Some enumerative and lattice theoretic aspects of islands (and lakes) and related investigations

Eszter K. Horváth, Szeged

Co-authors: János Barát, Péter Hajnal, Branimir Šešelja, Andreja Tepavčević, Sándor Radeleczki

Novi Sad, 2015, June 5 .

Islands? Alcatraz

Lakes? (Aral sea, satellit photo)

Lakes?

Eszter K. Horváth, Szeged

Definition

We call a rectangle/triangle a rectangular/triangular island, if for the cell t, if we denote its height by a_t , then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}} < min\{a_t : t \in T\}$ holds.

1	2	1	2	1	
1	5	7	2	2	
1	7	5	1	1	
2	5	7	2	2	
1	2	1	1	2	
1	1	1	1	1	$2 \sqrt{2} \sqrt{2} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{2}$

Grid, neighbourhood

The number of rectangular islands

We put heights into the cells. How many rectangular islands do we have?

Water level: 0,5 Number of rectangular islands: 1

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

Water level: 1,5 Number of rectangular islands: 2

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

Water level: 2,5 Number of rectangular islands: 2

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

The number of rectangular islands

Altogether: 1 + 2 + 2 = 5 rectangular islands.

Could we put more rectangular islands onto this grid? (With other heights?)

Eszter K. Horváth, Szeged

The number of rectangular islands

Yes, we could put more rectangular islands, here we have 1+2+4+2=9 rectangular islands.

3	1	4	3	3	1	
2	1	2	2	2	1	
3	1	3	4	3	1	

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

15 / 51

HOWEWER, WE CANNOT PUT MORE RECTANGULAR ISLANDS !!!

Eszter K. Horváth, Szeged

The maximum number of rectangular islands on the $m \times n$ size grid (Gábor Czédli , Szeged, 2007. june 17.)

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$

History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$

Proving $f(m, n) = \left[\frac{mn+m+n-1}{2}\right]$ THERE EXISTS:

By induction on the number of the cells: $f(m, n) \ge \left[\frac{mn+m+n-1}{2}\right]$.

If m = 1, then $\left[\frac{n+1+n-1}{2}\right] = n$, we put the numbers 1, 2, 3, ..., n in the cells and we will have exactly n islands.

If
$$n = 1$$
, then $\left[\frac{m+m+1-1}{2}\right] = m$.

If m = n = 2:

Proving
$$f(m, n) = \left[\frac{mn+m+n-1}{2}\right]$$

THERE EXISTS:

Let m, n > 2.

$$f(m,n) \ge f(m-2,n) + f(1,n) + 1 \ge \left[\frac{(m-2)n + (m-2) + n - 1}{2}\right] + \left[\frac{n+1+n-1}{2}\right] + 1 = \left[\frac{(m-2)n + (m-2) + n - 1 + 2n}{2}\right] + 1 = \left[\frac{mn+m+n-1}{2}\right].$$

LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

TREE-GRAPH METHOD

Eszter K. Horváth, Szeged

22 / 51

TREE-GRAPH METHOD

 R_2'

D_4'

TREE-GRAPH METHOD

Lemma 2 (folklore)

Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \le 2\ell - 1$.

We have $4s + 2d \le (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

$$|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n + 1)(m + 1) - 1.$$

TREE-GRAPH METHOD

Lemma 2 (folklore)

Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \le 2\ell - 1$.

We have $4s + 2d \le (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

$$|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n + 1)(m + 1) - 1.$$

TREE-GRAPH METHOD

Lemma 2 (folklore)

Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \le 2\ell - 1$.

We have $4s + 2d \le (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

$$|V|-d \leq (2\ell-1)-d = 2s+d-1 \leq rac{1}{2}(n+1)(m+1)-1.$$

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Now

$$f(m,n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$

$$=1+\sum_{R\in \max\mathcal{I}}\left(\left[\frac{\mu(u,v)}{2}\right]-1\right)\leq 1-|\max\mathcal{I}|+\left[\frac{\mu(\mathbf{C})}{2}\right].$$

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Now

$$f(m,n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$

$$=1+\sum_{R\in max\mathcal{I}}\left(\left[\frac{\mu(u,v)}{2}\right]-1\right)\leq 1-|max\mathcal{I}|+\left[\frac{\mu(C)}{2}\right].$$

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Now

$$f(m,n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$
$$= 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{\mu(u,v)}{2} \right] - 1 \right) \le 1 - \left[\max\mathcal{I} \right] + \left[\frac{\mu(C)}{2} \right].$$

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Now

$$f(m,n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$
$$= 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{\mu(u,v)}{2} \right] - 1 \right) \le 1 - |max\mathcal{I}| + \left[\frac{\mu(C)}{2} \right].$$

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_2(m, n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m,n) = f(m,n) = [(mn + m + n - 1)/2].
Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_2(m, n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m,n) = f(m,n) = [(mn + m + n - 1)/2]. Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_2(m, n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m,n) = f(m,n) = [(mn + m + n - 1)/2]. Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_2(m, n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m, n) = f(m, n) = [(mn + m + n - 1)/2].

