Some enumerative and lattice theoretic aspects of islands (and lakes) and related investigations

Eszter K. Horváth, Szeged

Co-authors: János Barát, Péter Hajnal, Branimir Šešelja, Andreja Tepavčević, Sándor Radeleczki

Novi Sad, 2015, June 5 .

Islands? Alcatraz

Islands?

Islands?

Islands?

Lakes? (Aral sea, satellit photo)

Lakes?

Definition

We call a rectangle/triangle a rectangular/triangular island, if for the cell t , if we denote its height by a_{t}, then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T , the inequality $a_{\hat{t}}<\min \left\{a_{t}: t \in T\right\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1

Definition

Grid, neighbourhood

The number of rectangular islands

We put heights into the cells. How many rectangular islands do we have?

The number of rectangular islands

Water level: 0,5
Number of rectangular islands: 1

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

The number of rectangular islands

Water level: 1,5
Number of rectangular islands: 2

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

The number of rectangular islands

Water level: 2,5
Number of rectangular islands: 2

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

The number of rectangular islands

Altogether: $1+2+2=5$ rectangular islands.

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

Could we put more rectangular islands onto this grid? (With other heights?)

The number of rectangular islands

Yes, we could put more rectangular islands, here we have $1+2+4+2=9$ rectangular islands.

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

HOWEWER, WE CANNOT PUT MORE RECTANGULAR ISLANDS!!!

The maximum number of rectangular islands on the $m \times n$ size grid (Gábor Czédli , Szeged, 2007. june 17.)

$$
f(m, n)=\left[\frac{m n+m+n-1}{2}\right]
$$

History/1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

History/1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215

The maximum number of rectangular islands in a $m \times n$ rectangular board

 on scllare orid

7

History/2

Rectangular islands
G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

History/2

Rectangular islands
G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$
f(m, n)=\left[\frac{m n+m+n-1}{2}\right]
$$

Proving $f(m, n)=\left[\frac{m n+m+n-1}{2}\right]$ THERE EXISTS:

By induction on the number of the cells: $f(m, n) \geq\left[\frac{m n+m+n-1}{2}\right]$.

If $m=1$, then $\left[\frac{n+1+n-1}{2}\right]=n$, we put the numbers $1,2,3, \ldots, n$ in the cells and we will have exactly n islands.

If $n=1$, then $\left[\frac{m+m+1-1}{2}\right]=m$.
If $m=n=2$:

Proving $f(m, n)=\left[\frac{m n+m+n-1}{2}\right]$ THERE EXISTS:

Let $m, n>2$.

$$
\begin{aligned}
& f(m, n) \geq f(m-2, n)+f(1, n)+1 \geq\left[\frac{(m-2) n+(m-2)+n-1}{2}\right]+\left[\frac{n+1+n-1}{2}\right]+1= \\
& =\left[\frac{(m-2) n+(m-2)+n-1+2 n}{2}\right]+1=\left[\frac{m n+m+n-1}{2}\right] .
\end{aligned}
$$

Proving methods/1

LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Proving methods/1

LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Proving methods/1

LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

Proving methods/2

TREE-GRAPH METHOD

R_{0} ${ }^{7}$

Proving methods/2

TREE-GRAPH METHOD

Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)

Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \leq 2 \ell-1$.

Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)

Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \leq 2 \ell-1$.

Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)

Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \leq 2 \ell-1$.

We have $4 s+2 d \leq(n+1)(m+1)$.
The number of leaves of $T(\mathcal{I})$ is $\ell=s+d$. Hence by Lemma 2 the number of islands is

$$
|V|-d \leq(2 \ell-1)-d=2 s+d-1 \leq \frac{1}{2}(n+1)(m+1)-1
$$

Proving methods/3

ELEMENTARY METHOD

Proving methods/3

ELEMENTARY METHOD

We define

$$
\mu(R)=\mu(u, v):=(u+1)(v+1) .
$$

Proving methods/3

ELEMENTARY METHOD

We define

$$
\mu(R)=\mu(u, v):=(u+1)(v+1) .
$$

Now

$$
f(m, n)=1+\sum_{R \in \max \mathcal{I}} f(R)=1+\sum_{R \in \max \mathcal{I}}\left(\left[\frac{(u+1)(v+1)}{2}\right]-1\right)
$$

