Islands

Eszter K. Horváth, Szeged

Coauthors: Péter Hajnal, Branimir Šešelja, Andreja Tepavčević

NSAC 2009

Definition/1

Grid, neighbourhood relation

Definition/2

We call a rectangle/triangle an island, if for the cell t, if we denote its height by a_{t}, then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}}<\min \left\{a_{t}: t \in T\right\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1

History/1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

History/1

Coding theory
S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

History/2

Rectangular islands
G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

Abstract

The maximum number of rectangular islands in a $m \times n$ rectangular board

 on square grid:

History/2

Rectangular islands
G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$
f(m, n)=\left[\frac{m n+m+n-1}{2}\right] .
$$

History/3

Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

History/3

Rectangular islands in higher dimensions
G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

History/4

Triangular islands

$$
\begin{aligned}
& \text { E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular } \\
& \text { islands on a triangular grid, Periodica Mathematica Hungarica, } 58 \\
& \text { (2009), 25-34. } \\
& \text { Available at http://www.math.u-szeged.hu/~ horvath }
\end{aligned}
$$

History/4

Triangular islands
E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25-34.

Available at http://www.math.u-szeged.hu/~horvath

History/4

Triangular islands
E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25-34.

Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length $n, \frac{n^{2}+3 n}{5} \leq f(n) \leq \frac{3 n^{2}+9 n+2}{14}$ holds.

History/5

Square islands (also in higher dimensions)
square islands on a rectangular sea, Acta Sci. Math., submitted. Available at http://www.math.u-szeged.hu/~horvath

History/5

Square islands (also in higher dimensions)
E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., submitted. Available at http://www.math.u-szeged.hu/~horvath

History/5

Square islands (also in higher dimensions)
E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., submitted. Available at http://www.math.u-szeged.hu/~horvath

$$
\frac{1}{3}(r s-2 r-2 s) \leq f(r, s) \leq \frac{1}{3}(r s-1)
$$

History/5

Square islands (also in higher dimensions)
E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., submitted. Available at http://www.math.u-szeged.hu/~horvath

$$
\frac{1}{3}(r s-2 r-2 s) \leq f(r, s) \leq \frac{1}{3}(r s-1)
$$

History/6

Some exact formulas
Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

History/6

Some exact formulas
Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

History/6

Some exact formulas
Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

History/6

Some exact formulas
Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth):
$p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \geq 2$, then $t(m, n)=\left[\frac{m n}{2}\right]$.

History/7

Further results on rectangular islands

History/7

Further results on rectangular islands
Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, 30 (2009), 216-219.

Islands in Boolean algebras, i.e. in hypercubes /1

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

Islands in Boolean algebras, i.e. in hypercubes /1

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

Islands in Boolean algebras, i.e. in hypercubes /1

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

We denote the maximum number of islands in $B A=\{0,1\}^{n}$ by $b(n)$.

Islands in Boolean algebras, i.e. in hypercubes /1

Joint work with Péter Hajnal

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

We denote the maximum number of islands in $B A=\{0,1\}^{n}$ by $b(n)$.

Theorem 1

$b(n)=1+2^{n-1}$.

Islands in Boolean algebras, i.e. in hypercubes /2

Theorem 1
$b(n)=1+2^{n-1}$.

Islands in Boolean algebras, i.e. in hypercubes /2

Theorem 1
$b(n)=1+2^{n-1}$.

Proof:

Islands in Boolean algebras, i.e. in hypercubes /2

```
Theorem 1
\(b(n)=1+2^{n-1}\).
```

Proof:
$b(n) \geq 1+2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1 -s.

Islands in Boolean algebras, i.e. in hypercubes /2

Theorem 1

$b(n)=1+2^{n-1}$.

Proof:
$b(n) \geq 1+2^{n-1}$ because we can put one-cell islands to all vertices with an odd number of 1 -s.

We show $b(n) \leq 1+2^{n-1}$ by induction on n. For $n=0,1$ the statement is easy to check.
For $n \geq 2$, we cut the hypercube into two half-hypercubes, of size 2^{n-1}. If one of them is an island, then the other cannot contain island.
If neither of them is an island, then by the induction hypothesis, in both half-hypercubes, the maximum cardinality of a system of islands is at most 2^{n-2}.

