Lattice-valued functions

Eszter K. Horváth, Szeged

Co-authors: Branimir Šešelja, Andreja Tepavčević

Miskolc, 2017, szeptember 13. .

Lattice-valued functions

Let S be a nonempty set and L a complete lattice. Every mapping $\mu: S \rightarrow L$ is called a lattice-valued (L-valued) function on S.

Cut set (p-cut)

Let $p \in L$. A cut set of an L-valued function $\mu: S \rightarrow L$ (a p-cut) is a subset $\mu_{p} \subseteq S$ defined by:

$$
x \in \mu_{p} \text { if and only if } \mu(x) \geq p
$$

In other words, a p-cut of $\mu: S \rightarrow L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$
\mu_{p}=\mu^{-1}(\uparrow p)
$$

Cut set (p-cut)

Let $p \in L$. A cut set of an L-valued function $\mu: S \rightarrow L$ (a p-cut) is a subset $\mu_{p} \subseteq S$ defined by:

$$
\begin{equation*}
x \in \mu_{p} \text { if and only if } \mu(x) \geq p \tag{1}
\end{equation*}
$$

Cut set (p-cut)

Let $p \in L$. A cut set of an L-valued function $\mu: S \rightarrow L$ (a p-cut) is a subset $\mu_{p} \subseteq S$ defined by:

$$
\begin{equation*}
x \in \mu_{p} \text { if and only if } \mu(x) \geq p \tag{1}
\end{equation*}
$$

In other words, a p-cut of $\mu: S \rightarrow L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$
\begin{equation*}
\mu_{p}=\mu^{-1}(\uparrow p) \tag{2}
\end{equation*}
$$

Cut set (p-cut)

Let $p \in L$. A cut set of an L-valued function $\mu: S \rightarrow L$ (a p-cut) is a subset $\mu_{p} \subseteq S$ defined by:

$$
\begin{equation*}
x \in \mu_{p} \text { if and only if } \mu(x) \geq p \tag{1}
\end{equation*}
$$

In other words, a p-cut of $\mu: S \rightarrow L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$
\begin{equation*}
\mu_{p}=\mu^{-1}(\uparrow p) \tag{2}
\end{equation*}
$$

It is obvious that for every $p, q \in L, p \leq q$ implies $\mu_{q} \subseteq \mu_{p}$.

Cuts and closure systems

If $\mu: S \rightarrow L$ is an L-valued function on S, then the collection μ_{L} of all cuts of μ is a closure system on S under the set-inclusion.

Cuts and closure systems

If $\mu: S \rightarrow L$ is an L-valued function on S, then the collection μ_{L} of all cuts of μ is a closure system on S under the set-inclusion.

Let \mathcal{F} be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu: S \rightarrow L$, such that the collection μ_{L} of cuts of μ is \mathcal{F}.

Cuts and closure systems

If $\mu: S \rightarrow L$ is an L-valued function on S, then the collection μ_{L} of all cuts of μ is a closure system on S under the set-inclusion.

Let \mathcal{F} be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu: S \rightarrow L$, such that the collection μ_{L} of cuts of μ is \mathcal{F}.

A required lattice L is the collection \mathcal{F} ordered by the reversed-inclusion, and that $\mu: S \rightarrow L$ can be defined as follows:

$$
\begin{equation*}
\mu(x)=\bigcap\{f \in \mathcal{F} \mid x \in f\} . \tag{3}
\end{equation*}
$$

The relation \approx on L

Given an L-valued function $\mu: S \rightarrow L$, we define the relation \approx on L : for $p, q \in L$

$$
\begin{equation*}
p \approx q \text { if and only if } \mu_{p}=\mu_{q} . \tag{4}
\end{equation*}
$$

The relation \approx on L

Given an L-valued function $\mu: S \rightarrow L$, we define the relation \approx on L : for $p, q \in L$

$$
\begin{equation*}
p \approx q \text { if and only if } \mu_{p}=\mu_{q} . \tag{4}
\end{equation*}
$$

The relation \approx is an equivalence on L, and

$$
\begin{equation*}
p \approx q \text { if and only if } \uparrow p \cap \mu(S)=\uparrow q \cap \mu(S) \tag{5}
\end{equation*}
$$

where $\mu(S)=\{r \in L \mid r=\mu(x)$ for some $x \in S\}$.

We denote by L / \approx the collection of equivalence classes under \approx

The relation \approx on L

Given an L-valued function $\mu: S \rightarrow L$, we define the relation \approx on L : for $p, q \in L$

$$
\begin{equation*}
p \approx q \text { if and only if } \mu_{p}=\mu_{q} . \tag{4}
\end{equation*}
$$

The relation \approx is an equivalence on L, and

$$
\begin{equation*}
p \approx q \text { if and only if } \uparrow p \cap \mu(S)=\uparrow q \cap \mu(S) \tag{5}
\end{equation*}
$$

where $\mu(S)=\{r \in L \mid r=\mu(x)$ for some $x \in S\}$.

We denote by L / \approx the collection of equivalence classes under \approx.

