \{U\}, \subseteq)$.

formal concepts

prime implicants of a Boolean function

Eszter K. Horváth, Szeged

Example

Let A_1, \ldots, A_n be nonempty sets, and let $\mathcal{I} \subseteq A_1 \times \cdots \times A_n$. Let us define

$$U = A_1 \times \cdots \times A_n,$$

$$\mathcal{K} = \{B_1 \times \cdots \times B_n \colon \emptyset \neq B_i \subseteq A_i, \ 1 \le i \le n\}$$

$$\mathcal{C} = \{C \in \mathcal{K} \colon C \subseteq \mathcal{I}\} \cup \{U\},$$

and let $h: U \longrightarrow \{0,1\}$ be the height function given by

$$h(a_1,\ldots,a_n):=\begin{cases} 1, & \text{if } (a_1,\ldots,a_n)\in\mathcal{I};\\ 0, & \text{if } (a_1,\ldots,a_n)\in U\setminus\mathcal{I}; \end{cases} \text{ for all } (a_1,\ldots,a_n)\in U.$$

It is easy to see that the islands corresponding to the triple $(\mathcal{C}, \mathcal{K}, h)$ are exactly U and the maximal elements of the poset $(\mathcal{C} \setminus \{U\}, \subseteq)$.

formal concepts

prime implicants of a Boolean function

Eszter K. Horváth, Szeged

Islands and independence notions

Definition

Let $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ be a family of sets such that $U \in \mathcal{H}$. We say that \mathcal{H} is *admissible*, if for every nonempty antichain $\mathcal{A} \subseteq \mathcal{H}$

$$\exists H \in \mathcal{A} \ \forall K \in \mathcal{K} : \ H \subset K \implies K \nsubseteq \bigcup \mathcal{A}.$$
(1)

Proposition Every system of islands is admissible.

Definition

Let $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ be a family of sets such that $U \in \mathcal{H}$. We say that \mathcal{H} is *admissible*, if for every nonempty antichain $\mathcal{A} \subseteq \mathcal{H}$

$$\exists H \in \mathcal{A} \ \forall K \in \mathcal{K} : \ H \subset K \implies K \nsubseteq \bigcup \mathcal{A}.$$
(1)

Proposition

Every system of islands is admissible.

Proof

Let $h: U \to \mathbb{R}$ be a height function and let S be the system of islands corresponding to $(\mathcal{C}, \mathcal{K}, h)$. Clearly, we have $\emptyset \notin S$ and $U \in S$. Let us assume for contradiction that there exists an antichain

 $\mathcal{A} = \{S_i : i \in I\} \subseteq S$ such that (1) does not hold. Then for every $i \in I$ there exists $K_i \in \mathcal{K}$ such that $S_i \subset K_i$ and $K_i \subseteq \bigcup_{i \in I} S_i$. Since S_i is an island, we have

$$\min h(S_i) > \min h(K_i) \ge \min h\left(\bigcup_{i \in I} S_i\right)$$

for all $i \in I.$ Taking the minimum of these inequalities we arrive at the contradiction

$$\min \{\min h(S_i) \mid i \in I\} > \min h\left(\bigcup_{i \in I} S_i\right).$$

Let $\mathcal{H} \subseteq \mathcal{C}$ be an admissible family of sets.

We define subfamilies $\mathcal{H}^{(i)} \subseteq \mathcal{H}$ (i = 0, 1, 2, ...) recursively as follows. Let $\mathcal{H}^{(0)} = \{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K} : H \subset K \implies K \nsubseteq \bigcup (\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)})).$$
(2)

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

The canonical height function corresponding to $\mathcal H$ is the function $h_{\mathcal H}\colon U\to\mathbb N$ defined by

$$h_{\mathcal{H}}(x) := \max\left\{i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)}\right\} \text{ for all } x \in U.$$
(3)

