CD-independent subsets

Sándor Radeleczki

Eszter K. Horváth

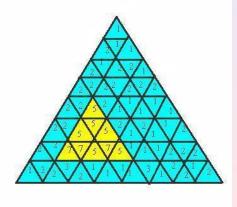
2010 Sept 9, Malenovice

1 / 32

Island definition

We call a rectangle/triangle an *island*, if for the cell t, if we denote its height by a_t , then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}} < min\{a_t : t \in T\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1



Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Sándor Radeleczki CD-independent subsets 2010 Sept 9, Malenovice 3 / 32

Coding theory

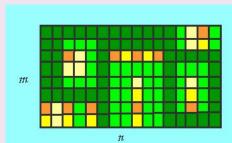
S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left\lceil \frac{mn+m+n-1}{2} \right\rceil.$$



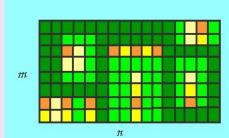
Sándor Radeleczki CD-independent subsets 2010 Sept 9, Malenovice 4 / 32

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n) = \left\lceil \frac{mn+m+n-1}{2} \right\rceil$$



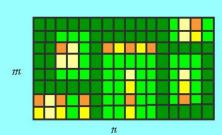
Sándor Radeleczki CD-independent subsets 2010 Sept 9, Malenovice 4 / 32

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f(m,n)=\left\lceil\frac{mn+m+n-1}{2}\right\rceil.$$



Sándor Radeleczki CD-independent subsets 2010 Sept 9, Malenovice 4 / 32

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

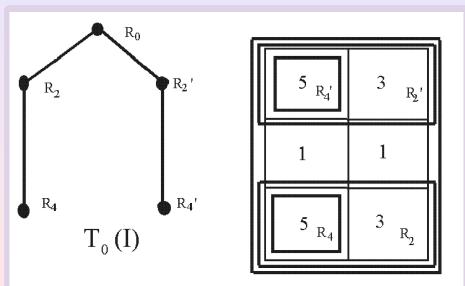
Any two weak bases of a finite distributive lattice have the same number of elements.

LATTICE THEORETICAL METHOD

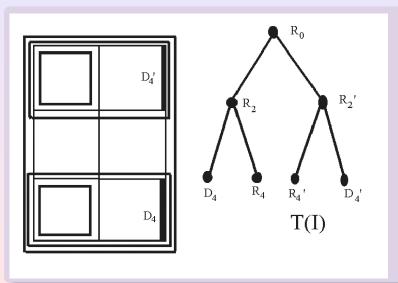
G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

TREE-GRAPH METHOD (Barát, Hajnal, Horváth)



TREE-GRAPH METHOD



7 / 32

TREE-GRAPH METHOD

Lemma 2 (folklore)

- (i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ , moreover $|V|=2\ell-1$.
- (ii) Let $\mathcal T$ be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in $\mathcal T$. Then $|V| \leq 2\ell 1$.

We have $4s + 2d \le (n+1)(m+1)$.

The number of leaves of $\mathcal{T}(\mathcal{I})$ is $\ell=s+d.$ Hence by Lemma 2 the number of islands is

$$|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n+1)(m+1) - 1.$$

TREE-GRAPH METHOD

Lemma 2 (folklore)

- (i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ , moreover $|V|=2\ell-1$.
- (ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \leq 2\ell 1$.

We have $4s + 2d \le (n+1)(m+1)$.

The number of leaves of $T(\mathcal{I})$ is $\ell=s+d$. Hence by Lemma 2 the number of islands is

$$|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n+1)(m+1) - 1.$$

TREE-GRAPH METHOD

Lemma 2 (folklore)

- (i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ , moreover $|V|=2\ell-1$.
- (ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \leq 2\ell 1$.

We have $4s + 2d \le (n+1)(m+1)$.

The number of leaves of $T(\mathcal{I})$ is $\ell=s+d$. Hence by Lemma 2 the number of islands is

$$|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n+1)(m+1) - 1.$$

TREE-GRAPH METHOD

Lemma 2 (folklore)

- (i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ , moreover $|V|=2\ell-1$.
- (ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \leq 2\ell 1$.