The collection of cuts

Let (μ_{L}, \leq) be the poset with $\mu_{L}=\left\{\mu_{p} \mid p \in L\right\}$ (the collection of cuts of μ) and the order \leq being the inverse of the set-inclusion: for $\mu_{p}, \mu_{q} \in \mu_{L}$,

$$
\mu_{p} \leq \mu_{q} \text { if and only if } \mu_{q} \subseteq \mu_{p}
$$

The collection of cuts

Let (μ_{L}, \leq) be the poset with $\mu_{L}=\left\{\mu_{p} \mid p \in L\right\}$ (the collection of cuts of μ) and the order \leq being the inverse of the set-inclusion: for $\mu_{p}, \mu_{q} \in \mu_{L}$,

$$
\mu_{p} \leq \mu_{q} \text { if and only if } \mu_{q} \subseteq \mu_{p}
$$

(μ_{L}, \leq) is a complete lattice and for every collection $\left\{\mu_{p} \mid p \in L_{1}\right\}, L_{1} \subseteq L$ of cuts of μ, we have

$$
\begin{equation*}
\bigcap\left\{\mu_{p} \mid p \in L_{1}\right\}=\mu_{\vee\left(p \mid p \in L_{1}\right)} . \tag{6}
\end{equation*}
$$

The quotient L / \approx

Each \approx-class contains its supremum:

$$
\begin{equation*}
\bigvee[p]_{\approx} \in[p]_{\approx} . \tag{7}
\end{equation*}
$$

The quotient L / \approx

Each \approx-class contains its supremum:

$$
\begin{equation*}
\bigvee[p]_{\approx} \in[p]_{\approx} . \tag{7}
\end{equation*}
$$

The mapping $p \mapsto \bigvee[p]_{\approx}$ is a closure operator on L.

The quotient L / \approx

Each \approx-class contains its supremum:

$$
\begin{equation*}
\bigvee[p]_{\approx} \in[p]_{\approx} . \tag{7}
\end{equation*}
$$

The mapping $p \mapsto \bigvee[p] \approx$ is a closure operator on L.

The quotient L / \approx can be ordered by the relation $\leq_{L /} \approx$ defined as follows:

$$
[p]_{\approx} \leq_{L / \approx}[q]_{\approx} \text { if and only if } \uparrow q \cap \mu(S) \subseteq \uparrow p \cap \mu(S) .
$$

The order $\leq_{L / \approx}$ of classes in L / \approx corresponds to the order of suprema of classes in L (we denote the order in L by \leq_{L}):

The poset $\left(L / \approx, \leq_{L / \approx}\right)$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:

The poset $\left(L / \approx, \leq_{L / \approx}\right)$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:

$$
\text { (i) }[p]_{\approx} \leq_{L /} \approx[q]_{\approx} \text { if and only if } \bigvee[p]_{\approx} \leq_{L} \bigvee[q]_{\approx} \text {. }
$$

The poset $(L / \approx, \leq L / \approx)$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:

(ii) The mapping $[p]_{\approx \mapsto} \mapsto[p]_{\approx}$ is an injection of L / \approx into L.

The poset $\left(L / \approx, \leq_{L / \approx}\right)$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:
(i) $[p]_{\approx} \leq_{L / \approx}[q]_{\approx}$ if and only if $\bigvee[p]_{\approx} \leq_{L} \bigvee[q]_{\approx}$.
(ii) The mapping $[p]_{\approx \mapsto \bigvee}[p]_{\approx}$ is an injection of L / \approx into L.

The sub-poset $\left(\bigvee[p]_{\approx}, \leq_{L}\right)$ of L is isomorphic to the lattice $\left(L / \approx, \leq_{L / \approx}\right)$ under $\bigvee[p]_{\approx} \mapsto[p]_{\approx}$.

The poset $(L / \approx, \leq L / \approx)$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:
(i) $[p]_{\approx} \leq_{L /} \approx[q]_{\approx}$ if and only if $\bigvee[p]_{\approx} \leq_{L} V[q]_{\approx}$.
(ii) The mapping $[p]_{\approx \mapsto} \mapsto[p]_{\approx}$ is an injection of L / \approx into L.

The sub-poset $\left(\bigvee[p]_{\approx}, \leq_{L}\right)$ of L is isomorphic to the lattice $\left(L / \approx, \leq_{L / \approx}\right)$ under $\bigvee[p]_{\approx} \mapsto[p]_{\approx}$.

Let $\mu: S \rightarrow L$ be an L-valued function on S. The lattice (μ_{L}, \leq) of cuts of μ is isomorphic with the lattice $\left(L / \approx, \leq_{L / \approx)}\right)$ of \approx-classes in L under the mapping $\mu_{p} \mapsto[p]_{\approx}$.