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

Joint work with Branimir Šešelja and Andreja Tepavčević

A height function h is a mapping from $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ to \mathbb{N} , $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}$.

The co-domain of the height function is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

For every $p \in \mathbb{N}$, the *cut* of the height function, i.e. the *p*-*cut* of *h* is an ordinary relation h_p on $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ defined by

 $(x, y) \in h_p$ if and only if $h(x, y) \ge p$.

Joint work with Branimir Šešelja and Andreja Tepavčević

A height function h is a mapping from $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ to \mathbb{N} , $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}$.

The co-domain of the height function is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

For every $p \in \mathbb{N}$, the *cut of the height function*, i.e. the *p*-*cut* of *h* is an ordinary relation h_p on $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ defined by

 $(x,y) \in h_p$ if and only if $h(x,y) \ge p$.

We say that two rectangles $\{\alpha, ..., \beta\} \times \{\gamma, ..., \delta\}$ and $\{\alpha_1, ..., \beta_1\} \times \{\gamma_1, ..., \delta_1\}$ are *distant* if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a - c)^2 + (b - d)^2 \ge 4$.

The height function *h* is called *rectangular* if for every $p \in \mathbb{N}$, every nonempty *p*-cut of *h* is a union of distant rectangles.

We say that two rectangles $\{\alpha, ..., \beta\} \times \{\gamma, ..., \delta\}$ and $\{\alpha_1, ..., \beta_1\} \times \{\gamma_1, ..., \delta_1\}$ are *distant* if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a - c)^2 + (b - d)^2 \ge 4$.

The height function *h* is called *rectangular* if for every $p \in \mathbb{N}$, every nonempty *p*-cut of *h* is a union of distant rectangles.

Rectangular height functions/3

$$\begin{split} & \Gamma_1 = \{1,2,3,4,5\} \times \{1,2,3\}, \\ & \Gamma_2 = \{1,2,3,4,5\} \times \{1,2,3\} \setminus \{(3,1)\}, \\ & \Gamma_3 = \{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\ & \Gamma_4 = \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text{ and } \\ & \Gamma_5 = \{(1,3),(2,3),(4,3),(5,3)\} \end{split}$$

Rectangular height functions/3

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

$$\begin{split} & \Gamma_1 = \{1,2,3,4,5\} \times \{1,2,3\}, \\ & \Gamma_2 = \{1,2,3,4,5\} \times \{1,2,3\} \setminus \{(3,1)\}, \\ & \Gamma_3 = \{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\ & \Gamma_4 = \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text{ and } \\ & \Gamma_5 = \{(1,3),(2,3),(4,3),(5,3)\} \end{split}$$

Rectangular height functions/5

Theorem 2

For every height function $h: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, there is a rectangular height function $h^*: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, such that $\mathcal{I}_{rect}(h) = \mathcal{I}_{rect}(h^*)$.

Theorem 4

For every rectangular height function

$$h^*: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N},$$

there is a rectangular height function

$$h^{**}: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N},$$

such that $\mathcal{I}_{rect}(h^*) = \mathcal{I}_{rect}(h^{**})$ and in h^{**} every island appears exactly in one cut.

If a rectangular height function h^{**} has the property that each island appears exactly in one cut, then we call it *standard rectangular height function*.

Theorem 4

For every rectangular height function

$$h^*: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N},$$

there is a rectangular height function

$$h^{**}: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N},$$

such that $\mathcal{I}_{rect}(h^*) = \mathcal{I}_{rect}(h^{**})$ and in h^{**} every island appears exactly in one cut.

If a rectangular height function h^{**} has the property that each island appears exactly in one cut, then we call it *standard rectangular height function*.

We denote by $\Lambda_{max}(m, n)$ the maximum number of different nonempty *p*-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Theorem 5 $\Lambda_{max}(m,n) = m + n - 1$.

We denote by $\Lambda_{max}(m, n)$ the maximum number of different nonempty *p*-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Theorem 5 $\Lambda_{max}(m, n) = m + n - 1$.

The maximum number of different nonempty *p*-cuts of a standard rectangular height function is equal to the minimum cardinality of maximal systems of islands.

Lemma 1

If $m \ge 3$ and $n \ge 3$ and a height function $h : \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ has maximally many islands, then it has exactly two maximal islands.