If $|\max \mathcal{I}| \geq 2$, then the proof is ready. Case $|m a x \mathcal{L}|=1$ is an easy

Proving methods/3

ELEMENTARY METHOD

We define

$$
\mu(R)=\mu(u, v):=(u+1)(v+1)
$$

Now

$$
\begin{gathered}
f(m, n)=1+\sum_{R \in \max \mathcal{I}} f(R)=1+\sum_{R \in \max \mathcal{I}}\left(\left[\frac{(u+1)(v+1)}{2}\right]-1\right) \\
=1+\sum_{R \in \max \mathcal{I}}\left(\left[\frac{\mu(u, v)}{2}\right]-1\right) \leq 1-|\max \mathcal{I}|+\left[\frac{\mu(\mathrm{C})}{2}\right] .
\end{gathered}
$$

If $|\max \mathcal{I}| \geq 2$, then the proof is ready. Case $|\max \mathcal{I}|=1$ is an easy exercise.

Exact results

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Exact results

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

Exact results

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \geq 2$, then $t(m, n)=\left[\frac{m n}{2}\right]$.

Exact results

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \geq 2$, then $t(m, n)=\left[\frac{m n}{2}\right]$.

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Islands in Boolean algebras, i.e. in hypercubes

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

Islands in Boolean algebras, i.e. in hypercubes

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

Islands in Boolean algebras, i.e. in hypercubes

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

We denote the maximum number of islands in $B A=\{0,1\}^{n}$ by $b(n)$.

Islands in Boolean algebras, i.e. in hypercubes

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

We denote the maximum number of islands in $B A=\{0,1\}^{n}$ by $b(n)$.

Island formula for Boolean algebras (J. Barát, P. Hajnal, E.K. Horváth) $b(n)=1+2^{n-1}$.

Rectangular height functions/1

Joint work with Branimir Šešelja and Andreja Tepavčević
A height function h is a mapping from $\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ to \mathbb{N}, $h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$.

The co-domain of the height function is the lattice (\mathbb{N}, \leq), where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

Rectangular height functions/1

Joint work with Branimir Šešelja and Andreja Tepavčević
A height function h is a mapping from $\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ to \mathbb{N}, $h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$.

The co-domain of the height function is the lattice (\mathbb{N}, \leq), where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

For every $p \in \mathbb{N}$, the cut of the height function, i.e. the p-cut of h is an ordinary relation h_{p} on $\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ defined by

$$
(x, y) \in h_{p} \text { if and only if } h(x, y) \geq p
$$

Rectangular height functions/2

We say that two rectangles $\{\alpha, \ldots, \beta\} \times\{\gamma, \ldots, \delta\}$ and $\left\{\alpha_{1}, \ldots, \beta_{1}\right\} \times\left\{\gamma_{1}, \ldots, \delta_{1}\right\}$ are distant if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a-c)^{2}+(b-d)^{2} \geq 4$.

Rectangular height functions/2

We say that two rectangles $\{\alpha, \ldots, \beta\} \times\{\gamma, \ldots, \delta\}$ and $\left\{\alpha_{1}, \ldots, \beta_{1}\right\} \times\left\{\gamma_{1}, \ldots, \delta_{1}\right\}$ are distant if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a-c)^{2}+(b-d)^{2} \geq 4$.

The height function h is called rectangular if for every $p \in \mathbb{N}$, every nonempty p-cut of h is a union of distant rectangles.