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.
Let $\widehat{\mu}: S \rightarrow \mathcal{F}$, where

$$
\begin{equation*}
\widehat{\mu}(x):=\bigcap\left\{\mu_{p} \in \mu_{L} \mid x \in \mu_{p}\right\} . \tag{8}
\end{equation*}
$$

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.
Let $\widehat{\mu}: S \rightarrow \mathcal{F}$, where

$$
\begin{equation*}
\widehat{\mu}(x):=\bigcap\left\{\mu_{p} \in \mu_{L} \mid x \in \mu_{p}\right\} . \tag{8}
\end{equation*}
$$

Properties:

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.
Let $\widehat{\mu}: S \rightarrow \mathcal{F}$, where

$$
\begin{equation*}
\widehat{\mu}(x):=\bigcap\left\{\mu_{p} \in \mu_{L} \mid x \in \mu_{p}\right\} . \tag{8}
\end{equation*}
$$

Properties:
$\widehat{\mu}$ has the same cuts as μ.
$\widehat{\mu}$ has one-element classes of the equivalence relation \approx
Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\widehat{\mu}$.

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.
Let $\widehat{\mu}: S \rightarrow \mathcal{F}$, where

$$
\begin{equation*}
\widehat{\mu}(x):=\bigcap\left\{\mu_{p} \in \mu_{L} \mid x \in \mu_{p}\right\} . \tag{8}
\end{equation*}
$$

Properties:
$\widehat{\mu}$ has the same cuts as μ.
$\widehat{\mu}$ has one-element classes of the equivalence relation \approx.
Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\widehat{\mu}$.

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.
Let $\widehat{\mu}: S \rightarrow \mathcal{F}$, where

$$
\begin{equation*}
\widehat{\mu}(x):=\bigcap\left\{\mu_{p} \in \mu_{L} \mid x \in \mu_{p}\right\} . \tag{8}
\end{equation*}
$$

Properties:
$\widehat{\mu}$ has the same cuts as μ.
$\widehat{\mu}$ has one-element classes of the equivalence relation \approx.
Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\widehat{\mu}$.

Example

$$
S=\{a, b, c, d\}
$$

$$
\begin{aligned}
\mu & =\left(\begin{array}{cccc}
a & b & c & d \\
p & s & r & t
\end{array}\right) \\
\widehat{\mu} & =\widehat{\nu}=\left(\begin{array}{cccc}
a & b & c & d \\
\{a\} & \{a, b\} & \{c\} & \{c, d\}
\end{array}\right)
\end{aligned}
$$

Lattice-valued Boolean functions

A Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}, n \in \mathbb{N}$.
where L is a complete lattice.
Whe alen deal wnith Inttien unlued n-variable functions on a finite
where L is a complete lattice.

Lattice-valued Boolean functions

A Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}, n \in \mathbb{N}$. A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^{n} \rightarrow L
$$

where L is a complete lattice.
where L is a complete lattice.
M/e wee alen n-cute of latticevalued functions as characteristic

Lattice-valued Boolean functions

A Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}, n \in \mathbb{N}$.
A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^{n} \rightarrow L
$$

where L is a complete lattice.
We also deal with lattice-valued n-variable functions on a finite domain $\{0,1, \ldots, k-1\}$:

$$
f:\{0,1, \ldots, k-1\}^{n} \rightarrow L
$$

where L is a complete lattice.

characteristic function) a Boolean function.

Lattice-valued Boolean functions

A Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}, n \in \mathbb{N}$.
A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^{n} \rightarrow L
$$

where L is a complete lattice.
We also deal with lattice-valued n-variable functions on a finite domain $\{0,1, \ldots, k-1\}$:

$$
f:\{0,1, \ldots, k-1\}^{n} \rightarrow L
$$

where L is a complete lattice.
We use also p-cuts of lattice-valued functions as characteristic functions: for $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$ and $p \in L$, we have

$$
f_{p}:\{0,1, \ldots, k-1\}^{n} \rightarrow\{0,1\}
$$

such that $f_{p}\left(x_{1}, \ldots, x_{n}\right)=1$ if and only if $f\left(x_{1}, \ldots, x_{n}\right) \geq p$.
characteristic function) a Boolean function.

Lattice-valued Boolean functions

A Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}, n \in \mathbb{N}$.
A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^{n} \rightarrow L
$$

where L is a complete lattice.
We also deal with lattice-valued n-variable functions on a finite domain $\{0,1, \ldots, k-1\}$:

$$
f:\{0,1, \ldots, k-1\}^{n} \rightarrow L
$$

where L is a complete lattice.
We use also p-cuts of lattice-valued functions as characteristic functions: for $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$ and $p \in L$, we have

$$
f_{p}:\{0,1, \ldots, k-1\}^{n} \rightarrow\{0,1\}
$$

such that $f_{p}\left(x_{1}, \ldots, x_{n}\right)=1$ if and only if $f\left(x_{1}, \ldots, x_{n}\right) \geq p$. Clearly, a cut of a lattice-valued Boolean function is (as a characteristic function) a Boolean function.

Invariance group

As usual, by S_{n} we denote the symmetric group of all permutations over an n-element set. If f is an n-variable function on a finite domain X and $\sigma \in S_{n}$, then f is invariant under σ, symbolically $\sigma \vdash f$, if for all $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

Invariance group

As usual, by S_{n} we denote the symmetric group of all permutations over an n-element set. If f is an n-variable function on a finite domain X and $\sigma \in S_{n}$, then f is invariant under σ, symbolically $\sigma \vdash f$, if for all $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

If f is invariant under all permutations in $G \leq S_{n}$ and not invariant under any permutation from $S_{n} \backslash G$, then G is called the invariance group of f, and it is denoted by $G(f)$.