Lemma 2

If $m \ge 3$ or $n \ge 3$, then for any odd number t = 2k + 1 with $1 \le t \le max\{m-2, n-2\}$, there is a standard rectangular height function $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ having the maximum number of islands f(m,n), such that one of the side-lengths of one of the maximal islands is equal to t.

(Remark: The statement is not true for even side-lengths, one can construct counterexample easily!)

Lemma 1

If $m \ge 3$ and $n \ge 3$ and a height function $h : \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ has maximally many islands, then it has exactly two maximal islands.

Lemma 2

If $m \ge 3$ or $n \ge 3$, then for any odd number t = 2k + 1 with $1 \le t \le max\{m-2, n-2\}$, there is a standard rectangular height function $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ having the maximum number of islands f(m,n), such that one of the side-lengths of one of the maximal islands is equal to t.

(Remark: The statement is not true for even side-lengths, one can construct counterexample easily!)

We denote by $\Lambda_h^{cz}(m, n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$f(m,n) = \left\lfloor \frac{mn+m+n-1}{2} \right\rfloor$$

Theorem 6

Let $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ be a standard rectangular height function having maximally many islands f(m, n). Then, $\Lambda_h^{cz}(m, n) \ge \lceil \log_2(m+1) \rceil + \lceil \log_2(n+1) \rceil - 1.$ We denote by $\Lambda_h^{cz}(m, n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$f(m,n) = \left\lfloor \frac{mn+m+n-1}{2} \right\rfloor$$

Theorem 6

Let $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ be a standard rectangular height function having maximally many islands f(m, n). Then, $\Lambda_h^{cz}(m, n) \ge \lceil log_2(m+1) \rceil + \lceil log_2(n+1) \rceil - 1.$ Let $\mathbb{P} = (P, \leq)$ be a partially ordered set, and let $a, b \in P$. The elements a and b are called *disjoint* and we write $a \perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a, b\} = 0$, or \mathbb{P} is without 0 and the elements *a* and *b* have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \leq y$ or $y \leq x$, or $x \perp y$ holds. Maximal CD-independent sets (with respect to \subseteq) are called *CD-bases* in \mathbb{P} .

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Definition

A nonempty set D of nonzero elements of P is called a *a set of pairwise disjoint elements* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$; if \mathbb{P} has 0-element, then $\{0\}$ is considered to be a set of pairwise disjont elements, too.

Remark

D is a set of pairwise disjoint elemets, if and only if it is a CD-independent antichain in $\mathbb P.$

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if $\downarrow A_1 \subseteq \downarrow A_2$.

Remarks

• \leq is a partial order

• $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$. (A

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if $\downarrow A_1 \subseteq \downarrow A_2$.

Remarks

 $ullet \leqslant$ is a partial order

• $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$. (A

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if $\downarrow A_1 \subseteq \downarrow A_2$.

Remarks

- \leq is a partial order
- $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$. (A

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if $\downarrow A_1 \subseteq \downarrow A_2$.

Remarks

- \leq is a partial order
- $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \le y$. (A)

Let $\mathcal{D}(P)$ denote the set of all sets of pairwise disjont elements of P.

As sets of pairwise disjont elements of \mathbb{P} are also antichains, restricting \leq to $\mathcal{D}(P)$, we obtain a poset $(\mathcal{D}(P), \leq)$.

The connection between the poset $(\mathcal{D}(P), \leq)$ and the CD-bases of the poset *P* is shown by the next theorem:

Let B be a CD-base of a finite poset (P, \leq) , and let |B| = n.

Then there exists a maximal chain $\{D_i\}_{1 \le i \le n}$ in $\mathcal{D}(P)$ such that $B = \bigcup_{i=1}^{n} D_i.$

Moreover, for any maximal chain $\{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^m D_i$ is a CD-base in (P, \le) with |D| = m. Let B be a CD-base of a finite poset (P, \leq) , and let |B| = n.

Then there exists a maximal chain $\{D_i\}_{1 \le i \le n}$ in $\mathcal{D}(P)$ such that $B = \bigcup_{i=1}^{n} D_i$.

Moreover, for any maximal chain $\{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^{m} D_i$ is a CD-base in (P, \le) with |D| = m.

A poset and a maximal chain of sets of disjoint elements.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a set of pairwise disjont elements in the poset (P, \leq) , then $\downarrow D \cap B$ is also a CD-base in the subposet $(\downarrow D, \leq)$.

Lemma

If $D_1 \prec D_2$ in $\mathcal{D}(P)$, then $D_2 = \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ for some minimal element a of the set $S = \{s \in P \setminus (D_1 \cup \{0\}) \mid y \perp s \text{ or } y < s \text{ for all } y \in D_1\}.$ Moreover, $D_1 \prec \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ holds for any minimal element a of the set S.

