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Island domain

U ∈ C ⊆ K ⊆ P (U)

Let h : U → R be a height function and let S ∈ C be a nonempty set.

We denote the cover relation of the poset (K,⊆) by ≺, and we write
K1 � K2 if K1 ≺ K2 or K1 = K2.

We say that S is a island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

h (u) < min h (S) for all u ∈ K \ S .
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,,Closeness” relation

(C,K)

δ ⊆ C × C

AδB ⇔ ∃K ∈ K : A � K and K ∩ B 6= ∅. (1)

It is easy to verify that relation δ satisfies the following properties for all
A,B,C ∈ C whenever B ∪ C ∈ C:

AδB ⇒ B 6= ∅;
A ∩ B 6= ∅ ⇒ AδB;

Aδ(B ∪ C )⇔ (AδB or AδC ).
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Distant families

We say that A,B ∈ C are distant if neither AδB nor BδA holds.

It is easy to see that in this case A and B are also incomparable (in
fact, disjoint), whenever A,B 6= ∅.

A nonempty family H ⊆ C will be called a distant family, if any two
incomparable members of H are distant.

Lemma If H ⊆ C is a distant family, then H is CDW-independent.
Moreover, if U ∈ H, then U is admissible.
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CD-independent subsets in posets

Definitions

Let P = (P,≤) be a partially ordered set and a, b ∈ P. The
elements a and b are called disjoint and we write a ⊥ b if

either P has least element 0 ∈ P and inf{a, b} = 0,

or if P is without 0, then a and b have no common lowerbound.

A nonempty set X ⊆ P is called CD-independent if for any x , y ∈ X ,
x ≤ y or y ≤ x or x ⊥ y holds.

Eszter K. Horváth, Szeged Co-authors: Stephan Foldes, Sándor Radeleczki, Tamás Waldhauser ()Islands and proximity domains Novi Sad, 2013, June 5. 5 / 22



CD-independent subsets in posets

Definitions

Let P = (P,≤) be a partially ordered set and a, b ∈ P. The
elements a and b are called disjoint and we write a ⊥ b if

either P has least element 0 ∈ P and inf{a, b} = 0,

or if P is without 0, then a and b have no common lowerbound.

A nonempty set X ⊆ P is called CD-independent if for any x , y ∈ X ,
x ≤ y or y ≤ x or x ⊥ y holds.
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CDW-independence

Definition A family H ⊆ P (U) is weakly independent if

H ⊆
⋃
i∈I

Hi =⇒ ∃i ∈ I : H ⊆ Hi (2)

holds for all H ∈ H,Hi ∈ H (i ∈ I ). If H is both CD-independent and
weakly independent, then we say that H is CDW-independent.
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Admissible systems in island domains

Definition

Let H ⊆ C \ {∅} be a family of sets such that U ∈ H. We say that H is
admissible, if for every nonempty antichain A ⊆ H

∃H ∈ A ∀K ∈ K : H ⊂ K =⇒ K *
⋃
A. (3)
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Connective island domains

Definition

A pair (C,K) is an connective island domain if

∀A,B ∈ C : (A ∩ B 6= ∅ and B * A) =⇒ ∃K ∈ K : A ⊂ K ⊆ A ∪ B.
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Connective island domains

Theorem

The following three conditions are equivalent for any pair (C,K):

(i) (C,K) is a connective island domain.

(ii) Every system of pre-islands corresponding to (C,K) is
CD-independent.

(iii) Every system of pre-islands corresponding to (C,K) is
CDW-independent.
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Standard height function

Let us consider a CD-independent family H.
Clearly, for every u ∈ U, the set of members of H containing u is a
finite chain.
The standard height function of H assigns to each element u the
length of this chain, i.e., one less than the number of members of H
that contain u.
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Distant families in connective island domains

Theorem
Let (C,K) be a connective island domain and let H ⊆ C \ {∅} with
U ∈ H. If H is a distant family, then H is a system of islands;
moreover, H is the system of islands corresponding to its standard
height function.
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Islands and proximity domains

The island domain (C,K) is called a proximity domain, if it is a
connective island domain and the relation δ is symmetric for
nonempty sets, that is

∀A,B ∈ C \ {∅} : AδB ⇔ BδA. (4)

If a relation δ defined on P (U) satisfies the mentioned three
properties and δ is symmetric for nonempty sets, then (U, δ) is called
a proximity space.

