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Island definition

We call a rectangle/triangle an island, if for the cell t, if we denote its
height by at , then for each cell t̂ neighbouring with a cell of the
rectange/triangle T, the inequality at̂ < min{at : t ∈ T} holds.
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History/1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of
Combinatorics, Information and System Sci., 31 (2006), 317-326.
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History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive
lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a m × n rectangular board
on square grid:

f (m, n) = [
mn + m + n − 1

2
].
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Proving methods/1

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent
subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number
of elements.
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Proving methods/2

TREE-GRAPH METHOD (Barát, Hajnal, Horváth)
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Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)

(i) Let T be a binary tree with ` leaves. Then the number of
vertices of T depends only on `, moreover |V | = 2`− 1.

(ii) Let T be a rooted tree such that any non-leaf node has at
least 2 sons. Let ` be the number of leaves in T . Then
|V | ≤ 2`− 1.

We have 4s + 2d ≤ (n + 1)(m + 1).
The number of leaves of T (I) is ` = s + d . Hence by Lemma 2 the
number of islands is

|V | − d ≤ (2`− 1)− d = 2s + d − 1 ≤ 1

2
(n + 1)(m + 1)− 1.

.
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LATTICE-VALUED REPRESENTATION

Theorem (Šešelja , Tepavčević, Horváth)
Let h : {1, 2, ...,m} × {1, 2, ..., n} → N be a rectangular height
function. Then there is a lattice L and an L-valued height functon
Φ, such that the cuts of Φ are precisely all islands of h.
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Let h : {1, 2, 3, 4, 5} × {1, 2, 3, 4} → N be a height function.

4 9 8 7 1 5
3 8 8 7 1 4
2 7 7 7 1 5
1 2 2 2 1 6

1 2 3 4 5
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Rectangular height functions

h is a rectangular height function. Its islands are:

I1 = {(1, 4)},
I2 = {(1, 3), (1, 4), (2, 3), (2, 4)},
I3 = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)},
I4 = {(5, 1)},
I5 = {(5, 1), (5, 2)},
I6 = {(5, 4)},
I7 = {(5, 1), (5, 2), (5, 3), (5, 4)},
I8 = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3),
(2, 4), (3, 2), (3, 3), (3, 4), (1, 1), (2, 1), (3, 1)},
I9 = {1, 2, 3, 4, 5} × {1, 2, 3, 4}.
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Rectangular height functions

Its cuts are:

h10 = ∅
h9 = I1 (one-element island)
h8 = I2 (four-element square island)
h7 = I3 (nine-element square island)
h6 = I3 ∪ I4 (this cut is a disjoint union of two islands)
h5 = I3 ∪ I5 ∪ I6 (union of three islands)
h4 = I3 ∪ I7 (union of two islands)
h2 = I7 ∪ I8 (union of two islands)
h1 = {1, 2, 3, 4, 5} × {1, 2, 3, 4} = I9 (the whole domain)
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Rectangular height functions
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CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets
in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2
(2009).

Any two CD-bases of a finite distributive lattice have the same number of
elements.

If all finite lattices in a lattice variety have this property, then the variety
must coincide with the variety of distributive lattices.
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CD-independent subsets in posets

Definitions

Let P = (P,≤) be a partially ordered set and a, b ∈ P.
The elements a and b are called disjoint, and we write a ⊥ b, if

inf{a, b} = 0, whenever P has least element 0 ∈ P,
a and b have no common lowerbound, whenever P is without 0.

Notice, that a ⊥ b implies x ⊥ y for all x , y ∈ P with x ≤ a and
y ≤ b.

A nonempty set X ⊆ P is called CD-independent, if for any x , y ∈ X
either x ≤ y or y ≤ x or x ⊥ y holds.

Maximal CD-independent sets (with respect to ⊆ ) are called CD-bases
in P.
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Sándor Radeleczki Eszter K. Horváth ()CD-independent subsets 2010 July 5, Novi Sad 15 / 26



CD-independent subsets in posets

Definitions

Let P = (P,≤) be a partially ordered set and a, b ∈ P.
The elements a and b are called disjoint, and we write a ⊥ b, if

inf{a, b} = 0, whenever P has least element 0 ∈ P,
a and b have no common lowerbound, whenever P is without 0.

Notice, that a ⊥ b implies x ⊥ y for all x , y ∈ P with x ≤ a and
y ≤ b.

A nonempty set X ⊆ P is called CD-independent, if for any x , y ∈ X
either x ≤ y or y ≤ x or x ⊥ y holds.

Maximal CD-independent sets (with respect to ⊆ ) are called CD-bases
in P.
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Disjoint systems

Definition

A nonempty set D of nonzero elements of P is called a disjoint system
in P, if x ⊥ y holds for all x , y ∈ D, x 6= y .

Remarks

Any disjoint system D ⊆ P and any chain C ⊆ P is a
CD-independent set.
D is a disjoint system, if and only if it is a CD-independent
antichain in P.
If X is a CD-independent set in P, then any antichain A ⊆ X is a
disjoint system in P.
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Order ideals

Any antichain A = {ai | i ∈ I} of a poset P determines a unique
order-ideal I (A) of P:

I (A) =
⋃
i∈I

(ai ] = {x ∈ P | x ≤ ai , for some i ∈ I},

where (a] stands for the principal ideal of an element a ∈ P.
Definition

If A1,A2 are antichains in P, then we say that A1 is dominated by
A2, and we denote it by A1 6 A2, if

I (A1) ⊆ I (A2).

