CD-independent subsets

Sándor Radeleczki

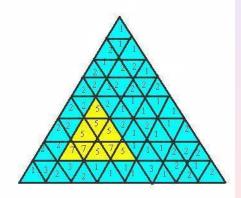
Eszter K. Horváth

2010 July 5, Novi Sad

Island definition

We call a rectangle/triangle an *island*, if for the cell t, if we denote its height by a_t , then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}} < min\{a_t : t \in T\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1



Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

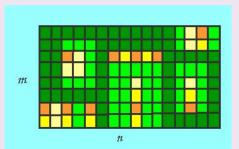
History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$



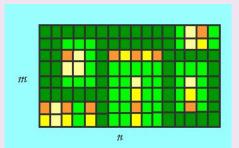
History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$

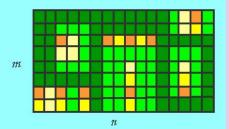


Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n)=[\frac{mn+m+n-1}{2}].$$



LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

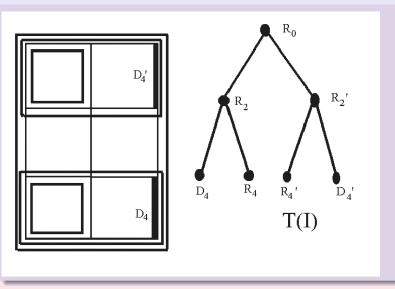
Any two weak bases of a finite distributive lattice have the same number of elements.

TREE-GRAPH METHOD (Barát, Hajnal, Horváth)



6 / 26

TREE-GRAPH METHOD



TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let *T* be a binary tree with *l* leaves. Then the number of vertices of *T* depends only on *l*, moreover |*V*| = 2*l* − 1.
(ii) Let *T* be a rooted tree such that any non-leaf node has at least 2 sons. Let *l* be the number of leaves in *T*. Then |*V*| ≤ 2*l* − 1.

We have $4s + 2d \leq (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

 $|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n+1)(m+1) - 1.$

TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ , moreover $|V| = 2\ell - 1$.

(ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \le 2\ell - 1$.

We have $4s + 2d \le (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

 $|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n + 1)(m + 1) - 1.$

TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let *T* be a binary tree with *l* leaves. Then the number of vertices of *T* depends only on *l*, moreover |*V*| = 2*l* − 1.
(ii) Let *T* be a rooted tree such that any non-leaf node has at least 2 sons. Let *l* be the number of leaves in *T*. Then |*V*| ≤ 2*l* − 1.

We have $4s + 2d \le (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

 $|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n + 1)(m + 1) - 1.$

TREE-GRAPH METHOD

Lemma 2 (folklore)

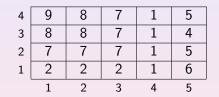
(i) Let *T* be a binary tree with *ℓ* leaves. Then the number of vertices of *T* depends only on *ℓ*, moreover |*V*| = 2*ℓ* - 1.
(ii) Let *T* be a rooted tree such that any non-leaf node has at least 2 sons. Let *ℓ* be the number of leaves in *T*. Then |*V*| ≤ 2*ℓ* - 1.

We have $4s + 2d \le (n+1)(m+1)$. The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

$$|V|-d \leq (2\ell-1)-d = 2s+d-1 \leq rac{1}{2}(n+1)(m+1)-1.$$

Theorem (Šešelja , Tepavčević, Horváth) Let $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}$ be a rectangular height function. Then there is a lattice *L* and an *L*-valued height functon Φ , such that the cuts of Φ are precisely all islands of *h*.

Let $h: \{1,2,3,4,5\} \times \{1,2,3,4\} \rightarrow \mathbb{N}$ be a height function.



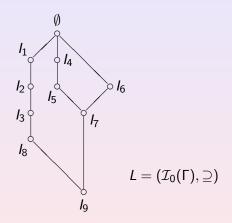
h is a rectangular height function. Its islands are:

```
\begin{split} &I_1 = \{(1,4)\}, \\ &I_2 = \{(1,3), (1,4), (2,3), (2,4)\}, \\ &I_3 = \{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}, \\ &I_4 = \{(5,1)\}, \\ &I_5 = \{(5,1), (5,2)\}, \\ &I_6 = \{(5,4)\}, \\ &I_7 = \{(5,1), (5,2), (5,3), (5,4)\}, \\ &I_8 = \{(1,2), (1,3), (1,4), (2,2), (2,3), \\ &(2,4), (3,2), (3,3), (3,4), (1,1), (2,1), (3,1)\}, \\ &I_9 = \{1,2,3,4,5\} \times \{1,2,3,4\}. \end{split}
```

Its cuts are:

$$\begin{split} h_{10} &= \emptyset \\ h_9 &= I_1 \text{ (one-element island)} \\ h_8 &= I_2 \text{ (four-element square island)} \\ h_7 &= I_3 \text{ (nine-element square island)} \\ h_6 &= I_3 \cup I_4 \text{ (this cut is a disjoint union of two islands)} \\ h_5 &= I_3 \cup I_5 \cup I_6 \text{ (union of three islands)} \\ h_4 &= I_3 \cup I_7 \text{ (union of two islands)} \\ h_2 &= I_7 \cup I_8 \text{ (union of two islands)} \\ h_1 &= \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4\} = I_9 \text{ (the whole domain)} \end{split}$$

Rectangular height functions



Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Any two CD-bases of a finite distributive lattice have the same number of elements.