Representability

A group $G \leq S_{n}$ is said to be (k, m)-representable if there is a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{1, \ldots, m\}$ whose invariance group is G.

Representability

A group $G \leq S_{n}$ is said to be (k, m)-representable if there is a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow \mathbb{N}$, then it is called (k, ∞)-representable.

Representability

A group $G \leq S_{n}$ is said to be (k, m)-representable if there is a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{1, \ldots, m\}$ whose invariance group is G.
If G is the invariance group of a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow \mathbb{N}$, then it is called (k, ∞)-representable.
$G \leq S_{n}$ is called m-representable if it is the invariance group of a function $f:\{0,1\}^{n} \rightarrow\{1, \ldots, m\}$;

By the above, representability is equivalent with
($2, \infty$)-representability.

Representability

A group $G \leq S_{n}$ is said to be (k, m)-representable if there is a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow \mathbb{N}$, then it is called (k, ∞)-representable.
$G \leq S_{n}$ is called m-representable if it is the invariance group of a function $f:\{0,1\}^{n} \rightarrow\{1, \ldots, m\}$;
it is called representable if it is m-representable for some $m \in \mathbb{N}$.
By the above, representability is equivalent with
$(2, \infty)$-representability.

Representability

A group $G \leq S_{n}$ is said to be (k, m)-representable if there is a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{1, \ldots, m\}$ whose invariance group is G.
If G is the invariance group of a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow \mathbb{N}$, then it is called (k, ∞)-representable.
$G \leq S_{n}$ is called m-representable if it is the invariance group of a function $f:\{0,1\}^{n} \rightarrow\{1, \ldots, m\}$;
it is called representable if it is m-representable for some $m \in \mathbb{N}$.
By the above, representability is equivalent with
($2, \infty$)-representability.

Representability by lattice-valued functions

We say that a permutation group $G \leq S_{n}$ is (k, L)-representable, if there is a lattice-valued function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.

being a three element chain), but not $(2,2)$-representable.

Representability by lattice-valued functions

We say that a permutation group $G \leq S_{n}$ is (k, L)-representable, if there is a lattice-valued function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.

In particular, a $(2, L)$-representable group is the invariance group of a lattice-valued Boolean function $f:\{0,1\}^{n} \rightarrow L$.

The notion of $(2, L)$-representability is more general than (2) 2)-renresentahility An examnle is the Klein 4-oroın: being a three element chain), but not $(2,2)$-representable.

Representability by lattice-valued functions

We say that a permutation group $G \leq S_{n}$ is (k, L)-representable, if there is a lattice-valued function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.

In particular, a $(2, L)$-representable group is the invariance group of a lattice-valued Boolean function $f:\{0,1\}^{n} \rightarrow L$.

The notion of $(2, L)$-representability is more general than $(2,2)$-representability. An example is the Klein 4-group: $\{$ id, $(12)(34),(13)(24),(14)(23)\}$, which is $(2, L)$ representable (for L being a three element chain), but not $(2,2)$-representable.

A Galois connection for invariance groups

Let $O_{k}^{(n)}=\left\{f \mid f: \mathbf{k}^{n} \rightarrow \mathbf{k}\right\}$ denote the set of all n-ary operations on \mathbf{k}, and for $F \subseteq O_{k}^{(n)}$ and $G \subseteq S_{n}$ let

$$
\begin{array}{ll}
F^{\vdash}:=\left\{\sigma \in S_{n} \mid \forall f \in F: \sigma \vdash f\right\}, & \bar{F}^{(k)}:=\left(F^{\vdash}\right)^{\vdash}, \\
G^{\vdash}:=\left\{f \in O_{k}^{(n)} \mid \forall \sigma \in G: \sigma \vdash f\right\}, & \bar{G}^{(k)}:=\left(G^{\vdash}\right)^{\vdash} .
\end{array}
$$

A Galois connection for invariance groups

Let $O_{k}^{(n)}=\left\{f \mid f: \mathbf{k}^{n} \rightarrow \mathbf{k}\right\}$ denote the set of all n-ary operations on \mathbf{k}, and for $F \subseteq O_{k}^{(n)}$ and $G \subseteq S_{n}$ let

$$
\begin{array}{lll}
F^{\vdash}:=\left\{\sigma \in S_{n} \mid \forall f \in F: \sigma \vdash f\right\}, & \bar{F}^{(k)}:=\left(F^{\vdash}\right)^{\vdash}, \\
G^{\vdash}:=\left\{f \in O_{k}^{(n)} \mid \forall \sigma \in G: \sigma \vdash f\right\}, & \bar{G}^{(k)}:=\left(G^{\vdash}\right)^{\vdash} .
\end{array}
$$

The assignment $G \mapsto \bar{G}^{(k)}$ is a closure operator on S_{n}, and it is easy to see that $\bar{G}^{(k)}$ is a subgroup of S_{n} for every subset $G \subseteq S_{n}$ (even if G is not a group). For $G \leq S_{n}$, we call $\bar{G}^{(k)}$ the Galois closure of G over \mathbf{k}, and we say that G is Galois closed over \mathbf{k} if $\bar{G}^{(k)}=G$.

