Islands

Eszter K. Horváth, Szeged

Coauthors: Péter Hajnal, Branimir Šešelja, Andreja Tepavčević

NSAC 2009

Grid, neighbourhood relation

Definition/2

We call a rectangle/triangle an *island*, if for the cell t, if we denote its height by a_t , then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}} < min\{a_t : t \in T\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n)=[\frac{mn+m+n-1}{2}].$$

n

Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

Triangular islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34. Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.

Triangular islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34. Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.

Triangular islands

E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34. Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.

Square islands (also in higher dimensions)

$$\frac{1}{3}(rs - 2r - 2s) \le f(r, s) \le \frac{1}{3}(rs - 1)$$

Square islands (also in higher dimensions)

Square islands (also in higher dimensions)

$$\frac{1}{3}(rs-2r-2s) \le f(r,s) \le \frac{1}{3}(rs-1)$$

Square islands (also in higher dimensions)

$$rac{1}{3}(rs-2r-2s) \leq f(r,s) \leq rac{1}{3}(rs-1)$$

Some exact formulas

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m, n) = f(m, n) = [(mn + m + n - 1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = [\frac{(m+1)n}{2}]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If $n \ge 2$, then $h_2(m, n) = [\frac{(m+1)n}{2}] + [\frac{(m-1)}{2}]$.

Some exact formulas

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m, n) = f(m, n) = [(mn + m + n - 1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If $n \ge 2$, then $h_2(m, n) = [\frac{(m+1)n}{2}] + [\frac{(m-1)}{2}]$.

Some exact formulas

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m, n) = f(m, n) = [(mn + m + n - 1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If $n \ge 2$, then $h_2(m, n) = [\frac{(m+1)n}{2}] + [\frac{(m-1)}{2}]$.

Some exact formulas

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m,n) = f(m,n) = [(mn + m + n - 1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If
$$n \ge 2$$
, then $h_2(m, n) = [\frac{(m+1)n}{2}] + [\frac{(m-1)}{2}]$.

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, **30** (2009) 216-219.

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, **30** (2009), 216-219.

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0, 1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0, 1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0, 1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0, 1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

Theorem 1 $b(n) = 1 + 2^{n-1}$.

Proof:

 $b(n) \ge 1 + 2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1-s.

We show $b(n) \le 1 + 2^{n-1}$ by induction on *n*. For n = 0, 1 the statement is easy to check.

For $n \ge 2$, we cut the hypercube into two half-hypercubes, of size 2^{n-1} . If one of them is an island, then the other cannot contain island. If neither of them is an island, then by the induction hypothesis, in both half-hypercubes, the maximum cardinality of a system of islands is at most 2^{n-2} .

Theorem 1 $b(n) = 1 + 2^{n-1}$.

Proof:

 $b(n) \ge 1 + 2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1-s.

We show $b(n) \le 1 + 2^{n-1}$ by induction on n. For n = 0, 1 the statement is easy to check.

For $n \ge 2$, we cut the hypercube into two half-hypercubes, of size 2^{n-1} . If one of them is an island, then the other cannot contain island. If neither of them is an island, then by the induction hypothesis, in both half-hypercubes, the maximum cardinality of a system of islands is at most 2^{n-2} .

Theorem 1 $b(n) = 1 + 2^{n-1}$.

Proof:

 $b(n) \ge 1 + 2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1-s.

We show $b(n) \leq 1 + 2^{n-1}$ by induction on n. For n = 0, 1 the statement is easy to check. For $n \geq 2$, we cut the hypercube into two half-hypercubes, of size 2^{n-1} . If one of them is an island, then the other cannot contain island. If neither of them is an island, then by the induction hypothesis, in both half-hypercubes, the maximum cardinality of a system of islands is at most 2^{n-2} .

Theorem 1 $b(n) = 1 + 2^{n-1}$.

Proof:

 $b(n) \ge 1 + 2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1-s.

We show $b(n) \le 1 + 2^{n-1}$ by induction on n. For n = 0, 1 the statement is easy to check.

For $n \ge 2$, we cut the hypercube into two half-hypercubes, of size 2^{n-1} . If one of them is an island, then the other cannot contain island. If neither of them is an island, then by the induction hypothesis, in both half-hypercubes, the maximum cardinality of a system of islands is at most 2^{n-2} .

Joint work with Branimir Šešelja and Andreja Tepavčević

Let A and B nonempty sets and L a lattice. Then a fuzzy relation ρ is a mapping from $A \times B$ to L.