We have $4s + 2d \le (n+1)(m+1)$.

The number of leaves of $T(\mathcal{I})$ is $\ell=s+d$. Hence by Lemma 2 the number of islands is

$$|V|-d \le (2\ell-1)-d=2s+d-1 \le \frac{1}{2}(n+1)(m+1)-1.$$

LATTICE-VALUED REPRESENTATION

Theorem (Šešelja , Tepavčević, Horváth) Let $h: \{1,2,...,m\} \times \{1,2,...,n\} \to \mathbb{N}$ be a rectangular height function. Then there is a lattice L and an L-valued height functon Φ , such that the cuts of Φ are precisely all islands of h. Let $h:\{1,2,3,4,5\}\times\{1,2,3,4\}\to\mathbb{N}$ be a height function.

4	9	8	7	1	5
3	8	8	7	1	4
2	7	7	7	1	5
1	2	2	2	1	6
	1	2	3	4	5

10 / 32

h is a rectangular height function. Its islands are:

```
\begin{split} I_1 &= \{(1,4)\}, \\ I_2 &= \{(1,3), (1,4), (2,3), (2,4)\}, \\ I_3 &= \{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}, \\ I_4 &= \{(5,1)\}, \\ I_5 &= \{(5,1), (5,2)\}, \\ I_6 &= \{(5,4)\}, \\ I_7 &= \{(5,1), (5,2), (5,3), (5,4)\}, \\ I_8 &= \{(1,2), (1,3), (1,4), (2,2), (2,3), \\ (2,4), (3,2), (3,3), (3,4), (1,1), (2,1), (3,1)\}, \\ I_9 &= \{1,2,3,4,5\} \times \{1,2,3,4\}. \end{split}
```

Rectangular height functions

Its cuts are:

```
h_{10} = \emptyset

h_9 = I_1 (one-element island)

h_8 = I_2 (four-element square island)

h_7 = I_3 (nine-element square island)

h_6 = I_3 \cup I_4 (this cut is a disjoint union of two islands)

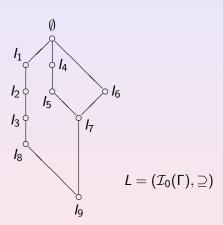
h_5 = I_3 \cup I_5 \cup I_6 (union of three islands)

h_4 = I_3 \cup I_7 (union of two islands)

h_2 = I_7 \cup I_8 (union of two islands)

h_1 = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4\} = I_9 (the whole domain)
```

Rectangular height functions



G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

Definitions

```
Let \mathbb{P} = (P, \leq) be a partially ordered set and a, b \in P.
The elements a and b are called disjoint, and we write a \perp b, if \inf\{a,b\} = 0, whenever \mathbb{P} has least element 0 \in P, a and b have no common lowerbound, whenever \mathbb{P} is without 0 \in P.
```

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent*, if for any $x, y \in X$ either $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Definitions

```
Let \mathbb{P} = (P, \leq) be a partially ordered set and a, b \in P.
The elements a and b are called disjoint, and we write a \perp b, if \inf\{a,b\} = 0, whenever \mathbb{P} has least element 0 \in P, a and b have no common lowerbound, whenever \mathbb{P} is without 0.
```

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent*, if for any $x, y \in X$ either $x \le y$ or $y \le x$ or $x \perp y$ holds.

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint*, and we write $a \perp b$, if $\inf\{a,b\} = 0$, whenever \mathbb{P} has least element $0 \in P$, a and b have no common lowerbound, whenever \mathbb{P} is without 0.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent*, if for any $x, y \in X$ either $x \le y$ or $y \le x$ or $x \perp y$ holds.

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint*, and we write $a \perp b$, if $\inf\{a,b\} = 0$, whenever \mathbb{P} has least element $0 \in P$, a and b have no common lowerbound, whenever \mathbb{P} is without 0.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent*, if for any $x, y \in X$ either $x \le y$ or $y \le x$ or $x \perp y$ holds.