Rectangular fuzzy relations/1

Joint work with Branimir Šešelja and Andreja Tepavčević
Let A and B nonempty sets and L a lattice. Then a fuzzy relation ρ is a mapping from $A \times B$ to L.

Rectangular fuzzy relations/1

Joint work with Branimir Šešelja and Andreja Tepavčević
Let A and B nonempty sets and L a lattice. Then a fuzzy relation ρ is a mapping from $A \times B$ to L.

For every $p \in L$, cut relation is an ordinary relation ρ_{p} on $A \times B$ defined by

$$
(x, y) \in \rho_{p} \text { if and only if } \rho(x, y) \geq p
$$

Rectangular fuzzy relations/2

We consider special lattice valued fuzzy relations:
The set $\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}, m, n \in \mathbb{N}$, is called a table of size $m \times n$. Such a table is the domain of a fuzzy relation. We consider

$$
\Gamma_{\mathbb{N}}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}
$$

Here the co-domain is the lattice (\mathbb{N}, \leq), where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively. Moreover

Rectangular fuzzy relations/2

We consider special lattice valued fuzzy relations:
The set $\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}, m, n \in \mathbb{N}$, is called a table of size $m \times n$. Such a table is the domain of a fuzzy relation. We consider

$$
\Gamma_{\mathbb{N}}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}
$$

Here the co-domain is the lattice (\mathbb{N}, \leq), where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively. Moreover

$$
\Gamma_{[0,1]}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow[0,1] .
$$

Here the co-domain is a lattice $([0,1], \leq)$ in which suprema and infima are max and min, respectively.

Rectangular fuzzy relations/3

We say that two rectangles $\{\alpha, \ldots, \beta\} \times\{\gamma, \ldots, \delta\}$ and $\left\{\alpha_{1}, \ldots, \beta_{1}\right\} \times\left\{\gamma_{1}, \ldots, \delta_{1}\right\}$ are distant if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a-c)^{2}+(b-d)^{2} \geq 4$.

Rectangular fuzzy relations/3

We say that two rectangles $\{\alpha, \ldots, \beta\} \times\{\gamma, \ldots, \delta\}$ and $\left\{\alpha_{1}, \ldots, \beta_{1}\right\} \times\left\{\gamma_{1}, \ldots, \delta_{1}\right\}$ are distant if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a-c)^{2}+(b-d)^{2} \geq 4$.

Fuzzy relation Γ is called rectangular if for every $p \in \mathbb{N}$, every nonempty p-cut of Γ is a union of distant rectangles.

Rectangular fuzzy relations/4

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

Rectangular fuzzy relations/4

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

$$
\begin{aligned}
& \Gamma_{1}=\{1,2,3,4,5\} \times\{1,2,3\}, \\
& \Gamma_{2}=\{1,2,3,4,5\} \times\{1,2,3\} \backslash\{(3,1)\}, \\
& \Gamma_{3}=\{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\
& \Gamma_{4}=\{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text { and } \\
& \Gamma_{5}=\{(1,3),(2,3),(4,3),(5,3)\}
\end{aligned}
$$

Rectangular fuzzy relations/5 CHARACTERIZATION THEOREM / A

Theorem 2 / A

A fuzzy relation $\Gamma_{\mathbb{N}}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ is rectangular if and only if for all $(\alpha, \gamma),(\beta, \delta) \in\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $\Gamma_{\mathbb{N}}(\mu, \nu)<\min \left\{\Gamma_{\mathbb{N}}(\alpha, \gamma), \Gamma_{\mathbb{N}}(\beta, \delta)\right\}$, or

