On symmetry groups of Boolean and other functions

Eszter K. Horváth, Szeged

Co-authors: Géza Makay, Reinhard Pöschel

Novi Sad, 2012, March 16.

Symmetry group (invariance group)

$f:\{0,1\}^{n} \rightarrow\{0,1\}, \sigma \in S_{n}$
f^{σ} is defined by $f^{\sigma}\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{\sigma 1}, \ldots, x_{\sigma n}\right)$
σ is called a symmetry of f, if $f^{\sigma}=f$
we denote this by $\sigma \vdash f$

Definition

Let $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{0,1, \ldots k-1\}$. We say that f is invariant under the permutation $\sigma \in S_{n}$ and write $\sigma \vdash f$, if for all $\left(x_{1}, \ldots, x_{n}\right) \in\{0,1, \ldots, k-1\}^{n}, f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma 1}, \ldots, x_{\sigma n}\right)$.

Representability

All subgroup $G \leq S_{n}$ is representable as the invariance group of a n-ary function on a k-element set if and only if $k \geq n$.

Threshold functions

A Boolean function is called a threshold function if there exist real numbers w_{1}, \ldots, w_{n}, t such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=1 \quad \text { iff } \quad \sum_{i=1}^{n} w_{i} x_{i} \geq t
$$

Theorem (E. K. Horváth, 1994.) The invariance group of threshold functions is isomorphic to a direct product of symmetric groups.

Results on symmetry groups

P. Clote and E. Kranakis, Boolean functions, invariance groups, and parallel complexity. SIAM J. Comput. 20, (1991), 553-590. 2327,
A. Kisielewicz, Symmetry groups of Boolean functions and constructions of permutation groups. J. of Algebra 1998, (1998), 379-403.
B. Wnuk, On symmetry groups of algebraic operations. (Polish). Zeszyty Nauk. Wy. Szkoy Ped. w Opolu Mat., 21 (1980), Algebra, Dydakt. Mat., Geom., Zastos. Mat. 2327.

Galois connection

The correspondence \vdash induces a Galois connection between permutations and Boolean functions.

For $F \subseteq O_{k}^{(n)}$ and $G \subseteq S_{n}$ let

$$
\begin{gathered}
F^{\vdash}:=\left\{\sigma \in S_{n} \mid \forall f \in F: \sigma \vdash f\right\} \\
G^{\vdash}:=\left\{f \in O_{k}^{(n)} \mid \forall \sigma \in G: \sigma \vdash f\right\} \\
\bar{F}:=\left(F^{\vdash}\right)^{\vdash} \\
\bar{G}:=\left(G^{\vdash}\right)^{\vdash}
\end{gathered}
$$

Galois closed groups

Lemma

The permutation group G is the symmetry group of a (single) k-valued Boolean function for some natural number k if and only if it is Galois closed.

Sketch of Proof
Let $f_{i}(a)=1$ if and only if $f(a)=i$ for $i \in\{1, \ldots, k\}$ and $a \in\{0,1\}^{n}$.

Characterization of the closures

Theorem [K. Kearnes] Let $G \leq S_{n}$. Then

$$
\bar{G}^{(k)}=\bigcap_{a \in\{0,1, \ldots, k-1\}^{n}}\left(S_{n}\right)_{a} \cdot G,
$$

where $\left(S_{n}\right)_{a}:=\left\{\sigma \in S_{n} \mid a^{\sigma}=a\right\}$ is the stabilizer for $a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1, \ldots, k-1\}^{n}$.

$\mathrm{n}=7, \mathrm{k}=2$

$\mathrm{n}=7$

$\mathrm{k}=\mathrm{n}-1$

$\mathrm{k}=\mathrm{n}-1$

Proposition For $k=n-1$ each subgroup of S_{n} except A_{n} is k-closed.
Proof
Let $a_{(i, j)}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple from $\{0,1, \ldots, k-1\}^{n}$ such that $a_{r}=a_{s} \Longleftrightarrow\{r, s\}=\{i, j\}$ or $r=s$.

By $\bar{G}^{(k)}=\bigcap_{a \in\{0,1, \ldots, k-1\}^{n}}\left(S_{n}\right)_{a} \cdot G$
we have $G \subseteq \bar{G}^{(k)} \subseteq\{\mathbf{i d},(i j)\} \cdot G$.
Now, let $G \leq S_{n}$ be a subgroup which is not k-closed.
Then $\bar{G}^{(k)}$ contains at least one element of the form $(i j) \cdot \sigma$ with $\sigma \in G$, and therefore $\bar{G}^{(k)}$ contains $(i j) \cdot \sigma \cdot \sigma^{-1}=(i j)$. (For all i and j.)

$$
\mathrm{k}=\mathrm{n}-1
$$

Since i, j were chosen arbitrarily, $\bar{G}^{(k)}$ contains all transpositions, i.e. $\bar{G}^{(k)}=S_{n}$.

Thus we have $G \leq \bar{G}^{(k)} \subseteq\{\mathbf{i d},(i j)\} \cdot G \subseteq S_{n}=\bar{G}^{(k)}$, i.e., $S_{n}=\{\mathbf{i d},(i j)\} \cdot G$, in particular G is of index 2 in S_{n}.

The alternating subgroup A_{n} is the only subgroup of S_{n} satisfying this.