For every $p \in L$, cut relation is an ordinary relation ρ_p on $A \times B$ defined by

 $(x,y) \in \rho_p$ if and only if $\rho(x,y) \ge p$.

Joint work with Branimir Šešelja and Andreja Tepavčević

Let A and B nonempty sets and L a lattice. Then a *fuzzy relation* ρ is a mapping from $A \times B$ to L.

For every $p \in L$, cut relation is an ordinary relation ρ_p on $A \times B$ defined by

 $(x, y) \in \rho_p$ if and only if $\rho(x, y) \ge p$.

We consider special lattice valued fuzzy relations:

The set $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$, $m, n \in \mathbb{N}$, is called a table of size $m \times n$. Such a table is the domain of a fuzzy relation. We consider

$$\Gamma_{\mathbb{N}}: \{1,2,...,m\} \times \{1,2,...,n\} \rightarrow \mathbb{N}.$$

Here the co-domain is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively. Moreover

$$\Gamma_{[0,1]} : \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to [0, 1].$$
e co-domain is a lattice ([0, 1], <) in which suprema and

max and min, respectively.

We consider special lattice valued fuzzy relations:

The set $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$, $m, n \in \mathbb{N}$, is called a table of size $m \times n$. Such a table is the domain of a fuzzy relation. We consider

$$\Gamma_{\mathbb{N}}: \{1,2,...,m\} \times \{1,2,...,n\} \rightarrow \mathbb{N}.$$

Here the co-domain is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively. Moreover

$$\mathsf{F}_{[0,1]}: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to [0, 1].$$

Here the co-domain is a lattice $([0,1],\leq)$ in which suprema and infima are max and min, respectively.

We say that two rectangles $\{\alpha, ..., \beta\} \times \{\gamma, ..., \delta\}$ and $\{\alpha_1, ..., \beta_1\} \times \{\gamma_1, ..., \delta_1\}$ are *distant* if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a - c)^2 + (b - d)^2 \ge 4$.

Fuzzy relation Γ is called *rectangular* if for every $p \in \mathbb{N}$, every nonempty p-cut of Γ is a union of distant rectangles.

We say that two rectangles $\{\alpha, ..., \beta\} \times \{\gamma, ..., \delta\}$ and $\{\alpha_1, ..., \beta_1\} \times \{\gamma_1, ..., \delta_1\}$ are *distant* if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a - c)^2 + (b - d)^2 \ge 4$.

Fuzzy relation Γ is called *rectangular* if for every $p \in \mathbb{N}$, every nonempty *p*-cut of Γ is a union of distant rectangles.

$$\begin{split} & \Gamma_1 = \{1,2,3,4,5\} \times \{1,2,3\}, \\ & \Gamma_2 = \{1,2,3,4,5\} \times \{1,2,3\} \setminus \{(3,1)\}, \\ & \Gamma_3 = \{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\ & \Gamma_4 = \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text{ and } \\ & \Gamma_5 = \{(1,3),(2,3),(4,3),(5,3)\} \end{split}$$

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

$$\begin{split} &\Gamma_1 = \{1,2,3,4,5\} \times \{1,2,3\}, \\ &\Gamma_2 = \{1,2,3,4,5\} \times \{1,2,3\} \setminus \{(3,1)\}, \\ &\Gamma_3 = \{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\ &\Gamma_4 = \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text{ and } \\ &\Gamma_5 = \{(1,3),(2,3),(4,3),(5,3)\} \end{split}$$

Rectangular fuzzy relations/5 CHARACTERIZATION THEOREM / A

Theorem 2 / A

A fuzzy relation $\Gamma_{\mathbb{N}}$: $\{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}$ is rectangular if and only if for all $(\alpha, \gamma), (\beta, \delta) \in \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ either

• these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $\Gamma_{\mathbb{N}}(\mu, \nu) < \min\{\Gamma_{\mathbb{N}}(\alpha, \gamma), \Gamma_{\mathbb{N}}(\beta, \delta)\}$, or

• for all $(\mu, \nu) \in [\min\{\alpha, \beta\}, \max\{\alpha, \beta\}] \times [\min\{\gamma, \delta\}, \max\{\gamma, \delta\}],$

 $\Gamma_{\mathbb{N}}(\mu,\nu) \geq \min\{\Gamma_{\mathbb{N}}(lpha,\gamma),\Gamma_{\mathbb{N}}(eta,\delta)\}.$