Rectangular height functions/3

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

Rectangular height functions/3

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

$$
\begin{aligned}
& \Gamma_{1}=\{1,2,3,4,5\} \times\{1,2,3\}, \\
& \Gamma_{2}=\{1,2,3,4,5\} \times\{1,2,3\} \backslash\{(3,1)\}, \\
& \Gamma_{3}=\{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\
& \Gamma_{4}=\{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text { and } \\
& \Gamma_{5}=\{(1,3),(2,3),(4,3),(5,3)\}
\end{aligned}
$$

Rectangular height functions/5

Theorem 2

For every height function $h:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular height function $h^{*}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, such that $\mathcal{I}_{\text {rect }}(h)=\mathcal{I}_{\text {rect }}\left(h^{*}\right)$.

Rectangular height functions/12

Theorem 4

For every rectangular height function

$$
h^{*}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N},
$$

there is a rectangular height function

$$
h^{* *}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N},
$$

such that $\mathcal{I}_{\text {rect }}\left(h^{*}\right)=\mathcal{I}_{\text {rect }}\left(h^{* *}\right)$ and in $h^{* *}$ every island appears exactly in one cut.

\square

Rectangular height functions/12

Theorem 4

For every rectangular height function

$$
h^{*}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N},
$$

there is a rectangular height function

$$
h^{* *}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N},
$$

such that $\mathcal{I}_{\text {rect }}\left(h^{*}\right)=\mathcal{I}_{\text {rect }}\left(h^{* *}\right)$ and in $h^{* *}$ every island appears exactly in one cut.

If a rectangular height function $h^{* *}$ has the property that each island appears exactly in one cut, then we call it standard rectangular height function.

Rectangular height functions/13

We denote by $\Lambda_{\max }(m, n)$ the maximum number of different nonempty p-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Rectangular height functions/13

We denote by $\Lambda_{\max }(m, n)$ the maximum number of different nonempty p-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Theorem $5 \Lambda_{\max }(m, n)=m+n-1$.

Rectangular height functions/14

The maximum number of different nonempty p-cuts of a standard rectangular height function is equal to the minimum cardinality of maximal systems of islands.

Rectangular height functions/15

Lemma 1

If $m \geq 3$ and $n \geq 3$ and a height function
$h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ has maximally many islands, then it has exactly two maximal islands.

Rectangular height functions/15

Lemma 1

If $m \geq 3$ and $n \geq 3$ and a height function
$h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ has maximally many islands, then it has exactly two maximal islands.

Lemma 2

If $m \geq 3$ or $n \geq 3$, then for any odd number $t=2 k+1$ with $1 \leq t \leq \max \{m-2, n-2\}$, there is a standard rectangular height function $h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ having the maximum number of islands $f(m, n)$, such that one of the side-lengths of one of the maximal islands is equal to t.
(Remark: The statement is not true for even side-lengths, one can construct counterexample easily!)

Rectangular height functions/16

We denote by $\Lambda_{h}^{c z}(m, n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$
f(m, n)=\left\lfloor\frac{m n+m+n-1}{2}\right\rfloor .
$$

Rectangular height functions/16

We denote by $\Lambda_{h}^{c z}(m, n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$
f(m, n)=\left\lfloor\frac{m n+m+n-1}{2}\right\rfloor .
$$

Theorem 6

Let $h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ be a standard rectangular height function having maximally many islands $f(m, n)$. Then, $\Lambda_{h}^{c z}(m, n) \geq\left\lceil\log _{2}(m+1)\right\rceil+\left\lceil\log _{2}(n+1)\right\rceil-1$.

CD-independent subsets in posets

Let $\mathbb{P}=(P, \leq)$ be a partially ordered set, and let $a, b \in P$. The elements a and b are called disjoint and we write $a \perp b$ if
either \mathbb{P} has least element $0 \in P$ and $\inf \{a, b\}=0$, or \mathbb{P} is without 0 and the elements a and b have no common lowerbound.

A nonempty set $X \subseteq P$ is called $C D$-independent if for any $x, y \in X$, $x \leq y$ or $y \leq x$, or $x \perp y$ holds. Maximal CD-independent sets (with respect to \subseteq) are called $C D$-bases in \mathbb{P}.