Galois closed groups

A group $G \leq S_{n}$ is Galois closed over \mathbf{k} if and only if G is (k, ∞)-representable.

Galois closed groups

A group $G \leq S_{n}$ is Galois closed over \mathbf{k} if and only if G is (k, ∞)-representable.

For every $G \leq S_{n}$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}}\left(S_{n}\right)_{a} \cdot G
$$

Galois closed groups

A group $G \leq S_{n}$ is Galois closed over \mathbf{k} if and only if G is (k, ∞)-representable.

For every $G \leq S_{n}$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}}\left(S_{n}\right)_{a} \cdot G
$$

For arbitrary $k, n \geq 2$, characterize those subgroups of S_{n} that are Galois closed over \mathbf{k}.

Theorem (H., Makay, Pöschel, Waldhauser

Galois closed groups

A group $G \leq S_{n}$ is Galois closed over \mathbf{k} if and only if G is (k, ∞)-representable.

For every $G \leq S_{n}$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}}\left(S_{n}\right)_{a} \cdot G
$$

For arbitrary $k, n \geq 2$, characterize those subgroups of S_{n} that are Galois closed over \mathbf{k}.

Theorem (H., Makay, Pöschel, Waldhauser) Let $n>\max \left(2^{d}, d^{2}+d\right)$ and $G \leq S_{n}$. Then G is not Galois closed over \mathbf{k} if and only if $G=A_{B} \times L$ or $G<_{\text {sd }} S_{B} \times L$, where $B \subseteq \mathbf{n}$ is such that $D:=\mathbf{n} \backslash B$ has less than d elements, and L is an arbitrary permutation group on D.

Representability by lattice-valued functions

One can easily check that a permutation group $G \subseteq S_{n}$ is L-representable if and only if it is Galois closed over 2.

Similarly, it is easy to show that a permutation group is
(k, L)-representable if and only if it is Galois closed over the k-element domain.

Representability by lattice-valued functions

One can easily check that a permutation group $G \subseteq S_{n}$ is L-representable if and only if it is Galois closed over 2.

Similarly, it is easy to show that a permutation group is (k, L)-representable if and only if it is Galois closed over the k-element domain.

Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma: A \rightarrow A, \mu: A \rightarrow L, \psi: L \rightarrow L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_{p}=\sigma \circ \mu \circ \psi_{p} .
$$

Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma: A \rightarrow A, \mu: A \rightarrow L, \psi: L \rightarrow L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_{p}=\sigma \circ \mu \circ \psi_{p} .
$$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu: A \rightarrow L$. Then the following holds.

Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma: A \rightarrow A, \mu: A \rightarrow L, \psi: L \rightarrow L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_{p}=\sigma \circ \mu \circ \psi_{p} .
$$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu: A \rightarrow L$. Then the following holds.

$$
\text { (i) } \mu_{p}=\mu \circ\left(\mathcal{I}_{L}\right)_{p} \text {, where } \mathcal{I}_{L} \text { is the identity mapping } \mathcal{I}_{\mathcal{L}}: L \rightarrow L \text {. }
$$

Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma: A \rightarrow A, \mu: A \rightarrow L, \psi: L \rightarrow L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_{p}=\sigma \circ \mu \circ \psi_{p} .
$$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu: A \rightarrow L$. Then the following holds.
(i) $\mu_{p}=\mu \circ\left(\mathcal{I}_{L}\right)_{p}$, where \mathcal{I}_{L} is the identity mapping $\mathcal{I}_{\mathcal{L}}: L \rightarrow L$.
(ii) $(\sigma \circ \mu)_{p}=\sigma \circ \mu_{p}$, for $\sigma: A \rightarrow A$.

Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma: A \rightarrow A, \mu: A \rightarrow L, \psi: L \rightarrow L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_{p}=\sigma \circ \mu \circ \psi_{p} .
$$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu: A \rightarrow L$. Then the following holds.
(i) $\mu_{p}=\mu \circ\left(\mathcal{I}_{L}\right)_{p}$, where \mathcal{I}_{L} is the identity mapping $\mathcal{I}_{\mathcal{L}}: L \rightarrow L$.
(ii) $(\sigma \circ \mu)_{p}=\sigma \circ \mu_{p}$, for $\sigma: A \rightarrow A$.
(iii) $(\mu \circ \psi)_{p}=\mu \circ \psi_{p}$, where ψ is a map $\psi: L \rightarrow L$.

Invariance groups of lattice-valued functions via cuts

Proposition Let $f:\{0, \ldots, k-1\}^{n} \rightarrow L$ and $\sigma \in S_{n}$. Then $\sigma \vdash f$ if and only if for every $p \in L, \sigma \vdash f_{p}$.

Invariance groups of lattice-valued functions via cuts

Proposition Let $f:\{0, \ldots, k-1\}^{n} \rightarrow L$ and $\sigma \in S_{n}$. Then

$$
\sigma \vdash f \text { if and only if for every } p \in L, \sigma \vdash f_{p} \text {. }
$$

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

Invariance groups of lattice-valued functions via cuts

Proposition Let $f:\{0, \ldots, k-1\}^{n} \rightarrow L$ and $\sigma \in S_{n}$. Then $\sigma \vdash f$ if and only if for every $p \in L, \sigma \vdash f_{p}$.