Rectangular fuzzy relations/5 CHARACTERIZATION THEOREM / A

Theorem 2 / A

A fuzzy relation $\Gamma_{\mathbb{N}}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ is rectangular if and only if for all $(\alpha, \gamma),(\beta, \delta) \in\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $\Gamma_{\mathbb{N}}(\mu, \nu)<\min \left\{\Gamma_{\mathbb{N}}(\alpha, \gamma), \Gamma_{\mathbb{N}}(\beta, \delta)\right\}$, or
- for all $(\mu, \nu) \in[\min \{\alpha, \beta\}, \max \{\alpha, \beta\}] \times[\min \{\gamma, \delta\}, \max \{\gamma, \delta\}]$,

$$
\Gamma_{\mathbb{N}}(\mu, \nu) \geq \min \left\{\Gamma_{\mathbb{N}}(\alpha, \gamma), \Gamma_{\mathbb{N}}(\beta, \delta)\right\} .
$$

Rectangular fuzzy relations/6 CHARACTERIZATION THEOREM / B

Theorem 2 / B

A fuzzy relation $\Gamma_{[0,1]}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow[0,1]$ is rectangular if and only if for all $(\alpha, \gamma),(\beta, \delta) \in\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that
$\Gamma_{[0,1]}(\mu, \nu)<\min \left\{\Gamma_{[0,1]}(\alpha, \gamma), \Gamma_{[0,1]}(\beta, \delta)\right\}$, or

Rectangular fuzzy relations/6 CHARACTERIZATION THEOREM / B

Theorem 2 / B

A fuzzy relation $\Gamma_{[0,1]}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow[0,1]$ is rectangular if and only if for all $(\alpha, \gamma),(\beta, \delta) \in\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that
$\Gamma_{[0,1]}(\mu, \nu)<\min \left\{\Gamma_{[0,1]}(\alpha, \gamma), \Gamma_{[0,1]}(\beta, \delta)\right\}$, or
- for all $(\mu, \nu) \in[\min \{\alpha, \beta\}, \max \{\alpha, \beta\}] \times[\min \{\gamma, \delta\}, \max \{\gamma, \delta\}]$,

$$
\Gamma_{[0,1]}(\mu, \nu) \geq \min \left\{\Gamma_{[0,1]}(\alpha, \gamma), \Gamma_{[0,1]}(\beta, \delta)\right\} .
$$

Rectangular fuzzy relations/7

Theorem 3

For every fuzzy relation $\Gamma_{\mathbb{N}}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Phi_{\mathbb{N}}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, having the same islands.

Rectangular fuzzy relations/7

Theorem 3

For every fuzzy relation $\Gamma_{\mathbb{N}}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Phi_{\mathbb{N}}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, having the same islands.

For every fuzzy relation $\Gamma_{[0,1]}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow[0,1]$, there is a rectangular fuzzy relation $\Phi_{[0,1]}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow[0,1]$, having the same islands.

Rectangular fuzzy relations/8 CONSTRUCTING ALGORITHM

Let $\Gamma_{[0,1]}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow[0,1]$ be a fuzzy relation. Let $\left\{a_{1}, a_{2}, \ldots, a_{h}\right\}$ be the set of different values of $\Gamma_{[0,1]}$, such that
$0 \leq a_{0}<a_{1}<\ldots<a_{h} \leq 1$.

1. Let $i:=h$
2. Let $(x, y)=(1,1)$
3. If $\Gamma(x, y) \neq a_{i}$, then go to 6
4. Let $\Phi(x, y):=\Gamma(x, y)$.
5. Take a_{k} to be $\Phi(x, y)$. If there is an island of $\Gamma(x, y)$ that contains (x, y) which is a subset of $\Gamma_{a_{k}}$ then go to 6 .
Otherwise $\Phi(x, y)=a_{k-1}$.
6. If $x<m$, then $x:=x+1$, go to 3 . Otherwise, go to 7 .
7. If $y<n$, then $y:=y+1$ and $x:=1$, go to 3 . Otherwise, if $x<m$ go to 6 and if $x=m$ go to 8 .
8. If $i \neq 0$, then $i:=i-1$ and go to 2 . Otherwise go to 9 .
9. End.

Rectangular fuzzy relations/9 LATTICE-VALUED REPRESENTATION

Theorem 4

Let $\Gamma_{\mathbb{N}}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ be a rectangular fuzzy relation. Then there is a lattice L and an L-valued relation Φ, such that the cuts of Φ are precisely all islands of $\Gamma_{\mathbb{N}}$.