Definitions

Let $\mathbb{P} = (P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called *disjoint*, and we write $a \perp b$, if $\inf\{a,b\} = 0$, whenever \mathbb{P} has least element $0 \in P$, a and b have no common lowerbound, whenever \mathbb{P} is without 0.

• Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called *CD-independent*, if for any $x, y \in X$ either $x \le y$ or $y \le x$ or $x \perp y$ holds.

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} , if $x \perp y$ holds for all $x, y \in D$, $x \neq y$.

- Any disjoint system $D \subseteq P$ is a CD independent set.
- Any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in \mathbb{P} , then any antichain $A \subseteq X$ is a disjoint system in \mathbb{P} .

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} , if $x \perp y$ holds for all $x, y \in D$, $x \neq y$.

- Any disjoint system $D \subseteq P$ is a CD independent set.
- Any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in \mathbb{P} , then any antichain $A \subseteq X$ is a disjoint system in \mathbb{P} .

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} , if $x \perp y$ holds for all $x, y \in D$, $x \neq y$.

- Any disjoint system $D \subseteq P$ is a CD independent set.
- Any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in \mathbb{P} , then any antichain $A \subseteq X$ is a disjoint system in \mathbb{P} .

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} , if $x \perp y$ holds for all $x, y \in D$, $x \neq y$.

- Any disjoint system $D \subseteq P$ is a CD independent set.
- Any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in \mathbb{P} , then any antichain $A \subseteq X$ is a disjoint system in \mathbb{P} .

Definition

A nonempty set D of nonzero elements of P is called a *disjoint system* in \mathbb{P} , if $x \perp y$ holds for all $x, y \in D$, $x \neq y$.

- Any disjoint system $D \subseteq P$ is a CD independent set.
- Any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system if and only if it is a CD-independent antichain in \mathbb{P} .
- If X is a CD-independent set in \mathbb{P} , then any antichain $A \subseteq X$ is a disjoint system in \mathbb{P} .

Order ideals

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{x \in P \mid x \le a_i, \text{ for some } i \in I\},$$

where (a) stands for the principal ideal of an element $a \in P$.

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$, if

$$I(A_1) \subseteq I(A_2)$$

Remarks

- $\bullet \leq \text{is a partial order}$
- $A_1 \leqslant A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \le y$.

Order ideals

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{x \in P \mid x \le a_i, \text{ for some } i \in I\},$$

where (a) stands for the principal ideal of an element $a \in P$.

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$, if

$$I(A_1) \subseteq I(A_2)$$
.

Remarks

- ≤ is a partial order
- $A_1 \leqslant A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \le y$.

Order ideals

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{x \in P \mid x \le a_i, \text{ for some } i \in I\},$$

where (a) stands for the principal ideal of an element $a \in P$.

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$, if

$$I(A_1) \subseteq I(A_2)$$
.

Remarks

- $\bullet \leqslant \text{is a partial order}$
- $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \le y$.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{x \in P \mid x \le a_i, \text{ for some } i \in I\},$$

where (a) stands for the principal ideal of an element $a \in P$.

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$, if

$$I(A_1) \subseteq I(A_2)$$
.

Remarks

- $\bullet \leqslant \text{is a partial order}$
- $A_1 \leqslant A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \le y$. (A)

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leqslant D_2$
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leqslant)$.

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leqslant D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leqslant)$.

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leqslant D_2$.
- If $D_1 \leqslant D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

- $I(A_1) \prec I(A_2) \Rightarrow A_1 \prec A_2$, for any antichains $A_1, A_2 \subseteq P$.
- If D_1 , D_2 are disjoint systems in P, then $D_1 \subseteq D_2$ implies $D_1 \leqslant D_2$.
- If $D_1 \leq D_2$, then for any $x \in D_1$ and $y \in D_2$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leq)$.

Definition

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Definition

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Definition

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow$ either $x \le y$ or $y \le x$ or $x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset P = (P, ≤) hast at least one CD-base, and the set P is covered by the CD-bases of P.

Definition

Let $\rho \subseteq P \times P$.

For any $x, y \in P$, $(x, y) \in \rho \Leftrightarrow \text{either } x \leq y \text{ or } y \leq x \text{ or } x \perp y$.