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

CD-independent subsets in distributive lattices

> G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

If all finite lattices in a lattice variety have this property, then the variety must coincide with the variety of distributive lattices.

Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a a set of pairwise disjoint elements in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$; if \mathbb{P} has 0 -element, then $\{0\}$ is considered to be a set of pairwise disjont elements, too.

Remark

D is a set of pairwise disjoint elemets, if and only if it is a CD-independent antichain in \mathbb{P}.

Order ideals

For $X \subseteq P$, the order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$. The order-ideals of any poset form a (distributive) lattice with respect to \subseteq. So, the antichains of a poset can be ordered as follows:

Definition

Remarks

Order ideals

For $X \subseteq P$, the order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$. The order-ideals of any poset form a (distributive) lattice with respect to \subseteq. So, the antichains of a poset can be ordered as follows:

Definition

If A_{1}, A_{2} are antichains in \mathbb{P}, then we say that A_{1} is dominated by A_{2}, and we denote it by $A_{1} \leqslant A_{2}$ if $\downarrow A_{1} \subseteq \downarrow A_{2}$.

Remarks

Order ideals

For $X \subseteq P$, the order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$. The order-ideals of any poset form a (distributive) lattice with respect to \subseteq. So, the antichains of a poset can be ordered as follows:

Definition

If A_{1}, A_{2} are antichains in \mathbb{P}, then we say that A_{1} is dominated by A_{2}, and we denote it by $A_{1} \leqslant A_{2}$ if $\downarrow A_{1} \subseteq \downarrow A_{2}$.

Remarks

- \leqslant is a partial order

Order ideals

For $X \subseteq P$, the order ideal $\{y \in P \mid y \leq x$ for some $x \in X\}$ is denoted by $\downarrow X$. The order-ideals of any poset form a (distributive) lattice with respect to \subseteq. So, the antichains of a poset can be ordered as follows:

Definition

If A_{1}, A_{2} are antichains in \mathbb{P}, then we say that A_{1} is dominated by A_{2}, and we denote it by $A_{1} \leqslant A_{2}$ if $\downarrow A_{1} \subseteq \downarrow A_{2}$.

Remarks

- \leqslant is a partial order
- $A_{1} \leqslant A_{2}$ is satisfied if and only if
for each $x \in A_{1}$ there exists an $y \in A_{2}$, with $x \leq y$.

The poset $\mathcal{D}(P)$

Let $\mathcal{D}(P)$ denote the set of all sets of pairwise disjont elements of P.
As sets of pairwise disjont elements of \mathbb{P} are also antichains, restricting \leqslant to $\mathcal{D}(P)$, we obtain a poset $(\mathcal{D}(P), \leqslant)$.

The connection between the poset $(\mathcal{D}(P), \leqslant)$ and the CD-bases of the poset P is shown by the next theorem:

Theorem

Let B be a $C D$-base of a finite poset (P, \leq), and let $|B|=n$.

Then there exists a maximal chain $\left\{D_{i}\right\}_{1 \leq i \leq n}$ in $\mathcal{D}(P)$ such that $B=\bigcup_{i=1}^{n} D_{i}$.

Theorem

Let B be a $C D$-base of a finite poset (P, \leq), and let $|B|=n$.

Then there exists a maximal chain $\left\{D_{i}\right\}_{1 \leq i \leq n}$ in $\mathcal{D}(P)$ such that $B=\bigcup_{i=1}^{n} D_{i}$.

Moreover, for any maximal chain $\left\{D_{i}\right\}_{1 \leq i \leq m}$ in $\mathcal{D}(P)$ the set $D=\bigcup_{i=1}^{m} D_{i}$ is a $C D$-base in (P, \leq) with $|D|=m$.

Illustration

$$
\left\{\begin{array}{l}
D_{3}=\{a, c\} \\
D_{2}=\{a, b\} \\
D_{1}=\{a\}
\end{array}\right.
$$

A poset and a maximal chain of sets of disjoint elements.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a set of pairwise disjont elements in the poset (P, \leq), then $\downarrow D \cap B$ is also a CD-base in the subposet $(\downarrow D, \leq)$.