Let $\Gamma_{[0,1]}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow[0,1]$ be a rectangular fuzzy relation. Then there is a lattice L and an L-valued relation Φ, such that the cuts of Φ are precisely all islands of $\Gamma_{[0,1]}$.

Rectangular fuzzy relations/10

Let $\Gamma:\{1,2,3,4,5\} \times\{1,2,3,4\} \rightarrow[0,1]$ be a fuzzy relation.

4	0.9	0.8	0.7	0.1	0.5
3	0.8	0.8	0.7	0.1	0.4
2	0.7	0.7	0.7	0.1	0.5
1	0.2	0.2	0.2	0.1	0.6
	1	2	3	4	5

Rectangular fuzzy relations/11

Γ is a rectangular fuzzy relation. Its islands are:

$$
\begin{aligned}
& I_{1}=\{(1,4)\}, \\
& I_{2}=\{(1,3),(1,4),(2,3),(2,4)\}, \\
& I_{3}=\{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}, \\
& I_{4}=\{(5,1)\}, \\
& I_{5}=\{(5,1),(5,2)\}, \\
& I_{6}=\{(5,4)\}, \\
& I_{7}=\{(5,1),(5,2),(5,3),(5,4)\}, \\
& I_{8}=\{(1,2),(1,3),(1,4),(2,2),(2,3), \\
& (2,4),(3,2),(3,3),(3,4),(1,1),(2,1),(3,1)\}, \\
& I_{9}=\{1,2,3,4,5\} \times\{1,2,3,4\} .
\end{aligned}
$$

Rectangular fuzzy relations/12

Its cut relations are:
$\Gamma_{1}=\emptyset$
$\Gamma_{0.9}=I_{1}$ (one-element island)
$\Gamma_{0.8}=I_{2}$ (four-element square island)
$\Gamma_{0.7}=I_{3}$ (nine-element square island)
$\Gamma_{0.6}=I_{3} \cup I_{4}$ (this cut is a disjoint union of two islands)
$\Gamma_{0.5}=I_{3} \cup I_{5} \cup I_{6}$ (union of three islands)
$\Gamma_{0.4}=I_{3} \cup I_{7}$ (union of two islands)
$\Gamma_{0.2}=I_{7} \cup I_{8}$ (union of two islands)
$\Gamma_{0.1}=\{1,2,3,4,5\} \times\{1,2,3,4\}=I_{9}$ (the whole domain)

Rectangular fuzzy relations/ 13

Rectangular fuzzy relations/14

Theorem 5

For every rectangular fuzzy relation $\Phi_{\mathbb{N}}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Psi_{\mathbb{N}}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, having the same islands and in $\Psi_{\mathbb{N}}$ every island appears exactly in one cut.

[^0]
Rectangular fuzzy relations/14

Theorem 5

For every rectangular fuzzy relation $\Phi_{\mathbb{N}}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Psi_{\mathbb{N}}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, having the same islands and in $\Psi_{\mathbb{N}}$ every island appears exactly in one cut.

If a fuzzy rectangular relation $\Psi_{\mathbb{N}}$ has the property that each island appears exactly in one cut, then we call it standard fuzzy rectangular relation. We denote by $\Lambda(m, n)$ the maximum number of different p-cuts of a standard fuzzy rectangular relation on the rectangular table of size $m \times n$.

Rectangular fuzzy relations/14

Theorem 5

For every rectangular fuzzy relation $\Phi_{\mathbb{N}}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular fuzzy relation $\Psi_{\mathbb{N}}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, having the same islands and in $\Psi_{\mathbb{N}}$ every island appears exactly in one cut.

If a fuzzy rectangular relation $\Psi_{\mathbb{N}}$ has the property that each island appears exactly in one cut, then we call it standard fuzzy rectangular relation. We denote by $\Lambda(m, n)$ the maximum number of different p-cuts of a standard fuzzy rectangular relation on the rectangular table of size $m \times n$.

Theorem 6
$\Lambda(m, n)=m+n-1$.

[^0]: Theorem 6