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint*, and we write $a \perp b$, if $\inf\{a, b\} = 0$, whenever \mathbb{P} has least element $0 \in P$, a and b have no common lowerbound, whenever \mathbb{P} is without 0.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent*, if for any $x, y \in X$ either $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called CD-bases in $\mathbb P.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint*, and we write $a \perp b$, if $\inf\{a, b\} = 0$, whenever \mathbb{P} has least element $0 \in P$, a and b have no common lowerbound, whenever \mathbb{P} is without 0.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent*, if for any $x, y \in X$ either $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called $\mathit{CD-bases}$ in $\mathbb{P}.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint*, and we write $a \perp b$, if $\inf\{a, b\} = 0$, whenever \mathbb{P} has least element $0 \in P$, a and b have no common lowerbound, whenever \mathbb{P} is without 0.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent*, if for any $x, y \in X$ either $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called $\mathit{CD}\text{-}\mathit{bases}$ in $\mathbb{P}.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint*, and we write $a \perp b$, if $\inf\{a, b\} = 0$, whenever \mathbb{P} has least element $0 \in P$, a and b have no common lowerbound, whenever \mathbb{P} is without 0.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent*, if for any $x, y \in X$ either $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called $\mathit{CD}\text{-}\mathit{bases}$ in $\mathbb{P}.$

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint*, and we write $a \perp b$, if $\inf\{a, b\} = 0$, whenever \mathbb{P} has least element $0 \in P$, a and b have no common lowerbound, whenever \mathbb{P} is without 0.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent*, if for any $x, y \in X$ either $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called $\mathit{CD}\text{-}\mathit{bases}$ in $\mathbb P.$

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} , if $x \perp y$ holds for all $x, y \in D, x \neq y$.

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} , if $x \perp y$ holds for all $x, y \in D, x \neq y$.

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} , if $x \perp y$ holds for all $x, y \in D, x \neq y$.

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} , if $x \perp y$ holds for all $x, y \in D, x \neq y$.

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in P, then any antichain A ⊆ X is a disjoint system in P.

Order ideals

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$, if

 $I(A_1) \subseteq I(A_2).$

Remarks

 $\bullet \leqslant$ is a partial order

• $A_1 \leqslant A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$. (

Order ideals

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$, if

 $I(A_1) \subseteq I(A_2).$

Remarks

• \leq is a partial order

• $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$. (

Order ideals

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$, if

 $I(A_1) \subseteq I(A_2).$

Remarks

• \leq is a partial order

• $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$. (

Order ideals

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{ x \in P \mid x \le a_i, \text{ for some } i \in I \},\$$

where (a] stands for the principal ideal of an element $a \in P$. **Definition**

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$, if

 $I(A_1) \subseteq I(A_2).$

Remarks

- \leq is a partial order
- $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \le y$. (A)

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leq D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Let (P, \leq) be a finite poset and B a CD-base of it.

There exists a maximal chain $D_1 \succ ... \succ D_n$ in $\mathcal{D}(P)$, such that $B = \bigcup_{i=1}^n D_i$ and n = |B|.

For any maximal chain $D_1 \prec ... \prec D_m$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^m D_i$ is a *CD*-base in (P, \leq) with |D| = m.

Let (P, \leq) be a finite poset and B a CD-base of it.

There exists a maximal chain $D_1 \succ ... \succ D_n$ in $\mathcal{D}(P)$, such that $B = \bigcup_{i=1}^n D_i$ and n = |B|.

For any maximal chain $D_1 \prec ... \prec D_m$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^m D_i$ is a *CD*-base in (P, \leq) with |D| = m.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

 $D_1 \prec D_2$ holds in $\mathcal{D}(P)$ if and only if $D_2 = \{a\} \cup \{y \in D_1 \mid a \perp y\}$, where a is a minimal element of the set

 $S = \{x \in P \setminus D_1 \mid x \perp y \text{ or } x > y, \text{ for all } y \in D_1\}.$

Lemma

Let B be a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), \text{ and for arbitrary } m \in M$ let $N = \max(B \setminus \{m\})$. Then M and N are disjoint systems, M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

 $D_1 \prec D_2$ holds in $\mathcal{D}(P)$ if and only if $D_2 = \{a\} \cup \{y \in D_1 \mid a \perp y\}$, where a is a minimal element of the set

 $S = \{x \in P \setminus D_1 \mid x \perp y \text{ or } x > y, \text{ for all } y \in D_1\}.$