Lemma

Lemma

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a set of pairwise disjont elements in the poset (P, \leq), then $\downarrow D \cap B$ is also a CD-base in the subposet $(\downarrow D, \leq)$.

Lemma

If $D_{1} \prec D_{2}$ in $\mathcal{D}(P)$, then $D_{2}=\{a\} \cup\left\{y \in D_{1} \backslash\{0\} \mid y \perp a\right\}$ for some minimal element a of the set
$S=\left\{s \in P \backslash\left(D_{1} \cup\{0\}\right) \mid y \perp s\right.$ or $y<s$ for all $\left.y \in D_{1}\right\}$.
Moreover, $D_{1} \prec\{a\} \cup\left\{y \in D_{1} \backslash\{0\} \mid y \perp a\right\}$ holds for any minimal element a of the set S.

Lemma

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a set of pairwise disjont elements in the poset (P, \leq), then $\downarrow D \cap B$ is also a CD-base in the subposet $(\downarrow D, \leq)$.

Lemma

If $D_{1} \prec D_{2}$ in $\mathcal{D}(P)$, then $D_{2}=\{a\} \cup\left\{y \in D_{1} \backslash\{0\} \mid y \perp a\right\}$ for some minimal element a of the set
$S=\left\{s \in P \backslash\left(D_{1} \cup\{0\}\right) \mid y \perp s\right.$ or $y<s$ for all $\left.y \in D_{1}\right\}$.
Moreover, $D_{1} \prec\{a\} \cup\left\{y \in D_{1} \backslash\{0\} \mid y \perp a\right\}$ holds for any minimal element a of the set S.

Lemma

Assume that B is a CD-base with at least two elements in a finite poset $\mathbb{P}=(P, \leq), M=\max (B)$, and $m \in M$. Then M and $N:=\max (B \backslash\{m\})$ are sets of pairwise disjoint elements. Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Corollary

Let $\mathbb{P}=(P, \leq)$ be a finite poset.
The CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Corollary

Let $\mathbb{P}=(P, \leq)$ be a finite poset.
The CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P}, and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C}=\left\{D_{i}\right\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

Corollary

Let $\mathbb{P}=(P, \leq)$ be a finite poset.
The CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P}, and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C}=\left\{D_{i}\right\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

$\mathcal{D}(P)$ is graded

The poset \mathbb{P} is called graded, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P, \leq)$ be a finite poset with 0 . Then the following conditions are equivalent:
(i) The CD-bases of \mathbb{P} have the same number of elements,

A set of pairwise disjoint elements D of a poset (P, \leq) is called complete, if there is no $p \in P \backslash D$ such that $D \cup\{p\}$ is also a disjoint system.

$\mathcal{D}(P)$ is graded

The poset \mathbb{P} is called graded, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P, \leq)$ be a finite poset with 0 . Then the following conditions are equivalent:
(i) The CD-bases of \mathbb{P} have the same number of elements,
(ii) $\mathcal{D}(P)$ is graded.

A set of pairwise disjoint elements D of a poset (P, \leq) is called complete, if there is no $p \in P \backslash D$ such that $D \cup\{p\}$ is also a disjoint system.

$\mathcal{D}(P)$ is graded

The poset \mathbb{P} is called graded, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P, \leq)$ be a finite poset with 0 . Then the following conditions are equivalent:
(i) The CD-bases of \mathbb{P} have the same number of elements,
(ii) $\mathcal{D}(P)$ is graded.

A set of pairwise disjoint elements D of a poset (P, \leq) is called complete, if there is no $p \in P \backslash D$ such that $D \cup\{p\}$ is also a disjoint system.
(iii) $\mathcal{D C}(P)$ is graded.

If \mathbb{P} is a finite poset with 0

If all the principal ideals (a] of \mathbb{P} are weakly 0 -modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P}.