Remarks

6 is a partial order
A1 6 A2 is satisfied if and only if

for each x ∈ A1 there exists an y ∈ A2, with x ≤ y . (A)
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Order ideals

Remarks

I (A1) ≺ I (A2)⇒ A1 ≺ A2, for any antichains A1,A2 ⊆ P.

If D1, D2 are disjoint systems in P, then D1 ⊆ D2 implies D1 6 D2.

If D1 6 D2, then for any x ∈ D1 and y ∈ D2 either x ≤ y or x ⊥ y
is satisfied.

The poset (P,≤) can be order-embedded into (D(P),6).
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Tolerance relation

Definition
Let ρ ⊆ P × P.

For any x , y ∈ P, (x , y) ∈ ρ⇔ either x ≤ y or y ≤ x or x ⊥ y .

Remarks

ρ is a tolerance relation on P.
The CD-bases of P are exactly the tolerance classes (tolerance
blocks) of ρ.
Any poset P = (P,≤) hast at least one CD-base, and the set P is
covered by the CD-bases of P.
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Theorem

Let (P,≤) be a finite poset and B a CD-base of it.

There exists a maximal chain D1 � ... � Dn in D(P), such that

B =
n⋃

i=1
Di and n = | B |.

For any maximal chain D1 ≺ ... ≺ Dm in D(P) the set D =
m⋃

i=1
Di is a

CD-base in (P,≤) with | D | = m.
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Proof of the Theorem

Proposition

If B is a CD-base and D ⊆ B is a disjoint system in the poset (P,≤),
then I (D) ∩ B is also a CD-base in the subposet (I (D),≤).

Lemma

D1 ≺ D2 holds in D(P) if and only if D2 = {a} ∪ {y ∈ D1 | a ⊥ y},
where a is a minimal element of the set

S = {x ∈ P \ D1 | x ⊥ y or x > y , for all y ∈ D1}.

Lemma

Let B be a CD-base with at least two elements in a finite poset
P = (P,≤), M = max(B), and for arbitrary m ∈ M let
N = max(B \ {m}). Then M and N are disjoint systems, M is a
maximal element in D(P), and N ≺ M holds in D(P).
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Corollary

Let P =(P,≤) be a finite poset.

(i) If B ⊆ P is a CD-base and (B,≤) is the subposet corresponding to it,
then any maximal chain C : D1 ≺ ... ≺ Dn in D(B) is also a maximal chain
in D(P).

(ii) If D is a disjoint system in P, and the CD-bases of P have the same
number of elements, then the CD-bases of the subposet I (D) also have
the same number of elements.
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D(P) is graded

The poset P is called graded, if all its maximal chains have the same
cardinality.

Let P = (P,≤) be a finite poset with 0. Then the following conditions are
equivalent:

(i) The CD-bases of P have the same number of elements,

(ii) D(P) is graded.

A disjoint system D of a poset (P,≤) is called complete, if there is no
p ∈ P \ D such that D ∪ {p} is also a disjoint system.

(iii) DC(P) is graded.
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If P is a finite poset with 0

(a) If all the CD-bases of P consist of n elements, then n ≥| A(P) | +l(P).

(b) If P is bounded and each subposet (a], a ∈ P of it is weakly
0-modular, then the following statements are true:

(i) For any maximal chain C in P, A(P) ∪ C is a CD-base of P.

(ii) If D(P) is graded, then P is also graded, and any CD-base of P
contains | A(P) | +l(P) elements.
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CD-bases in semilattices and lattices

A pair a, b ∈ P with least upperbound a ∨ b in P is called a distributive
pair, if (c ∧ a) ∨ (c ∧ b) exists in P for any c ∈ P, and
c ∧ (a ∨ b) = (c ∧ a) ∨ (c ∧ b).
We say that (P,∧) is dp-distributive, if any a, b ∈ P with a ∧ b = 0 is a
distributive pair.
Theorem

If P = (P,∧) is a semilattice with 0, then D(P) is a semilattice with 0;
if D1 ∪ D2 is a CD-independent set for some D1,D2 ∈ D(P), then
D1,D2 is a distributive pair in D(P). If P is a complete lattice, then
D(P) is a complete lattice, too.

Proposition

Let P = (P,≤) be a poset with 0 and B a CD-base of it. Then
(D(B),6) is a distributive cover-preserving sublattice of the poset
(D(P),6). If P is a ∧-semilattice, then for any D ∈ D(P) and
D1,D2 ∈ D(B) we have (D1 ∨ D2) ∧ D = (D1 ∧ D) ∨ (D2 ∧ D).
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CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in
D(L). Then either D = {d}, for some d ∈ L with d ≺ 1, or D consist of
two elements d1, d2 ∈ L and d1 ∨ d2 = 1.

Theorem

Let L be a finite 0-modular and weakly 0-distributive lattice. Then the
following are equivalent:

(i) L is graded and l(a) + l(b) = l(a ∨ b) holds for all a, b ∈ L with
a ∧ b = 0.
(ii) The CD-bases of L have the same number of elements.
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