Rectangular fuzzy relations/5 CHARACTERIZATION THEOREM / A

Theorem 2 / A

A fuzzy relation $\Gamma_{\mathbb{N}}$: $\{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}$ is rectangular if and only if for all $(\alpha, \gamma), (\beta, \delta) \in \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $\Gamma_{\mathbb{N}}(\mu, \nu) < \min\{\Gamma_{\mathbb{N}}(\alpha, \gamma), \Gamma_{\mathbb{N}}(\beta, \delta)\}$, or
- for all $(\mu, \nu) \in [\min\{\alpha, \beta\}, \max\{\alpha, \beta\}] \times [\min\{\gamma, \delta\}, \max\{\gamma, \delta\}],$

 $\Gamma_{\mathbb{N}}(\mu,\nu) \geq \min\{\Gamma_{\mathbb{N}}(\alpha,\gamma),\Gamma_{\mathbb{N}}(\beta,\delta)\}.$

Rectangular fuzzy relations/6 CHARACTERIZATION THEOREM / B

Theorem 2 / B

A fuzzy relation $\Gamma_{[0,1]}$: $\{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow [0, 1]$ is rectangular if and only if for all $(\alpha, \gamma), (\beta, \delta) \in \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that
 - $\Gamma_{[0,1]}(\mu,\nu) < \min\{\Gamma_{[0,1]}(\alpha,\gamma),\Gamma_{[0,1]}(\beta,\delta)\}, \text{ or }$

• for all $(\mu, \nu) \in [\min\{\alpha, \beta\}, \max\{\alpha, \beta\}] \times [\min\{\gamma, \delta\}, \max\{\gamma, \delta\}],$

 $\Gamma_{[0,1]}(\mu,\nu) \ge \min\{\Gamma_{[0,1]}(\alpha,\gamma),\Gamma_{[0,1]}(\beta,\delta)\}.$

Rectangular fuzzy relations/6 CHARACTERIZATION THEOREM / B

Theorem 2 / B

A fuzzy relation $\Gamma_{[0,1]}$: $\{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow [0, 1]$ is rectangular if and only if for all $(\alpha, \gamma), (\beta, \delta) \in \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $\Gamma_{[0,1]}(\mu, \nu) < \min\{\Gamma_{[0,1]}(\alpha, \gamma), \Gamma_{[0,1]}(\beta, \delta)\},$ or
- for all $(\mu, \nu) \in [\min\{\alpha, \beta\}, \max\{\alpha, \beta\}] \times [\min\{\gamma, \delta\}, \max\{\gamma, \delta\}],$

 $\mathsf{F}_{[0,1]}(\mu,\nu) \geq \min\{\mathsf{F}_{[0,1]}(\alpha,\gamma),\mathsf{F}_{[0,1]}(\beta,\delta)\}.$

Theorem 3

For every fuzzy relation $\Gamma_{\mathbb{N}}$: $\{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Phi_{\mathbb{N}}$: $\{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, having the same islands.

For every fuzzy relation $\Gamma_{[0,1]}$: $\{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow [0, 1]$, there is a rectangular fuzzy relation $\Phi_{[0,1]}$: $\{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow [0, 1]$, having the same islands.

Theorem 3

For every fuzzy relation $\Gamma_{\mathbb{N}}$: $\{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Phi_{\mathbb{N}}$: $\{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, having the same islands.

For every fuzzy relation $\Gamma_{[0,1]}$: $\{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow [0, 1]$, there is a rectangular fuzzy relation $\Phi_{[0,1]}$: $\{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow [0, 1]$, having the same islands.

Rectangular fuzzy relations/8 CONSTRUCTING ALGORITHM

Let
$$\Gamma_{[0,1]}$$
: $\{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow [0, 1]$ be a fuzzy relation. Let $\{a_1, a_2, ..., a_h\}$ be the set of different values of $\Gamma_{[0,1]}$, such that $0 \le a_0 < a_1 < ... < a_h \le 1$.
1. Let $i := h$
2. Let $(x, y) = (1, 1)$
3. If $\Gamma(x, y) \ne a_i$, then go to 6
4. Let $\Phi(x, y) := \Gamma(x, y)$.
5. Take a_k to be $\Phi(x, y)$. If there is an island of $\Gamma(x, y)$ that contains (x, y) which is a subset of Γ_{a_k} then go to 6.
Otherwise $\Phi(x, y) = a_{k-1}$.
6. If $x < m$, then $x := x + 1$, go to 3. Otherwise, go to 7.
7. If $y < n$, then $y := y + 1$ and $x := 1$, go to 3. Otherwise, if $x < m$ go to 6 and if $x = m$ go to 8.
8. If $i \ne 0$, then $i := i - 1$ and go to 2. Otherwise go to 9.
9. End.