Let $\mathcal{H} \subseteq \mathcal{C}$ be an admissible family of sets. We define subfamilies $\mathcal{H}^{(i)} \subseteq \mathcal{H}$ (i = 0, 1, 2, ...) recursively as follows. Let $\mathcal{H}^{(0)} = \{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K} : H \subset K \implies K \nsubseteq \bigcup \left(\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)}) \right).$$
(2)

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

The canonical height function corresponding to $\mathcal H$ is the function $h_{\mathcal H}\colon U\to\mathbb N$ defined by

 $h_{\mathcal{H}}(x) := \max\left\{i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)}\right\} \text{ for all } x \in U.$ (3)

Let $\mathcal{H} \subseteq \mathcal{C}$ be an admissible family of sets. We define subfamilies $\mathcal{H}^{(i)} \subseteq \mathcal{H}$ (i = 0, 1, 2, ...) recursively as follows. Let $\mathcal{H}^{(0)} = \{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K} : \ H \subset K \implies K \nsubseteq \bigcup \left(\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)}) \right).$$
(2)

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

The canonical height function corresponding to $\mathcal H$ is the function $h_{\mathcal H}\colon U\to\mathbb N$ defined by

$$h_{\mathcal{H}}(x) := \max\left\{i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)}\right\} \text{ for all } x \in U.$$
(3)

Let $\mathcal{H} \subseteq \mathcal{C}$ be an admissible family of sets.

We define subfamilies $\mathcal{H}^{(i)} \subseteq \mathcal{H}$ (i = 0, 1, 2, ...) recursively as follows. Let $\mathcal{H}^{(0)} = \{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K} : H \subset K \implies K \nsubseteq \bigcup (\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)})).$$
(2)

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

The canonical height function corresponding to $\mathcal H$ is the function $h_{\mathcal H}\colon U\to\mathbb N$ defined by

$$h_{\mathcal{H}}(x) := \max\left\{i \in \{1, \dots, r\} : x \in \bigcup \, \mathcal{H}^{(i)}\right\} \text{ for all } x \in U.$$
(3)

Let $\mathcal{H} \subseteq \mathcal{C}$ be an admissible family of sets.

We define subfamilies $\mathcal{H}^{(i)} \subseteq \mathcal{H}$ (i = 0, 1, 2, ...) recursively as follows. Let $\mathcal{H}^{(0)} = \{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

$$\forall K \in \mathcal{K} : H \subset K \implies K \nsubseteq \bigcup (\mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)})).$$
(2)

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

The canonical height function corresponding to \mathcal{H} is the function $h_{\mathcal{H}} \colon U \to \mathbb{N}$ defined by

$$h_{\mathcal{H}}(x) := \max\left\{i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)}\right\} \text{ for all } x \in U.$$
(3)

Canonical height functions

Let $\mathcal{H} \subseteq \mathcal{C}$ be an admissible family of sets.

We define subfamilies $\mathcal{H}^{(i)} \subseteq \mathcal{H}$ (i = 0, 1, 2, ...) recursively as follows. Let $\mathcal{H}^{(0)} = \{U\}$.

For i > 0, if $\mathcal{H} \neq \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)}$, then let $\mathcal{H}^{(i)}$ consist of all those sets $H \in \mathcal{H} \setminus (\mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(i-1)})$ that have the following property:

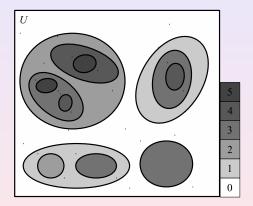
$$\forall K \in \mathcal{K} : H \subset K \implies K \nsubseteq \bigcup (\mathcal{H}^{(0)} \cup \dots \cup \mathcal{H}^{(i-1)})).$$
(2)

Since \mathcal{H} is finite and admissible, after finitely many steps we obtain a partition $\mathcal{H} = \mathcal{H}^{(0)} \cup \cdots \cup \mathcal{H}^{(r)}$.