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

If $f_{1}:\{0, \ldots, k-1\}^{n} \rightarrow L_{1}$ and $f_{2}:\{0, \ldots, k-1\}^{n} \rightarrow L_{2}$ are two n-variable lattice-valued functions on the same domain, then $\widehat{f}_{1}=\widehat{f}_{2}$ implies $G\left(f_{1}\right)=G\left(f_{2}\right)$.

Representation theorem

For every $n \in \mathbb{N}$, there is a lattice L and a lattice valued Boolean function $F:\{0,1\}^{n} \rightarrow L$ satisfying the following: If $G \leq S_{n}$ and $G=G(f)$ for a Boolean function f, then $G=G\left(F_{p}\right)$, for a cut F_{p}.

Representation theorem on the k-element set

Every subgroups of S_{n} is an invariance group of a function $\{0, \ldots, k-1\}^{n} \rightarrow\{0, \ldots, k-1\}$ if and only if $k \geq n$.

Representation theorem on the k-element set

Every subgroups of S_{n} is an invariance group of a function $\{0, \ldots, k-1\}^{n} \rightarrow\{0, \ldots, k-1\}$ if and only if $k \geq n$.

If $k \geq n$, then for every subgroup G of S_{n} there exists a function $f:\{0, \ldots, k-1\}^{n} \rightarrow\{0,1\}$ such that the invariance group of f is exactly G.

Representation theorem on the k-element set

Every subgroups of S_{n} is an invariance group of a function $\{0, \ldots, k-1\}^{n} \rightarrow\{0, \ldots, k-1\}$ if and only if $k \geq n$.

If $k \geq n$, then for every subgroup G of S_{n} there exists a function $f:\{0, \ldots, k-1\}^{n} \rightarrow\{0,1\}$ such that the invariance group of f is exactly G.

For $k, n \in \mathbb{N}$ and $k \geq n$, there is a lattice L and a lattice valued function $F:\{0, \ldots, k-1\}^{n} \rightarrow L$ such that the following holds: If $G \leq S_{n}$, then $G=G\left(F_{p}\right)$ for a cut F_{p} of of F.

Linear combination

A lattice-valued Boolean function is a map $\mu:\{0,1\}^{n} \rightarrow L$ where L is a bounded lattice and $n \in\langle 1,2,3, \ldots\rangle$.

Linear combination

A lattice-valued Boolean function is a map $\mu:\{0,1\}^{n} \rightarrow L$ where L is a bounded lattice and $n \in\langle 1,2,3, \ldots\rangle$.
We say that μ can be given by a linear combination (in L) if there are $w_{1}, \ldots, w_{n} \in L$ such that, for all $x=\left\{x_{1}, \ldots, x_{n}\right\} \in\{0,1\}^{n}$,

$$
\begin{equation*}
\mu(x)=\bigvee_{i=1}^{n} w_{i} x_{i}, \quad \text { that is, } \quad \mu(x)=\bigvee_{i=1}^{n}\left(w_{i} \wedge x_{i}\right) \tag{9}
\end{equation*}
$$

Cuts and closure systems

For $p \in L$, the set

$$
\begin{equation*}
\mu_{p}:=\left\{x \in\{0,1\}^{n}: \mu(x) \geq p\right\} \tag{10}
\end{equation*}
$$

is called a cut of μ.
A closure system \mathcal{F} over B_{n} is a \cap-subsemilattice of the powerset
necessarily a complete \cap-semilattice.
A closure system \mathcal{F} determines a closure operator in the standard way. We only need the closures of singleton sets, that is,

Cuts and closure systems

For $p \in L$, the set

$$
\begin{equation*}
\mu_{p}:=\left\{x \in\{0,1\}^{n}: \mu(x) \geq p\right\} \tag{10}
\end{equation*}
$$

is called a cut of μ.
A closure system \mathcal{F} over B_{n} is a \cap-subsemilattice of the powerset lattice $P\left(B_{n}\right)=\left\langle P\left(B_{n}\right) ; \cup, \cap\right\rangle$ such that $B_{n} \in \mathcal{F}$. By finiteness, \mathcal{F} is necessarily a complete \cap-semilattice.
A closure system \mathcal{F} determines a closure operator in the standard
way. We only need the closures of singleton sets, that is,

Cuts and closure systems

For $p \in L$, the set

$$
\begin{equation*}
\mu_{p}:=\left\{x \in\{0,1\}^{n}: \mu(x) \geq p\right\} \tag{10}
\end{equation*}
$$

is called a cut of μ.
A closure system \mathcal{F} over B_{n} is a \cap-subsemilattice of the powerset lattice $P\left(B_{n}\right)=\left\langle P\left(B_{n}\right) ; \cup \cap\right\rangle$ such that $B_{n} \in \mathcal{F}$. By finiteness, \mathcal{F} is necessarily a complete \cap-semilattice.
A closure system \mathcal{F} determines a closure operator in the standard way. We only need the closures of singleton sets, that is,

$$
\begin{equation*}
\text { for } x \in B_{n} \text {, we have } \bar{x}:=\bigcap\{f \in \mathcal{F}: x \in f\} . \tag{11}
\end{equation*}
$$

$\{\mathrm{V}, 0\}$-homomorphism

If $\mu: B_{n} \rightarrow L$ such that $\mu(0)=0$ and, for all $x, y \in B_{n}$, $\mu(x \vee y)=\mu(x) \vee \mu(y)$, then μ is called a $\{\vee, 0\}$-homomorphism.

