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Symmetry group (invariance group)

f : {0, 1}n → {0, 1}, σ ∈ Sn

f σ is defined by f σ(x1, . . . , xn) := f (xσ1, . . . , xσn)

σ is called a symmetry of f , if f σ = f
we denote this by σ ` f

Definition
Let f : {0, 1, . . . , k − 1}n → {0, 1, . . . k − 1}. We say that f is invariant
under the permutation σ ∈ Sn and write σ ` f , if for all
(x1, . . . , xn) ∈ {0, 1, . . . , k − 1}n, f (x1, . . . , xn) = f (xσ1, . . . , xσn).
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Representability

All subgroup G ≤ Sn is representable as the invariance group of a n-ary
function on a k-element set if and only if k ≥ n.
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Threshold functions

A Boolean function is called a threshold function if there exist real
numbers w1, ...,wn, t such that

f (x1, . . ., xn) = 1 iff

n∑
i=1

wixi ≥ t.

Theorem (E. K. Horváth, 1994.) The invariance group of threshold
functions is isomorphic to a direct product of symmetric groups.
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Results on symmetry groups

P. Clote and E. Kranakis, Boolean functions, invariance groups, and
parallel complexity. SIAM J. Comput. 20, (1991), 553–590. 2327,

A. Kisielewicz, Symmetry groups of Boolean functions and
constructions of permutation groups. J. of Algebra 1998, (1998), 379–403.

B. Wnuk, On symmetry groups of algebraic operations. (Polish). Zeszyty
Nauk. Wy. Szkoy Ped. w Opolu Mat., 21 (1980), Algebra, Dydakt. Mat.,
Geom., Zastos. Mat.2327.
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Galois connection

The correspondence ` induces a Galois connection between permutations
and Boolean functions.

For F ⊆ O
(n)
k and G ⊆ Sn let

F` := {σ ∈ Sn | ∀f ∈ F : σ ` f }

G` := {f ∈ O
(n)
k | ∀σ ∈ G : σ ` f }

F := (F`)`

G := (G`)`
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Galois closed groups

Lemma
The permutation group G is the symmetry group of a (single) k-valued
Boolean function for some natural number k if and only if it is Galois
closed.

Sketch of Proof
Let fi (a) = 1 if and only if f (a) = i for i ∈ {1, . . . , k} and a ∈ {0, 1}n.
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Characterization of the closures

Theorem [K. Kearnes] Let G ≤ Sn. Then

G
(k)

=
⋂

a∈{0,1,...,k−1}n
(Sn)a · G ,

where (Sn)a := {σ ∈ Sn | aσ = a} is the stabilizer for
a = (a1, . . . , an) ∈ {0, 1, . . . , k − 1}n.
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n=7, k=2
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n=7
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k=n-1
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k=n-1

Proposition For k = n − 1 each subgroup of Sn except An is k-closed.

Proof

Let a(i ,j) = (a1, . . . , an) be an n-tuple from {0, 1, . . . , k − 1}n such that
ar = as ⇐⇒ {r , s} = {i , j} or r = s.

By G
(k)

=
⋂

a∈{0,1,...,k−1}n(Sn)a · G

we have G ⊆ G
(k) ⊆ {id, (i j)} · G .

Now, let G ≤ Sn be a subgroup which is not k-closed.

Then G
(k)

contains at least one element of the form (i j) · σ with σ ∈ G ,

and therefore G
(k)

contains (i j) · σ · σ−1 = (i j). (For all i and j .)
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k=n-1

Since i , j were chosen arbitrarily, G
(k)

contains all transpositions, i.e.

G
(k)

= Sn.

Thus we have G ≤ G
(k) ⊆ {id, (i j)} · G ⊆ Sn = G

(k)
, i.e.,

Sn = {id, (i j)} · G , in particular G is of index 2 in Sn.

The alternating subgroup An is the only subgroup of Sn satisfying this.
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k=n-2

BUT
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k=n-2

If G has a common fixed point, say i ∈ {1, . . . , n}, i.e. ig = i for each
g ∈ G , then G can be considered as a subgroup G ↓ of the full symmetric
group S{1,...,n}\{i} on base set {1, . . . , n} \ {i}.
Conversely, each H ≤ S{1,...,n}\{i} can be embedded canonically into

Sn = S{1,...,n}, yielding H↑ := {h↑ | h ∈ H} with

ih
↑

:= i and jh
↑

:= jh for j ∈ {1, . . . , n} \ {i}.

Clearly, this is one-to-one: (G ↓)↑ = G , (H↑)
↓

= H (for each fixed i).

In particular, we consider the alternating group A in S{1,...,n}\{i} and shall

use the notation An−1,(i) for the subgroup A↑ of Sn.
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k=n-2

Lemma
For G = H↑ ≤ Sn and the corresponding G ↓ = H ≤ S{1,...,n}\{i} we have

G
(k)

= (H
(k)

)
↑
.

Corollary
Let k = n− 2 and let G ≤ Sn be a subgroup with a common fixed point
i , i.e., G = H↑ for some H ≤ S{1,...,n}\{i}. Then G is not k-closed if and
only if G = An−1,(i). In this case we have

An−1,(i)
(k)

= S↑{1,...,n}\{i}.
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k=n-2

Theorem
Let 2 ≤ k = n − 2. Then the only non-k-closed subgroup of Sn are An

and An−1,(1), . . . ,An−1,(n).

Proof

Let i , j , s, t be distinct elements of {1, . . . , n} and let aij ;st be an n-tuple
(a1, . . . , an) ∈ {0, 1, . . . , k − 1}n such ai = aj 6= as = at and all other
components have different values.

Analogously, let aijs denote an n-tuple such that ai = aj = as and all
other components are different.

Thus in both cases {a1, . . . , an} = {1, . . . , n − 2}.
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k=n-2

The stabilizers are the following 4- and 6-element groups:

Γij ;st := (Sn)aij ;st = {e, (ij), (st), (ij)(st)},

Γijs := (Sn)aijs = {e, (ij), (is), (js), (ijs), (isj)} = S{i ,j ,s}.

Note that both groups are generated by any two of its elements 6= e.
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k=n-2

If π ∈ G
(k) \ G ,

then from G
(k) ⊆ Γij ;st · G we have that there is a γ ∈ Γij ;st and σ ∈ G

with π = γσ,

thus γ−1π ∈ G and γ = πσ−1 ∈ G
(k) \ G ,

more concretely we have

(ij) ∈ G
(k) \ G and (ij)π ∈ G

(st) ∈ G
(k) \ G and (st)π ∈ G

(ij)(st) ∈ G
(k) \ G and (ij)(st)π ∈ G .
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k=n-2

Analogously, one gets from G
(k) ⊆ Γijs · G :

(ij) ∈ G
(k) \ G and (ij)π ∈ G

or (is) ∈ G
(k) \ G and (is)π ∈ G

or (js) ∈ G
(k) \ G and (js)π ∈ G

or (ijs) ∈ G
(k) \ G and (ijs)π ∈ G

or (isj) ∈ G
(k) \ G and (isj)π ∈ G .
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k=n-2

Claim 1: G contains no transpositions.

Claim 2: ∀ij ; st : (ij)(st) /∈ G
(k) \ G (where {i , j} ∩ {s, t} = ∅ is assumed).

Claim 3: G = An.
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