The canonical height function corresponding to \mathcal{H} is the function $h_{\mathcal{H}} \colon U \to \mathbb{N}$ defined by

$$h_{\mathcal{H}}(x) := \max\left\{i \in \{1, \dots, r\} : x \in \bigcup \mathcal{H}^{(i)}\right\} \text{ for all } x \in U.$$
 (3)

Canonical height functions



Proposition

If $\mathcal{H} \subseteq \mathcal{C}$ is an admissible family of sets and $h_{\mathcal{H}}$ is the corresponding canonical height function, then every member of \mathcal{H} is an island with respect to $(\mathcal{C}, \mathcal{K}, h_{\mathcal{H}})$.

Theorem

A subfamily of C is a maximal system of islands if and only if it is a maximal admissible family.

Proposition

If $\mathcal{H} \subseteq \mathcal{C}$ is an admissible family of sets and $h_{\mathcal{H}}$ is the corresponding canonical height function, then every member of \mathcal{H} is an island with respect to $(\mathcal{C}, \mathcal{K}, h_{\mathcal{H}})$.

Theorem

A subfamily of C is a maximal system of islands if and only if it is a maximal admissible family.

The following two conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:

Any subset of a system of islands corresponding to $(\mathcal{C}, \mathcal{K})$ is also a system of islands.

The systems of islands corresponding to $(\mathcal{C}, \mathcal{K})$ are exactly the admissible families.

The following two conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:

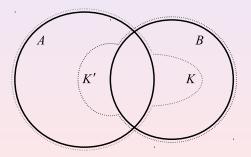
Any subset of a system of islands corresponding to $(\mathcal{C}, \mathcal{K})$ is also a system of islands.

The systems of islands corresponding to $(\mathcal{C}, \mathcal{K})$ are exactly the admissible families.

Definition

A pair $(\mathcal{C}, \mathcal{K})$ is an *island domain* if

 $\forall A, B \in \mathcal{C} : (A \cap B \neq \emptyset \text{ and } B \nsubseteq A) \implies \exists K \in \mathcal{K} : A \subset K \subseteq A \cup B.$



Definition A family $\mathcal{H} \subseteq \mathcal{P}(U)$ is *weakly independent* if

$$H \subseteq \bigcup_{i \in I} H_i \implies \exists i \in I : H \subseteq H_i$$
(4)

holds for all $H \in \mathcal{H}, H_i \in \mathcal{H} (i \in I)$. If \mathcal{H} is both CD-independent and weakly independent, then we say that \mathcal{H} is *CDW-independent*.

Lemma

If $(\mathcal{C}, \mathcal{K})$ is an island domain, then every admissible subfamily of \mathcal{C} is CDW-independent. [[But not conversely.]]

The following three conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:

(i) $(\mathcal{C}, \mathcal{K})$ is an island domain.

(ii) Every system of islands corresponding to $(\mathcal{C}, \mathcal{K})$ is CD-independent.

(iii) Every system of islands corresponding to $(\mathcal{C}, \mathcal{K})$ is CDW-independent.

The following three conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:

(i) $(\mathcal{C}, \mathcal{K})$ is an island domain.

(ii) Every system of islands corresponding to $(\mathcal{C}, \mathcal{K})$ is CD-independent.

(iii) Every system of islands corresponding to $(\mathcal{C}, \mathcal{K})$ is CDW-independent.

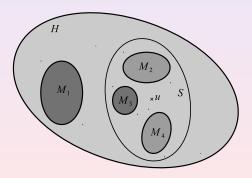
The following three conditions are equivalent for any pair $(\mathcal{C}, \mathcal{K})$:

(i) $(\mathcal{C}, \mathcal{K})$ is an island domain.

(ii) Every system of islands corresponding to $(\mathcal{C}, \mathcal{K})$ is CD-independent.

(iii) Every system of islands corresponding to $(\mathcal{C}, \mathcal{K})$ is CDW-independent.

If $(\mathcal{C}, \mathcal{K})$ is an island domain, then a subfamily of \mathcal{C} is a system of islands if and only if it is admissible.