$\{\mathrm{V}, 0\}$-homomorphism

If $\mu: B_{n} \rightarrow L$ such that $\mu(0)=0$ and, for all $x, y \in B_{n}$, $\mu(x \vee y)=\mu(x) \vee \mu(y)$, then μ is called a $\{\vee, 0\}$-homomorphism.

A lattice-valued function $B_{n} \rightarrow L$ can be given by a linear combination in L iff it is a $\{\vee, 0\}$-homomorphism.

$\{\mathrm{V}, 0\}$-homomorphism

If $\mu: B_{n} \rightarrow L$ such that $\mu(0)=0$ and, for all $x, y \in B_{n}$, $\mu(x \vee y)=\mu(x) \vee \mu(y)$, then μ is called a $\{\vee, 0\}$-homomorphism.

A lattice-valued function $B_{n} \rightarrow L$ can be given by a linear combination in L iff it is a $\{\vee, 0\}$-homomorphism.

$$
\begin{aligned}
& \mu(x \vee y)=\bigvee_{i} w_{i}\left(x_{i} \vee y_{i}\right)=\bigvee_{i}\left(w_{i} x_{i} \vee w_{i} y_{i}\right)=\bigvee_{i} w_{i} x_{i} \vee \bigvee_{i} w_{i} y_{i}= \\
& \mu(x) \vee \mu(y) .
\end{aligned}
$$

$\{\mathrm{V}, 0\}$-homomorphism

If $\mu: B_{n} \rightarrow L$ such that $\mu(0)=0$ and, for all $x, y \in B_{n}$, $\mu(x \vee y)=\mu(x) \vee \mu(y)$, then μ is called a $\{\vee, 0\}$-homomorphism.

A lattice-valued function $B_{n} \rightarrow L$ can be given by a linear combination in L iff it is a $\{\vee, 0\}$-homomorphism.
$\mu(x \vee y)=\bigvee_{i} w_{i}\left(x_{i} \vee y_{i}\right)=\bigvee_{i}\left(w_{i} x_{i} \vee w_{i} y_{i}\right)=\bigvee_{i} w_{i} x_{i} \vee \bigvee_{i} w_{i} y_{i}=$ $\mu(x) \vee \mu(y)$.

Let $e^{(i)}=\langle 0, \ldots, 0,1,0, \ldots, 0\rangle \in B_{n}$ where 1 stands in the i-th place. Define $w_{i}:=\mu\left(e^{(i)}\right)$. Observe that $\mu\left(e^{(i)} \cdot 1\right)=w_{i}=w_{i} \cdot 1$ and $\mu\left(e^{(i)} \cdot 0\right)=0=w_{i} \cdot 0$, that is, $\mu\left(e^{(i)} \cdot x_{i}\right)=w_{i} \cdot x_{i}$. Therefore, for $x \in B_{n}$, we obtain $\mu(x)=\mu\left(\bigvee_{i} e^{(i)} x_{i}\right)=\bigvee_{i} \mu\left(e^{(i)} x_{i}\right)=\bigvee_{i} w_{i} \cdot x_{i}$.

Up-sets

If $\varnothing \neq X \subseteq B_{n}$ such that $(\forall x \in X)\left(\forall y \in B_{n}\right)(x \leq y$ then $y \in X)$, then X is an up-set of B_{n}.

Up-sets

If $\varnothing \neq X \subseteq B_{n}$ such that $(\forall x \in X)\left(\forall y \in B_{n}\right)(x \leq y$ then $y \in X)$, then X is an up-set of B_{n}.

The lattice-valued function $\mu: B_{n} \rightarrow L$ is isotone iff all the cuts of μ are up-sets.

Closure systems of up-sets, linear combinations

Let \mathcal{F} be a set consisting of some up-sets of B_{n}. Then, the following three conditions are equivalent.

Closure systems of up-sets, linear combinations

Let \mathcal{F} be a set consisting of some up-sets of B_{n}. Then, the following three conditions are equivalent.
(i) \mathcal{F} is a closure system over B_{n}, and for all $x, y \in B_{n}, \bar{x} \subseteq \bar{y}$ implies $\overline{x \vee y}=\bar{x}$.
(iii) There exist a bounded lattice L and a lattice-valued function $\mu: B_{n} \rightarrow L$ given by a linear combination such that \mathcal{F} is the family c

Closure systems of up-sets, linear combinations

Let \mathcal{F} be a set consisting of some up-sets of B_{n}. Then, the following three conditions are equivalent.
(i) \mathcal{F} is a closure system over B_{n}, and for all $x, y \in B_{n}, \bar{x} \subseteq \bar{y}$ implies $\overline{x \vee y}=\bar{x}$.
(ii) \mathcal{F} is a closure system over B_{n}, and for all $x, y \in B_{n}$, $\overline{x \vee y}=\bar{x} \cap \bar{y}$.