Rectangular fuzzy relations/9 LATTICE-VALUED REPRESENTATION

Theorem 4

Let $\Gamma_{\mathbb{N}}: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ be a rectangular fuzzy relation. Then there is a lattice L and an L-valued relation Φ , such that the cuts of Φ are precisely all islands of $\Gamma_{\mathbb{N}}$.

Let $\Gamma_{[0,1]}$: $\{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow [0, 1]$ be a rectangular fuzzy relation. Then there is a lattice L and an L-valued relation Φ , such that the cuts of Φ are precisely all islands of $\Gamma_{[0,1]}$.

Let $\Gamma:\{1,2,3,4,5\}\times\{1,2,3,4\}\rightarrow[0,1]$ be a fuzzy relation.

4	0.9	0.8	0.7	0.1	0.5
3	0.8	0.8	0.7	0.1	0.4
2	0.7	0.7	0.7	0.1	0.5
1	0.2	0.2	0.2	0.1	0.6
	1	2	3	4	5

 $\boldsymbol{\Gamma}$ is a rectangular fuzzy relation. Its islands are:

```
\begin{split} &l_1 = \{(1,4)\}, \\ &l_2 = \{(1,3), (1,4), (2,3), (2,4)\}, \\ &l_3 = \{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}, \\ &l_4 = \{(5,1)\}, \\ &l_5 = \{(5,1), (5,2)\}, \\ &l_6 = \{(5,4)\}, \\ &l_7 = \{(5,1), (5,2), (5,3), (5,4)\}, \\ &l_8 = \{(1,2), (1,3), (1,4), (2,2), (2,3), \\ &(2,4), (3,2), (3,3), (3,4), (1,1), (2,1), (3,1)\}, \\ &l_9 = \{1,2,3,4,5\} \times \{1,2,3,4\}. \end{split}
```

Its cut relations are:

$$\begin{split} &\Gamma_1 = \emptyset \\ &\Gamma_{0.9} = I_1 \text{ (one-element island)} \\ &\Gamma_{0.8} = I_2 \text{ (four-element square island)} \\ &\Gamma_{0.7} = I_3 \text{ (nine-element square island)} \\ &\Gamma_{0.6} = I_3 \cup I_4 \text{ (this cut is a disjoint union of two islands)} \\ &\Gamma_{0.5} = I_3 \cup I_5 \cup I_6 \text{ (union of three islands)} \\ &\Gamma_{0.4} = I_3 \cup I_7 \text{ (union of two islands)} \\ &\Gamma_{0.2} = I_7 \cup I_8 \text{ (union of two islands)} \\ &\Gamma_{0.1} = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4\} = I_9 \text{ (the whole domain)} \end{split}$$

Theorem 5

For every rectangular fuzzy relation $\Phi_{\mathbb{N}} : \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Psi_{\mathbb{N}} : \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, having the same islands and in $\Psi_{\mathbb{N}}$ every island appears exactly in one cut.

If a fuzzy rectangular relation $\Psi_{\mathbb{N}}$ has the property that each island appears exactly in one cut, then we call it *standard fuzzy rectangular relation*. We denote by $\Lambda(m, n)$ the maximum number of different *p*-cuts of a standard fuzzy rectangular relation on the rectangular table of size $m \times n$.

Theorem 6 $\Lambda(m, n) = m + n - 1.$

Theorem 5

For every rectangular fuzzy relation $\Phi_{\mathbb{N}}: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Psi_{\mathbb{N}}: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, having the same islands and in $\Psi_{\mathbb{N}}$ every island appears exactly in one cut.

If a fuzzy rectangular relation $\Psi_{\mathbb{N}}$ has the property that each island appears exactly in one cut, then we call it *standard fuzzy rectangular relation*. We denote by $\Lambda(m, n)$ the maximum number of different *p*-cuts of a standard fuzzy rectangular relation on the rectangular table of size $m \times n$.

Theorem 6 $\Lambda(m, n) = m + n - 1.$

Theorem 5

For every rectangular fuzzy relation $\Phi_{\mathbb{N}}: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Psi_{\mathbb{N}}: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N}$, having the same islands and in $\Psi_{\mathbb{N}}$ every island appears exactly in one cut.

If a fuzzy rectangular relation $\Psi_{\mathbb{N}}$ has the property that each island appears exactly in one cut, then we call it *standard fuzzy rectangular relation*. We denote by $\Lambda(m, n)$ the maximum number of different *p*-cuts of a standard fuzzy rectangular relation on the rectangular table of size $m \times n$.

Theorem 6 $\Lambda(m, n) = m + n - 1.$