If $(\mathcal{C}, \mathcal{K})$ is an island domain and \mathcal{S} is a system of islands corresponding to $(\mathcal{C}, \mathcal{K})$, then $|\mathcal{S}| \leq |U|$.

Proof.

Let $(\mathcal{C}, \mathcal{K})$ be an island domain and let $S \subseteq \mathcal{C} \setminus \{\emptyset\}$ be a system of islands corresponding to $(\mathcal{C}, \mathcal{K})$. S is CDW-independent, and hence $S \cup \{\emptyset\}$ is also CDW-independent. From the results of G. Czédli and E. T. Schmidt it follows that every maximal CDW-independent subset of $\mathcal{P}(U)$ has |U| + 1 elements. Thus we have $|S| + 1 \leq |U| + 1$.

If $(\mathcal{C}, \mathcal{K})$ is an island domain and \mathcal{S} is a system of islands corresponding to $(\mathcal{C}, \mathcal{K})$, then $|\mathcal{S}| \leq |U|$.

Proof.

Let $(\mathcal{C}, \mathcal{K})$ be an island domain and let $\mathcal{S} \subseteq \mathcal{C} \setminus \{\emptyset\}$ be a system of islands corresponding to $(\mathcal{C}, \mathcal{K})$. \mathcal{S} is CDW-independent, and hence $\mathcal{S} \cup \{\emptyset\}$ is also CDW-independent. From the results of G. Czédli and E. T. Schmidt it follows that every maximal CDW-independent subset of $\mathcal{P}(U)$ has |U| + 1 elements. Thus we have $|\mathcal{S}| + 1 \leq |U| + 1$.

 $(\mathcal{C},\mathcal{K})$ $\delta \subseteq \mathcal{C} imes \mathcal{C}$

$A\delta B \Leftrightarrow \exists K \in \mathcal{K} : A \preceq K \text{ and } K \cap B \neq \emptyset.$ (5)

It is easy to verify that relation δ satisfies the following properties for all $A, B, C \in C$:

 $A\delta B \Rightarrow B \neq \emptyset;$ $A \cap B \neq \emptyset \Rightarrow A\delta B;$ $A\delta(B \cup C) \Leftrightarrow (A\delta B \text{ or } A\delta C).$

23 / 30

 $\begin{aligned} (\mathcal{C},\mathcal{K}) \\ \delta \subseteq \mathcal{C} \times \mathcal{C} \end{aligned}$

$A\delta B \Leftrightarrow \exists K \in \mathcal{K} : A \preceq K \text{ and } K \cap B \neq \emptyset.$ (5)

It is easy to verify that relation δ satisfies the following properties for all $A, B, C \in C$:

 $egin{aligned} &A\delta B \Rightarrow B
eq \emptyset;\ &A \cap B
eq \emptyset \Rightarrow A\delta B;\ &A\delta(B \cup C) \Leftrightarrow (A\delta B ext{ or } A\delta C). \end{aligned}$

 $\begin{aligned} (\mathcal{C},\mathcal{K}) \\ \delta \subseteq \mathcal{C} \times \mathcal{C} \end{aligned}$

$A\delta B \Leftrightarrow \exists K \in \mathcal{K} : A \preceq K \text{ and } K \cap B \neq \emptyset.$ (5)

It is easy to verify that relation δ satisfies the following properties for all $A, B, C \in C$:

 $egin{aligned} &A\delta B \Rightarrow B
eq \emptyset;\ &A \cap B
eq \emptyset \Rightarrow A\delta B;\ &A\delta(B \cup C) \Leftrightarrow (A\delta B ext{ or } A\delta C). \end{aligned}$

 $\begin{aligned} (\mathcal{C},\mathcal{K}) \\ \delta \subseteq \mathcal{C} \times \mathcal{C} \end{aligned}$

$$A\delta B \Leftrightarrow \exists K \in \mathcal{K} : A \preceq K \text{ and } K \cap B \neq \emptyset.$$
 (5)

It is easy to verify that relation δ satisfies the following properties for all $A, B, C \in C$:

$$A\delta B \Rightarrow B \neq \emptyset;$$

 $A \cap B \neq \emptyset \Rightarrow A\delta B;$
 $A\delta(B \cup C) \Leftrightarrow (A\delta B \text{ or } A\delta C).$

It is easy to see that in this case A and B are also incomparable (in fact, disjoint), whenever $A, B \neq \emptyset$.

