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Islands?
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Rectangular and triangular islands

We call a rectangle/triangle a rectangular/triangular island, if for the cell
t, if we denote its height by at , then for each cell t̂ neighbouring with a
cell of the rectange/triangle T, the inequality at̂ < min{at : t ∈ T}
holds.
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Rectangular islands

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive
lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a m × n rectangular board
on square grid:

f (m, n) =

[
mn + m + n − 1

2

]
.
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Triangular islands

For the maximum number of triangular islands in an equilateral triangle of
side length n, n2+3n

5 ≤ f (n) ≤ 3n2+9n+2
14 holds.

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular
islands on a triangular grid, Periodica Mathematica Hungarica, 58
(2009), 25–34.
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Square islands (also in higher dimensions)

1

3
(rs − 2r − 2s) ≤ f (r , s) ≤ 1

3
(rs − 1)

E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of
square islands on a rectangular sea, Acta Sci. Math.(Szeged) 76
(2010) 35-48.
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CD-independent subsets in posets

Definitions

Let P = (P,≤) be a partially ordered set and a, b ∈ P. The
elements a and b are called disjoint and we write a ⊥ b if

either P has least element 0 ∈ P and inf{a, b} = 0,

or if P is without 0, then a and b have no common lowerbound.

A nonempty set X ⊆ P is called CD-independent if for any x , y ∈ X ,
x ≤ y or y ≤ x or x ⊥ y holds.

Maximal CD-independent sets (with respect to ⊆ ) are called CD-bases
in P.
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CD-independent subsets in distributive lattices

Any two CD-bases of a finite distributive lattice have the same number of
elements.

If all finite lattices in a lattice variety have this property, then the variety
must coincide with the variety of distributive lattices.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets
in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2
(2009).
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Definitions

U ∈ C ⊆ K ⊆ P (U)
Let h : U → R be a height function and let S ∈ C be a nonempty set.

We say that S is an island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

min h (K ) < min h (S) .

We say that S is a strict island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

h (u) < min h (S) for all u ∈ K \ S .
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Example

Let G = (U,E ) be a connected simple graph with vertex set U and edge
set E ; let K consist of the connected subsets of U, and let C ⊆ K such
that U ∈ C.
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Example

Let A1, . . . ,An be nonempty sets, and let I ⊆ A1 × · · · ×An. Let us define

U = A1 × · · · × An,

K = {B1 × · · · × Bn : ∅ 6= Bi ⊆ Ai , 1 ≤ i ≤ n}
C = {C ∈ K : C ⊆ I} ∪ {U},

and let h : U −→ {0, 1} be the height function given by

h (a1, . . . , an) :=

{
1, if (a1, . . . , an) ∈ I;
0, if (a1, . . . , an) ∈ U \ I;

for all (a1, . . . , an) ∈ U.

It is easy to see that the islands corresponding to the triple (C,K, h) are
exactly U and the maximal elements of the poset (C \ {U} ,⊆).

formal concepts

prime implicants of a Boolean function
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Islands and admissible systems

Definition

Let H ⊆ C \ {∅} be a family of sets such that U ∈ H. We say that H is
admissible, if for every nonempty antichain A ⊆ H

∃H ∈ A ∀K ∈ K : H ⊂ K =⇒ K *
⋃
A. (1)

Proposition
Every system of islands is admissible.
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Every system of islands is admissible.

Proof
Let h : U → R be a height function and let S be the system of islands
corresponding to (C,K, h). Clearly, we have ∅ /∈ S and U ∈ S. Let us
assume for contradiction that there exists an antichain
A = {Si : i ∈ I} ⊆ S such that (1) does not hold. Then for every i ∈ I
there exists Ki ∈ K such that Si ⊂ Ki and Ki ⊆

⋃
i∈I Si . Since Si is an

island, we have

min h (Si ) > min h (Ki ) ≥ min h
(⋃

i∈I

Si

)
for all i ∈ I . Taking the minimum of these inequalities we arrive at the
contradiction

min {min h (Si ) | i ∈ I} > min h
(⋃

i∈I

Si

)
.
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Canonical height functions

Let H ⊆ C be an admissible family of sets.

We define subfamilies H(i) ⊆ H (i = 0, 1, 2, . . .) recursively as follows.

Let H(0) = {U}.
For i > 0, if H 6= H(0) ∪ · · · ∪H(i−1), then let H(i) consist of all those
sets H ∈ H \ (H(0) ∪ · · · ∪ H(i−1)) that have the following property:

∀K ∈ K : H ⊂ K =⇒ K *
⋃(
H \ (H(0) ∪ · · · ∪ H(i−1))

)
. (2)

Since H is finite and admissible, after finitely many steps we obtain a
partition H = H(0) ∪ · · · ∪ H(r).

The canonical height function corresponding to H is the function
hH : U → N defined by

hH (x) := max
{

i ∈ {1, . . . , r} : x ∈
⋃
H(i)

}
for all x ∈ U. (3)
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Eszter K. Horváth, Szeged Co-authors: Stephan Foldes, Sándor Radeleczki, Tamás Waldhauser ()Islands and independence notions Novi Sad, 2012, Oct 22. 14 / 30



Canonical height functions

Let H ⊆ C be an admissible family of sets.

We define subfamilies H(i) ⊆ H (i = 0, 1, 2, . . .) recursively as follows.

Let H(0) = {U}.
For i > 0, if H 6= H(0) ∪ · · · ∪H(i−1), then let H(i) consist of all those
sets H ∈ H \ (H(0) ∪ · · · ∪ H(i−1)) that have the following property:

∀K ∈ K : H ⊂ K =⇒ K *
⋃(
H \ (H(0) ∪ · · · ∪ H(i−1))

)
. (2)

Since H is finite and admissible, after finitely many steps we obtain a
partition H = H(0) ∪ · · · ∪ H(r).