Closure systems of up-sets, linear combinations

Let \mathcal{F} be a set consisting of some up-sets of B_{n}. Then, the following three conditions are equivalent.
(i) \mathcal{F} is a closure system over B_{n}, and for all $x, y \in B_{n}, \bar{x} \subseteq \bar{y}$ implies $\overline{x \vee y}=\bar{x}$.
(ii) \mathcal{F} is a closure system over B_{n}, and for all $x, y \in B_{n}$, $\overline{x \vee y}=\bar{x} \cap \bar{y}$.
(iii) There exist a bounded lattice L and a lattice-valued function $\mu: B_{n} \rightarrow L$ given by a linear combination such that \mathcal{F} is the family of cuts of μ.

Threshold functions

A classical threshold function is a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that there exist real numbers w_{1}, \ldots, w_{n}, t, fulfilling

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=1 \text { if and only if } \sum_{i=1}^{n} w_{i} \cdot x_{i} \geq t \tag{12}
\end{equation*}
$$

where w_{i} is called the weight of x_{i}, for $i=1,2, \ldots, n$ and t is a constant called the threshold value.

Properties of threshold functions

Threshold functions are not closed under superposition, so they do not constitute a clone.

It is easy to see that threshold functions with positive weights and a threshold value are isotone. However, an isotone Boolean function is not necessarily threshold, e.g. it is enough to consider its invariance group, which is the following. D8 homever the invariance group of any threshold function is a direct product of symmetric groups.

Properties of threshold functions

Threshold functions are not closed under superposition, so they do not constitute a clone.

It is easy to see that threshold functions with positive weights and a threshold value are isotone.

However, an isotone Boolean function is not necessarily threshold, e.g however the invariance group of any threshold function is a direct nroduet of symmetric grouns

Properties of threshold functions

Threshold functions are not closed under superposition, so they do not constitute a clone.

It is easy to see that threshold functions with positive weights and a threshold value are isotone.

However, an isotone Boolean function is not necessarily threshold, e.g. $f=x \cdot y \vee w \cdot z$ is isotone, but not a threshold function. To see this, it is enough to consider its invariance group, which is the following: $D 8=\{(),(1324),(12)(34),(1423),(12),(34),(13)(24),(14)(23)\}$, however the invariance group of any threshold function is a direct product of symmetric groups.

Lattice-induced threshold function

For $x \in\{0,1\}$, and $w \in L$, we define a mapping $L \times\{0,1\}$ into L denoted by ".", as follows:

$$
w \cdot x:=\left\{\begin{array}{lll}
w, & \text { if } & x=1 \tag{13}\\
0, & \text { if } & x=0
\end{array}\right.
$$

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a lattice induced threshold function, if there is a complete lattice L and $w_{1}, \ldots, w_{n}, t \in L$, such that

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=1 \text { if and only if } \bigvee_{i=1}^{n}\left(w_{i} \cdot x_{i}\right) \geq t \tag{14}
\end{equation*}
$$

Theorem

Every lattice-induced threshold function is isotone.

Every isotone Boolean function is a lattice induced threshold function. The eqrresenonding lattice in each ease ean be the free distributive lattice with n generators.

Theorem

Every lattice-induced threshold function is isotone.

Every isotone Boolean function is a lattice induced threshold function.
The corresponding lattice in each case can be the free distributive
lattice with n generators.

Theorem

Every lattice-induced threshold function is isotone.

Every isotone Boolean function is a lattice induced threshold function.
The corresponding lattice in each case can be the free distributive lattice with n generators.

Main representative of isotone functions

Let $B=\left(\{0,1\}^{n}, \leq\right), n \in \mathbb{N}$, let L_{D} a free distributive lattice with n generators w_{1}, \ldots, w_{n} and $\bar{\beta}: B \rightarrow L_{D}$, an L_{D}-valued function on B defined in the following way: for $x=\left(x_{1}, \ldots, x_{n}\right) \in B$

$$
\begin{equation*}
\bar{\beta}(x)=\bigvee_{i=1}^{n}\left(w_{i} \cdot x_{i}\right) \tag{15}
\end{equation*}
$$

Main representative of isotone functions

Let $B=\left(\{0,1\}^{n}, \leq\right), n \in \mathbb{N}$, let L_{D} a free distributive lattice with n generators w_{1}, \ldots, w_{n} and $\bar{\beta}: B \rightarrow L_{D}$, an L_{D}-valued function on B defined in the following way: for $x=\left(x_{1}, \ldots, x_{n}\right) \in B$

$$
\begin{equation*}
\bar{\beta}(x)=\bigvee_{i=1}^{n}\left(w_{i} \cdot x_{i}\right) \tag{15}
\end{equation*}
$$

Every up-set of a finite Boolean lattice $B=\left(\{0,1\}^{n}, \leq\right), n \in \mathbb{N}$, is a cut of $\bar{\beta}$.

Thank you for your attention!

Thank you for your attention!