A nonempty family $\mathcal{H} \subseteq \mathcal{C}$ will be called a *distant family*, if any two incomparable members of \mathcal{H} are distant.

Lemma If $\mathcal{H} \subseteq \mathcal{C}$ is a distant family, then \mathcal{H} is CDW-independent. Moreover, if $U \in \mathcal{H}$, then U is admissible.

It is easy to see that in this case A and B are also incomparable (in fact, disjoint), whenever $A, B \neq \emptyset$.

A nonempty family $\mathcal{H} \subseteq \mathcal{C}$ will be called a *distant family*, if any two incomparable members of \mathcal{H} are distant.

Lemma If $\mathcal{H} \subseteq \mathcal{C}$ is a distant family, then \mathcal{H} is CDW-independent. Moreover, if $U \in \mathcal{H}$, then U is admissible.

It is easy to see that in this case A and B are also incomparable (in fact, disjoint), whenever $A, B \neq \emptyset$.

A nonempty family $\mathcal{H} \subseteq \mathcal{C}$ will be called a *distant family*, if any two incomparable members of \mathcal{H} are distant.

Lemma If $\mathcal{H} \subseteq \mathcal{C}$ is a distant family, then \mathcal{H} is CDW-independent. Moreover, if $U \in \mathcal{H}$, then U is admissible.

It is easy to see that in this case A and B are also incomparable (in fact, disjoint), whenever $A, B \neq \emptyset$.

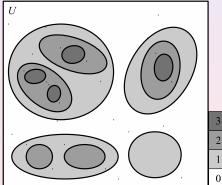
A nonempty family $\mathcal{H} \subseteq \mathcal{C}$ will be called a *distant family*, if any two incomparable members of \mathcal{H} are distant.

Lemma If $\mathcal{H} \subseteq \mathcal{C}$ is a distant family, then \mathcal{H} is CDW-independent. Moreover, if $U \in \mathcal{H}$, then U is admissible.

24 / 30

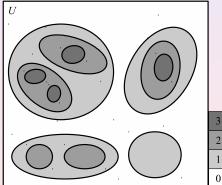
Let us consider a CD-independent family \mathcal{H} .

Clearly, for every $u \in U$, the set of members of \mathcal{H} containing u is a finite chain.



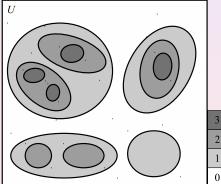
Let us consider a CD-independent family \mathcal{H} .

Clearly, for every $u \in U$, the set of members of \mathcal{H} containing u is a finite chain.



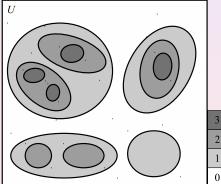
Let us consider a CD-independent family $\mathcal{H}.$

Clearly, for every $u \in U$, the set of members of \mathcal{H} containing u is a finite chain.



Let us consider a CD-independent family $\mathcal{H}.$

Clearly, for every $u \in U$, the set of members of \mathcal{H} containing u is a finite chain.



Let $(\mathcal{C}, \mathcal{K})$ be an island domain and let $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ with $U \in \mathcal{H}$. If \mathcal{H} is a distant family, then \mathcal{H} is a system of strict islands; moreover, \mathcal{H} is the system of strict islands corresponding to its standard height function.

The pair (C, \mathcal{K}) is called a *proximity domain*, if it is an island domain and the relation δ is symmetric for nonempty sets, that is

$$\forall A, B \in \mathcal{C} \setminus \{\emptyset\} : A\delta B \Leftrightarrow B\delta A.$$
(6)

If a relation δ defined on $\mathcal{P}(U)$ satisfies the mentioned three properties and δ is symmetric for nonempty sets, then (U, δ) is called a *proximity space*.