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ .
- Any poset $\mathbb{P} = (P, \leq)$ hast at least one CD-base, and the set P is covered by the CD-bases of \mathbb{P} .

Let (P, \leq) be a finite poset and B a CD-base of it.

There exists a maximal chain
$$D_1 \succ ... \succ D_n$$
 in $\mathcal{D}(P)$, such that $B = \bigcup_{i=1}^n D_i$ and $n = |B|$.

For any maximal chain $D_1 \prec ... \prec D_m$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^m D_i$ is a CD-base in (P, \leq) with |D| = m.

Let (P, \leq) be a finite poset and B a CD-base of it.

There exists a maximal chain $D_1 \succ ... \succ D_n$ in $\mathcal{D}(P)$, such that $B = \bigcup_{i=1}^n D_i$ and n = |B|.

For any maximal chain $D_1 \prec ... \prec D_m$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^m D_i$ is a CD-base in (P, \leq) with |D| = m.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

 $D_1 \prec D_2$ holds in $\mathcal{D}(P)$ if and only if $D_2 = \{a\} \cup \{y \in D_1 \mid a \perp y\}$, where a is a minimal element of the set

$$S = \{x \in P \setminus D_1 \mid x \perp y \text{ or } x > y, \text{ for all } y \in D_1\}.$$

Lemma

Let B be a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq)$, $M = \max(B)$, and for arbitrary $m \in M$ let $N = \max(B \setminus \{m\})$. Then M and N are disjoint systems, M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

 $D_1 \prec D_2$ holds in $\mathcal{D}(P)$ if and only if $D_2 = \{a\} \cup \{y \in D_1 \mid a \perp y\}$, where a is a minimal element of the set

$$S = \{x \in P \setminus D_1 \mid x \perp y \text{ or } x > y, \text{ for all } y \in D_1\}.$$

21 / 32

Lemma

Let B be a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq)$, $M = \max(B)$, and for arbitrary $m \in M$ let $N = \max(B \setminus \{m\})$. Then M and N are disjoint systems, M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq) , then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

 $D_1 \prec D_2$ holds in $\mathcal{D}(P)$ if and only if $D_2 = \{a\} \cup \{y \in D_1 \mid a \perp y\}$, where a is a minimal element of the set

$$S = \{x \in P \setminus D_1 \mid x \perp y \text{ or } x > y, \text{ for all } y \in D_1\}.$$

21 / 32

Lemma

Let B be a CD-base with at least two elements in a finite poset $\mathbb{P} = (P, \leq)$, $M = \max(B)$, and for arbitrary $m \in M$ let $N = \max(B \setminus \{m\})$. Then M and N are disjoint systems, M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Corollary

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

- (i) If $B \subseteq P$ is a CD-base and (B, \leq) is the subposet corresponding to it, then any maximal chain $\mathcal{C}: D_1 \prec ... \prec D_n$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.
- (ii) If D is a disjoint system in \mathbb{P} , and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet I(D) also have the same number of elements.

Corollary

Let $\mathbb{P} = (P, \leq)$ be a finite poset.

- (i) If $B \subseteq P$ is a CD-base and (B, \leq) is the subposet corresponding to it, then any maximal chain $C: D_1 \prec ... \prec D_n$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.
- (ii) If D is a disjoint system in \mathbb{P} , and the CD-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet I(D) also have the same number of elements.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P,\leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of $\mathbb P$ have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P,\leq)$ be a finite poset with 0. Then the following conditions are equivalent:

- (i) The CD-bases of $\mathbb P$ have the same number of elements,
- (ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

- (i) The CD-bases of $\mathbb P$ have the same number of elements,
- (ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P} = (P, \leq)$ be a finite poset with 0. Then the following conditions are equivalent:

- (i) The CD-bases of $\mathbb P$ have the same number of elements,
- (ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a disjoint system.

(iii) $\mathcal{DC}(P)$ is graded.

If \mathbb{P} is a finite poset with 0

- (a) If all the CD-bases of \mathbb{P} consist of n elements, then $n \geq |A(P)| + I(P)$.