If \mathbb{P} is a finite poset with 0

If all the principal ideals (a] of \mathbb{P} are weakly 0 -modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P}.

If \mathbb{P} has weakly 0 -modular principal ideals and $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains $|A(P)|+I(P)$ elements.

CD-bases in semilattices and lattices / 1

Lemma

Let \mathbb{P} be a poset with 0 and $D_{k}, k \in K(K \neq \emptyset)$ sets of pairwise disjoint elements in \mathbb{P}. If the meet $\bigwedge a^{(k)}$ of any system of elements $a^{(k)} \in D_{k}$, $k \in K$
$k \in K$ exist in \mathbb{P}, then $\bigwedge_{k \in K} D_{k}$ also exists in $\mathcal{D}(P)$.

CD-bases in semilattices and lattices / 2

A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a distributive pair, if $(c \wedge a) \vee(c \wedge b)$ exists in \mathbb{P} for any $c \in P$, and $c \wedge(a \vee b)=(c \wedge a) \vee(c \wedge b)$.
We say that (P, \wedge) is dp-distributive, if any $a, b \in P$ with $a \wedge b=0$ is a distributive pair.

Theorem

(i) If $\mathbb{P}=(P, \wedge)$ is a semilattice with 0 , then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_{1} \cup D_{2}$ is a CD-independent set for some $D_{1}, D_{2} \in \mathcal{D}(P)$, then D_{1}, D_{2} is a distributive pair in $\mathcal{D}(P)$.

CD-bases in semilattices and lattices / 2

A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a distributive pair, if $(c \wedge a) \vee(c \wedge b)$ exists in \mathbb{P} for any $c \in P$, and $c \wedge(a \vee b)=(c \wedge a) \vee(c \wedge b)$.
We say that (P, \wedge) is dp-distributive, if any $a, b \in P$ with $a \wedge b=0$ is a distributive pair.

Theorem

(i) If $\mathbb{P}=(P, \wedge)$ is a semilattice with 0 , then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_{1} \cup D_{2}$ is a CD-independent set for some $D_{1}, D_{2} \in \mathcal{D}(P)$, then D_{1}, D_{2} is a distributive pair in $\mathcal{D}(P)$.
(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a dp-distributive complete lattice.

CD-bases in semilattices and lattices / 3

Let (P, \leq) be a poset and $A \subseteq P .(A, \leq)$ is called a sublattice of (P, \leq), if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq). If the relation $x \prec y$ in (A, \leq) for some $x, y \in A$ implies $x \prec y$ in the poset (P, \leq), then we say that (A, \leq) is a cover-preserving subposet of (P, \leq).

Theorem

Let $\mathbb{P}=(P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leqslant)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leqslant)$. If \mathbb{P} is a \wedge-semilattice, then for any $D \in \mathcal{D}(P)$ and $D_{1}, D_{2} \in \mathcal{D}(B)$ we have $\left(D_{1} \vee D_{2}\right) \wedge D=\left(D_{1} \wedge D\right) \vee\left(D_{2} \wedge D\right)$ in $(\mathcal{D}(P), \leqslant)$.

CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0 -distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ and $d_{1} \vee d_{2}=1$.

Theorem

CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0 -distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ and $d_{1} \vee d_{2}=1$.

Theorem

Let L be a finite, weakly 0 -distributive lattice. Then the following are equivalent:

CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0 -distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ and $d_{1} \vee d_{2}=1$.

Theorem

Let L be a finite, weakly 0 -distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a)+I(b)=I(a \vee b)$ holds for all $a, b \in L$ with $a \wedge b=0$.

CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0 -distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ and $d_{1} \vee d_{2}=1$.

Theorem

Let L be a finite, weakly 0 -distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a)+I(b)=I(a \vee b)$ holds for all $a, b \in L$ with $a \wedge b=0$.
- (ii) L is 0 -modular, and the CD-bases of L have the same number of elements.