The notion goes back to Frigyes Riesz (1908), however this axiomatization is due to Vadim A. Efremovich.

The pair (C, \mathcal{K}) is called a *proximity domain*, if it is an island domain and the relation δ is symmetric for nonempty sets, that is

$$\forall A, B \in \mathcal{C} \setminus \{\emptyset\} : A\delta B \Leftrightarrow B\delta A.$$
(6)

If a relation δ defined on $\mathcal{P}(U)$ satisfies the mentioned three properties and δ is symmetric for nonempty sets, then (U, δ) is called a *proximity space*.

The notion goes back to Frigyes Riesz (1908), however this axiomatization is due to Vadim A. Efremovich.

The pair (C, \mathcal{K}) is called a *proximity domain*, if it is an island domain and the relation δ is symmetric for nonempty sets, that is

$$\forall A, B \in \mathcal{C} \setminus \{\emptyset\} : A\delta B \Leftrightarrow B\delta A.$$
(6)

If a relation δ defined on $\mathcal{P}(U)$ satisfies the mentioned three properties and δ is symmetric for nonempty sets, then (U, δ) is called a *proximity space*.

The notion goes back to Frigyes Riesz (1908), however this axiomatization is due to Vadim A. Efremovich.

Proposition

If $(\mathcal{C}, \mathcal{K})$ is a proximity domain, then any system of strict islands corresponding to $(\mathcal{C}, \mathcal{K})$ is a distant system.

Corollary

If $(\mathcal{C}, \mathcal{K})$ is a proximity domain, and $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ with $U \in \mathcal{H}$, then \mathcal{H} is a system of strict islands if and only if \mathcal{H} is a distant family. Moreover, in this case \mathcal{H} is the system of strict islands corresponding to its standard height function.

Proposition

If $(\mathcal{C}, \mathcal{K})$ is a proximity domain, then any system of strict islands corresponding to $(\mathcal{C}, \mathcal{K})$ is a distant system.

Corollary

If $(\mathcal{C}, \mathcal{K})$ is a proximity domain, and $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ with $U \in \mathcal{H}$, then \mathcal{H} is a system of strict islands if and only if \mathcal{H} is a distant family. Moreover, in this case \mathcal{H} is the system of strict islands corresponding to its standard height function.

Finally, let us consider the following condition on (C, \mathcal{K}) , which is stronger than that of being an island domain:

$$\forall K_1, K_2 \in \mathcal{K}: \ K_1 \cap K_2 \neq \emptyset \implies K_1 \cup K_2 \in \mathcal{K}.$$
(7)

Theorem

Suppose that $(\mathcal{C}, \mathcal{K})$ satisfies condition (7), and assume that for all $\mathcal{C} \in \mathcal{C}, \ \mathcal{K} \in \mathcal{K}$ with $\mathcal{C} \prec \mathcal{K}$ we have $|\mathcal{K} \setminus \mathcal{C}| = 1$. Then $(\mathcal{C}, \mathcal{K})$ is a proximity domain, and islands and strict islands corresponding to $(\mathcal{C}, \mathcal{K})$ coincide. Therefore, if $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ and $U \in \mathcal{H}$, then \mathcal{H} is a system of (strict) islands if and only if \mathcal{H} is a distant family. Moreover, in this case \mathcal{H} is the system of (strict) islands corresponding to its standard height function.

Corollary

Let G be a graph with vertex set U; let $(\mathcal{C}, \mathcal{K})$ be an island domain corresponding to $(\mathcal{C}, \mathcal{K})$, and let $\mathcal{H} \subseteq \mathcal{C} \setminus \{\emptyset\}$ with $U \in \mathcal{H}$. Then \mathcal{H} is a system of (strict) islands if and only if \mathcal{H} is distant; moreover, in this case \mathcal{H} is the system of (strict) islands corresponding to its standard height function.