δ satisfies the following properties for all A,B,C ∈ C whenever B ∪ C ∈ C:

AδB ⇒ B 6= ∅;
A ∩ B 6= ∅ ⇒ AδB;

Aδ(B ∪ C )⇔ (AδB or AδC ).

The notion goes back to Frigyes Riesz (1908), however this axiomatization
is due to Vadim A. Efremovich.
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Islands and proximity domains

Proposition
If (C,K) is a proximity domain, then any system of islands
corresponding to (C,K) is a distant system.

Proof
h(b) < min h(A) ≤ h(a)

h(a) < min h(B) ≤ h(b)
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Characterization for system of islands for proximity
domains

Corollary

If (C,K) is a proximity domain, and H ⊆ C \ {∅} with U ∈ H, then H is
a system of islands if and only if H is a distant family. Moreover, in
this case H is the system of islands corresponding to its standard
height function.
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Pre-island

U ∈ C ⊆ K ⊆ P (U)

Let h : U → R be a height function and let S ∈ C be a nonempty set.

We say that S is an pre-island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

min h (K ) < min h (S) .

We say that S is a island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

h (u) < min h (S) for all u ∈ K \ S .

Eszter K. Horváth, Szeged Co-authors: Stephan Foldes, Sándor Radeleczki, Tamás Waldhauser ()Islands and proximity domains Novi Sad, 2013, June 5. 15 / 22



Pre-island

U ∈ C ⊆ K ⊆ P (U)

Let h : U → R be a height function and let S ∈ C be a nonempty set.

We say that S is an pre-island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

min h (K ) < min h (S) .

We say that S is a island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

h (u) < min h (S) for all u ∈ K \ S .
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Example

Let A1, . . . ,An be nonempty sets, and let I ⊆ A1 × · · · ×An. Let us define

U = A1 × · · · × An,

K = {B1 × · · · × Bn : ∅ 6= Bi ⊆ Ai , 1 ≤ i ≤ n}
C = {C ∈ K : C ⊆ I} ∪ {U},

and let h : U −→ {0, 1} be the height function given by

h (a1, . . . , an) :=

{
1, if (a1, . . . , an) ∈ I;
0, if (a1, . . . , an) ∈ U \ I;

for all (a1, . . . , an) ∈ U.

It is easy to see that the pre-islands corresponding to the triple (C,K, h)
are exactly U and the maximal elements of the poset (C \ {U} ,⊆).

formal concepts

prime implicants of a Boolean function
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Pre-islands and admissible systems

Definition

Let H ⊆ C \ {∅} be a family of sets such that U ∈ H. We say that H is
admissible, if for every nonempty antichain A ⊆ H

∃H ∈ A ∀K ∈ K : H ⊂ K =⇒ K *
⋃
A. (5)

Proposition
Every system of pre-islands is admissible.
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Pre-islands and admissible systems

Theorem
A subfamily of C is a maximal system of pre-islands if and only if it is
a maximal admissible family.
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Islands and proximity domains

Finally, let us consider the following condition on (C,K), which is stronger
than that of being a connective island domain:

∀K1,K2 ∈ K : K1 ∩ K2 6= ∅ =⇒ K1 ∪ K2 ∈ K. (6)

Theorem
Suppose that (C,K) satisfies condition (6), and assume that for all
C ∈ C, K ∈ K with C ≺ K we have |K \ C | = 1. Then (C,K) is a
proximity domain; pre-islands and islands corresponding to (C,K)
coincide. Therefore, if H ⊆ C \ {∅} and U ∈ H, then H is a system of
(pre-) islands if and only if H is a distant family. Moreover, in this case
H is the system of (pre-) islands corresponding to its standard height
function.
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Example

Let G = (U,E ) be a connected simple graph with vertex set U and edge
set E ; let K consist of the connected subsets of U, and let C ⊆ K such
that U ∈ C. Let C consist of he connected convex sets of vertices.
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Islands and proximity domains

Corollary
Let G be a graph with vertex set U; let (C,K) be a connective island
domain corresponding to (C,K), and let H ⊆ C \ {∅} with U ∈ H. Then
H is a system of (pre-) islands if and only if H is distant; moreover, in
this case H is the system of (pre-) islands corresponding to its standard
height function.
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Islands and proximity domains

THANK YOU FOR YOUR ATTENTION!
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