The canonical height function corresponding to H is the function
hH : U → N defined by

hH (x) := max
{

i ∈ {1, . . . , r} : x ∈
⋃
H(i)

}
for all x ∈ U. (3)
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Canonical height functions
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Islands and admissible systems

Proposition
If H ⊆ C is an admissible family of sets and hH is the corresponding
canonical height function, then every member of H is an island with
respect to (C,K, hH).

Theorem
A subfamily of C is a maximal system of islands if and only if it is a
maximal admissible family.
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Subsets of island systems

The following two conditions are equivalent for any pair (C,K):

Any subset of a system of islands corresponding to (C,K) is also a system
of islands.

The systems of islands corresponding to (C,K) are exactly the admissible
families.
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Island domains

Definition

A pair (C,K) is an island domain if

∀A,B ∈ C : (A ∩ B 6= ∅ and B * A) =⇒ ∃K ∈ K : A ⊂ K ⊆ A ∪ B.
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CDW-independence

Definition A family H ⊆ P (U) is weakly independent if

H ⊆
⋃
i∈I

Hi =⇒ ∃i ∈ I : H ⊆ Hi (4)

holds for all H ∈ H,Hi ∈ H (i ∈ I ). If H is both CD-independent and
weakly independent, then we say that H is CDW-independent.

Lemma
If (C,K) is an island domain, then every admissible subfamily of C is
CDW-independent. [[But not conversely.]]
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Island domains

Theorem

The following three conditions are equivalent for any pair (C,K):

(i) (C,K) is an island domain.

(ii) Every system of islands corresponding to (C,K) is CD-independent.

(iii) Every system of islands corresponding to (C,K) is
CDW-independent.
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Island domains

Theorem
If (C,K) is an island domain, then a subfamily of C is a system of
islands if and only if it is admissible.
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Island domains

Theorem
If (C,K) is an island domain and S is a system of islands corresponding
to (C,K), then |S | ≤ |U|.

Proof.
Let (C,K) be an island domain and let S ⊆ C \ {∅} be a system of
islands corresponding to (C,K). S is CDW-independent, and hence
S ∪ {∅} is also CDW-independent. From the results of G. Czédli and
E. T. Schmidt it follows that every maximal CDW-independent subset
of P (U) has |U|+ 1 elements. Thus we have |S|+ 1 ≤ |U|+ 1.
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Strict islands and proximity domains

(C,K)

δ ⊆ C × C

AδB ⇔ ∃K ∈ K : A � K and K ∩ B 6= ∅. (5)

It is easy to verify that relation δ satisfies the following properties for all
A,B,C ∈ C:

AδB ⇒ B 6= ∅;
A ∩ B 6= ∅ ⇒ AδB;

Aδ(B ∪ C )⇔ (AδB or AδC ).
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Strict islands and proximity domains

We say that A,B ∈ C are distant if neither AδB nor BδA holds.

It is easy to see that in this case A and B are also incomparable (in
fact, disjoint), whenever A,B 6= ∅.

A nonempty family H ⊆ C will be called a distant family, if any two
incomparable members of H are distant.

Lemma If H ⊆ C is a distant family, then H is CDW-independent.
Moreover, if U ∈ H, then U is admissible.
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Standard height function

Let us consider a CD-independent family H.
Clearly, for every u ∈ U, the set of members of H containing u is a
finite chain.
The standard height function of H assigns to each element u the
length of this chain, i.e., one less than the number of members of H
that contain u.
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Strict islands and proximity domains

Theorem
Let (C,K) be an island domain and let H ⊆ C \ {∅} with U ∈ H. If H is
a distant family, then H is a system of strict islands; moreover, H is the
system of strict islands corresponding to its standard height function.
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Strict islands and proximity domains

The pair (C,K) is called a proximity domain, if it is an island domain
and the relation δ is symmetric for nonempty sets, that is

∀A,B ∈ C \ {∅} : AδB ⇔ BδA. (6)

If a relation δ defined on P (U) satisfies the mentioned three
properties and δ is symmetric for nonempty sets, then (U, δ) is called
a proximity space.

The notion goes back to Frigyes Riesz (1908), however this axiomatization
is due to Vadim A. Efremovich.
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Strict islands and proximity domains

Proposition
If (C,K) is a proximity domain, then any system of strict islands
corresponding to (C,K) is a distant system.

Corollary
If (C,K) is a proximity domain, and H ⊆ C \ {∅} with U ∈ H, then H is
a system of strict islands if and only if H is a distant family. Moreover,
in this case H is the system of strict islands corresponding to its
standard height function.
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Strict islands and proximity domains

Finally, let us consider the following condition on (C,K), which is stronger
than that of being an island domain:

∀K1,K2 ∈ K : K1 ∩ K2 6= ∅ =⇒ K1 ∪ K2 ∈ K. (7)

Theorem
Suppose that (C,K) satisfies condition (7), and assume that for all
C ∈ C, K ∈ K with C ≺ K we have |K \ C | = 1. Then (C,K) is a
proximity domain, and islands and strict islands corresponding to
(C,K) coincide. Therefore, if H ⊆ C \ {∅} and U ∈ H, then H is a
system of (strict) islands if and only if H is a distant family. Moreover,
in this case H is the system of (strict) islands corresponding to its
standard height function.
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Strict islands and proximity domains

Corollary
Let G be a graph with vertex set U; let (C,K) be an island domain
corresponding to (C,K), and let H ⊆ C \ {∅} with U ∈ H. Then H is a
system of (strict) islands if and only if H is distant; moreover, in this
case H is the system of (strict) islands corresponding to its standard
height function.
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