Lemma

Assume that B is a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), and m \in M$. Then M and $N := \max(B \setminus \{m\})$ are sets of pairwise disjoint elements. Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a set of pairwise disjont elements in the poset (P, \leq) , then $\downarrow D \cap B$ is also a CD-base in the subposet $(\downarrow D, \leq)$.

Lemma

If $D_1 \prec D_2$ in $\mathcal{D}(P)$, then $D_2 = \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ for some minimal element a of the set $S = \{s \in P \setminus (D_1 \cup \{0\}) \mid y \perp s \text{ or } y < s \text{ for all } y \in D_1\}.$ Moreover, $D_1 \prec \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ holds for any minimal element a of the set S.

Lemma

Assume that B is a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), and m \in M$. Then M and $N := \max(B \setminus \{m\})$ are sets of pairwise disjoint elements. Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a set of pairwise disjont elements in the poset (P, \leq) , then $\downarrow D \cap B$ is also a CD-base in the subposet $(\downarrow D, \leq)$.

Lemma

If $D_1 \prec D_2$ in $\mathcal{D}(P)$, then $D_2 = \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ for some minimal element a of the set $S = \{s \in P \setminus (D_1 \cup \{0\}) \mid y \perp s \text{ or } y < s \text{ for all } y \in D_1\}.$ Moreover, $D_1 \prec \{a\} \cup \{y \in D_1 \setminus \{0\} \mid y \perp a\}$ holds for any minimal element a of the set S.

Lemma

Assume that *B* is a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq)$, $M = \max(B)$, and $m \in M$. Then *M* and $N := \max(B \setminus \{m\})$ are sets of pairwise disjoint elements. Moreover *M* is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Eszter K. Horváth, Szeged

44 / 51

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

The CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C} = \{D_i\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

The CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C} = \{D_i\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

The CD-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a CD-base of \mathbb{P} , and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C} = \{D_i\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of $\mathbb P$ have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A set of pairwise disjoint elements D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of $\mathbb P$ have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A set of pairwise disjoint elements D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of $\mathbb P$ have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A set of pairwise disjoint elements D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

If all the principal ideals (a] of \mathbb{P} are weakly 0-modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P} .

If \mathbb{P} has weakly 0-modular principal ideals and $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains $|\mathcal{A}(P)| + I(P)$ elements.

If all the principal ideals (a] of \mathbb{P} are weakly 0-modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P} .

If \mathbb{P} has weakly 0-modular principal ideals and $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains $|\mathcal{A}(P)| + l(P)$ elements.

Let \mathbb{P} be a poset with 0 and D_k , $k \in K$ $(K \neq \emptyset)$ sets of pairwise disjoint elements in \mathbb{P} . If the meet $\bigwedge_{k \in K} a^{(k)}$ of any system of elements $a^{(k)} \in D_k$, $k \in Ke$ xist in \mathbb{P} , then $\bigwedge_{k \in K} D_k$ also exists in $\mathcal{D}(P)$. A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair, if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for any $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

(i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.

(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a dp-distributive complete lattice.

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair, if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for any $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

(i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.

(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a dp-distributive complete lattice.

Let (P, \leq) be a poset and $A \subseteq P$. (A, \leq) is called a *sublattice* of (P, \leq) , if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq) . If the relation $x \prec y$ in (A, \leq) for some $x, y \in A$ implies $x \prec y$ in the poset (P, \leq) , then we say that (A, \leq) is a *cover-preserving subposet* of (P, \leq) .

Theorem

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and *B* a CD-base of it. Then $(\mathcal{D}(B), \leq)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leq)$. If \mathbb{P} is a \wedge -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have $(D_1 \vee D_2) \wedge D = (D_1 \wedge D) \vee (D_2 \wedge D)$ in $(\mathcal{D}(P), \leq)$.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

(i) L is graded, and l(a) + l(b) = l(a ∨ b) holds for all a, b ∈ L with a ∧ b = 0.
(ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly $0\mathchar`-distributive lattice. Then the following are equivalent:$

• (i) L is graded, and $l(a) + l(b) = l(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

• (ii) *L* is 0-modular, and the CD-bases of *L* have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly $0\mathchar`-distributive lattice. Then the following are equivalent:$

• (i) L is graded, and $l(a) + l(b) = l(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

• (ii) *L* is 0-modular, and the CD-bases of *L* have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly $0\mathchar`-distributive lattice. Then the following are equivalent:$

- (i) L is graded, and $l(a) + l(b) = l(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.
- (ii) L is 0-modular, and the CD-bases of L have the same number of elements.