Lemma

Let B be a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), \text{ and for arbitrary } m \in M \text{ let}$ $N = \max(B \setminus \{m\}).$ Then M and N are disjoint systems, M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

 $D_1 \prec D_2$ holds in $\mathcal{D}(P)$ if and only if $D_2 = \{a\} \cup \{y \in D_1 \mid a \perp y\}$, where a is a minimal element of the set

 $S = \{ x \in P \setminus D_1 \mid x \perp y \text{ or } x > y, \text{ for all } y \in D_1 \}.$

Lemma

Let B be a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq), M = \max(B), \text{ and for arbitrary } m \in M \text{ let}$ $N = \max(B \setminus \{m\}).$ Then M and N are disjoint systems, M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$. Let $\mathbb{P} = (P, \leq)$ be a finite poset.

(i) If $B \subseteq P$ is a CD-base and (B, \leq) is the subposet corresponding to it, then any maximal chain $C : D_1 \prec ... \prec D_n$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

(ii) If D is a disjoint system in \mathbb{P} , and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet I(D) also have the same number of elements.

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

(i) If $B \subseteq P$ is a CD-base and (B, \leq) is the subposet corresponding to it, then any maximal chain $C : D_1 \prec ... \prec D_n$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

(ii) If D is a disjoint system in \mathbb{P} , and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet I(D) also have the same number of elements.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of \mathbb{P} have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

(a) If all the CD-bases of \mathbb{P} consist of n elements, then $n \ge |A(P)| + l(P)$.

(b) If \mathbb{P} is bounded and each subposet (a], $a \in P$ of it is weakly 0-modular, then the following statements are true:

(i) For any maximal chain C in P, A(P) ∪ C is a CD-base of P.
 (ii) ICD(P) is graded, then P is also graded, and any CD-base of contains 1 A(P) | 4 I(P) elements.

(a) If all the CD-bases of \mathbb{P} consist of *n* elements, then $n \ge |A(P)| + I(P)$.

(b) If \mathbb{P} is bounded and each subposet (a], $a \in P$ of it is weakly 0-modular, then the following statements are true:

(i) For any maximal chain C in P, A(P) ∪ C is a CD-base of P.
 (ii) If D(P) is graded, then P is also graded, and any CD-base of I contains | A(P) | +I(P) elements.

(a) If all the CD-bases of \mathbb{P} consist of n elements, then $n \ge |A(P)| + l(P)$.

(b) If \mathbb{P} is bounded and each subposet (a], $a \in P$ of it is weakly 0-modular, then the following statements are true:

• (i) For any maximal chain C in \mathbb{P} , $A(P) \cup C$ is a CD-base of \mathbb{P} .

(ii) If D(P) is graded, then P is also graded, and any CD-base of P contains | A(P) | +1(P) elements.

(a) If all the CD-bases of \mathbb{P} consist of n elements, then $n \ge |A(P)| + l(P)$.

(b) If \mathbb{P} is bounded and each subposet (a], $a \in P$ of it is weakly 0-modular, then the following statements are true:

- (i) For any maximal chain C in \mathbb{P} , $A(P) \cup C$ is a CD-base of \mathbb{P} .
- (ii) If D(P) is graded, then P is also graded, and any CD-base of P contains | A(P) | +1(P) elements.

CD-bases in semilattices and lattices

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair, if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for any $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$. We say that (P, \land) is *dp-distributive*, if any $a, b \in P$ with $a \land b = 0$ is a distributive pair.

Theorem

If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a semilattice with 0; if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$. If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a complete lattice, too.

Proposition

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leqslant)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leqslant)$. If \mathbb{P} is a \land -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have $(D_1 \lor D_2) \land D = (D_1 \land D) \lor (D_2 \land D)$.

CD-bases in semilattices and lattices

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair, if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for any $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$. We say that (P, \land) is *dp-distributive*, if any $a, b \in P$ with $a \land b = 0$ is a distributive pair.

Theorem

If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a semilattice with 0; if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$. If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a complete lattice, too.

Proposition

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leq)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leq)$. If \mathbb{P} is a \wedge -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have $(D_1 \vee D_2) \wedge D = (D_1 \wedge D) \vee (D_2 \wedge D)$.

Sándor Radeleczki

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite 0-modular and weakly 0-distributive lattice. Then the following are equivalent:

(i) L is graded and l(s) + l(b) = l(s ∨ b) holds for all s, b ∈ L with s ∧ b = 0.
 (ii) The Chabres of L have the recurst number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite 0-modular and weakly 0-distributive lattice. Then the following are equivalent:

• (i) L is graded and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

• (ii) The CD-bases of L have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite 0-modular and weakly 0-distributive lattice. Then the following are equivalent:

• (i) L is graded and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

• (ii) The CD-bases of L have the same number of elements.

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite 0-modular and weakly 0-distributive lattice. Then the following are equivalent:

- (i) L is graded and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.
- (ii) The CD-bases of L have the same number of elements.