$\mathrm{k}=\mathrm{n}-2$

$\mathrm{k}=\mathrm{n}-2$

If G has a common fixed point, say $i \in\{1, \ldots, n\}$, i.e. $i^{g}=i$ for each $g \in G$, then G can be considered as a subgroup G^{\downarrow} of the full symmetric group $S_{\{1, \ldots, n\} \backslash\{i\}}$ on base set $\{1, \ldots, n\} \backslash\{i\}$.
Conversely, each $H \leq S_{\{1, \ldots, n\} \backslash\{i\}}$ can be embedded canonically into $S_{n}=S_{\{1, \ldots, n\}}$, yielding $H^{\uparrow}:=\left\{h^{\uparrow} \mid h \in H\right\}$ with $i^{h \uparrow}:=i$ and $j^{h^{\uparrow}}:=j^{h}$ for $j \in\{1, \ldots, n\} \backslash\{i\}$.

Clearly, this is one-to-one: $\left(G^{\downarrow}\right)^{\uparrow}=G,\left(H^{\uparrow}\right)^{\downarrow}=H$ (for each fixed i).
In particular, we consider the alternating group A in $S_{\{1, \ldots, n\} \backslash\{i\}}$ and shall use the notation $A_{n-1,(i)}$ for the subgroup A^{\uparrow} of S_{n}.

$k=n-2$

Lemma

For $G=H^{\uparrow} \leq S_{n}$ and the corresponding $G^{\downarrow}=H \leq S_{\{1, \ldots, n\} \backslash\{i\}}$ we have

$$
\bar{G}^{(k)}=\left(\bar{H}^{(k)}\right)^{\uparrow}
$$

Corollary

Let $k=n-2$ and let $G \leq S_{n}$ be a subgroup with a common fixed point i, i.e., $G=H^{\uparrow}$ for some $H \leq S_{\{1, \ldots, n\} \backslash\{i\}}$. Then G is not k-closed if and only if $G=A_{n-1,(i)}$. In this case we have

$$
{\overline{A_{n-1,(i)}}}^{(k)}=S^{\uparrow}{ }_{\{1, \ldots, n\} \backslash\{i\}} .
$$

$\mathrm{k}=\mathrm{n}-2$

Theorem

Let $2 \leq k=n-2$. Then the only non- k-closed subgroup of S_{n} are A_{n} and $A_{n-1,(1)}, \ldots, A_{n-1,(n)}$.

Proof

Let i, j, s, t be distinct elements of $\{1, \ldots, n\}$ and let $a_{i j} ; s t$ be an n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in\{0,1, \ldots, k-1\}^{n}$ such $a_{i}=a_{j} \neq a_{s}=a_{t}$ and all other components have different values.

Analogously, let $a_{i j s}$ denote an n-tuple such that $a_{i}=a_{j}=a_{s}$ and all other components are different.

Thus in both cases $\left\{a_{1}, \ldots, a_{n}\right\}=\{1, \ldots, n-2\}$.

$\mathrm{k}=\mathrm{n}-2$

The stabilizers are the following 4- and 6-element groups:

$$
\begin{gathered}
\Gamma_{i j ; s t}:=\left(S_{n}\right)_{a_{i j ; s t}}=\{e,(i j),(s t),(i j)(s t)\} \\
\Gamma_{i j s}:=\left(S_{n}\right)_{a_{i j s}}=\{e,(i j),(i s),(j s),(i j s),(i s j)\}=S_{\{i, j, s\}} .
\end{gathered}
$$

Note that both groups are generated by any two of its elements $\neq e$.

$k=n-2$

If $\pi \in \bar{G}^{(k)} \backslash G$,
then from $\bar{G}^{(k)} \subseteq \Gamma_{i j ; s t} \cdot G$ we have that there is a $\gamma \in \Gamma_{i j ; s t}$ and $\sigma \in G$ with $\pi=\gamma \sigma$, thus $\gamma^{-1} \pi \in G$ and $\gamma=\pi \sigma^{-1} \in \bar{G}^{(k)} \backslash G$,
more concretely we have

$$
\begin{gathered}
(i j) \in \bar{G}^{(k)} \backslash G \text { and }(i j) \pi \in G \\
(s t) \in \bar{G}^{(k)} \backslash G \text { and }(s t) \pi \in G \\
(i j)(s t)
\end{gathered} \in \bar{G}^{(k)} \backslash G \text { and }(i j)(s t) \pi \in G . ~ \$
$$

$k=n-2$

Analogously, one gets from $\bar{G}^{(k)} \subseteq \Gamma_{i j s} \cdot G$:

$$
\begin{aligned}
& \quad(i j) \in \bar{G}^{(k)} \backslash G \text { and }(i j) \pi \in G \\
& \text { or }(i s) \in \bar{G}^{(k)} \backslash G \text { and }(i s) \pi \in G \\
& \text { or }(j s) \in \bar{G}^{(k)} \backslash G \text { and }(j s) \pi \in G \\
& \text { or }(i j s) \in \bar{G}^{(k)} \backslash G \text { and }(i j s) \pi \in G \\
& \text { or }(i s j) \in \bar{G}^{(k)} \backslash G \text { and }(i s j) \pi \in G .
\end{aligned}
$$

$k=n-2$

Claim 1: G contains no transpositions.
Claim 2: $\forall i j ; s t:(i j)(s t) \notin \bar{G}^{(k)} \backslash G$ (where $\{i, j\} \cap\{s, t\}=\emptyset$ is assumed).
Claim 3: $G=A_{n}$.