- (a) If all the CD-bases of \mathbb{P} consist of n elements, then $n \geq |A(P)| + I(P)$.
- (b) If \mathbb{P} is bounded and each subposet (a], $a \in P$ of it is weakly 0-modular, then the following statements are true:
 - ullet (i) For any maximal chain C in \mathbb{P} , $A(P) \cup C$ is a CD-base of \mathbb{P}
 - (ii) If $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains |A(P)| + I(P) elements.

- (a) If all the CD-bases of \mathbb{P} consist of n elements, then $n \geq |A(P)| + l(P)$.
- (b) If \mathbb{P} is bounded and each subposet (a], $a \in P$ of it is weakly 0-modular, then the following statements are true:
 - (i) For any maximal chain C in \mathbb{P} , $A(P) \cup C$ is a CD-base of \mathbb{P} .
 - (ii) If $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains |A(P)| + I(P) elements.

- (a) If all the CD-bases of \mathbb{P} consist of n elements, then $n \geq |A(P)| + I(P)$.
- (b) If \mathbb{P} is bounded and each subposet (a], $a \in P$ of it is weakly 0-modular, then the following statements are true:
 - (i) For any maximal chain C in \mathbb{P} , $A(P) \cup C$ is a CD-base of \mathbb{P} .
 - (ii) If $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains |A(P)| + I(P) elements.

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair, if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for any $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a semilattice with 0

if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.

Sándor Radeleczki CD-independent subsets 2010 Sept 9, Malenovice 25 / 32

A pair $a, b \in P$ with least upperbound $a \lor b$ in \mathbb{P} is called a *distributive* pair, if $(c \land a) \lor (c \land b)$ exists in \mathbb{P} for any $c \in P$, and $c \land (a \lor b) = (c \land a) \lor (c \land b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a semilattice with 0;

if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.

If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a complete lattice, too.

A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a *distributive* pair, if $(c \wedge a) \vee (c \wedge b)$ exists in \mathbb{P} for any $c \in P$, and $c \wedge (a \vee b) = (c \wedge a) \vee (c \wedge b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a semilattice with 0;

if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.

If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a complete lattice, too.

A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a *distributive* pair, if $(c \wedge a) \vee (c \wedge b)$ exists in \mathbb{P} for any $c \in P$, and $c \wedge (a \vee b) = (c \wedge a) \vee (c \wedge b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a semilattice with 0;

if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.

If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a complete lattice, too.

Proposition

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leq)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leq)$.

If \mathbb{P} is a \wedge -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have $(D_1 \vee D_2) \wedge D = (D_1 \wedge D) \vee (D_2 \wedge D)$.

Proposition

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leqslant)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leqslant)$.

If \mathbb{P} is a \wedge -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have $(D_1 \vee D_2) \wedge D = (D_1 \wedge D) \vee (D_2 \wedge D)$.

Proposition

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leqslant)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leqslant)$.

If \mathbb{P} is a \wedge -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have $(D_1 \vee D_2) \wedge D = (D_1 \wedge D) \vee (D_2 \wedge D)$.

CD-bases in particular lattice classes

Definition

We say that a lattice L is weakly 0-distributive, if for any $a, b, x \in L$, $a \wedge b = 0$, $x \wedge a = 0$ and $x \wedge b = 0$ imply $x \wedge (a \vee b) = 0$.

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d\in L$ with $d\prec 1$, or D consist of two elements $d_1,d_2\in L$ and $d_1\vee d_2=1$.

Theorem

Let L be a finite 0-modular and weakly 0-distributive lattice. Then the following are equivalent:

CD-bases in particular lattice classes

Definition

We say that a lattice L is weakly 0-distributive, if for any $a, b, x \in L$, $a \wedge b = 0$, $x \wedge a = 0$ and $x \wedge b = 0$ imply $x \wedge (a \vee b) = 0$.

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d\in L$ with $d\prec 1$, or D consist of two elements $d_1,d_2\in L$ and $d_1\vee d_2=1$.

Theorem

Let L be a finite 0-modular and weakly 0-distributive lattice. Then the following are equivalent:

CD-bases in particular lattice classes

Definition

We say that a lattice L is weakly 0-distributive, if for any $a, b, x \in L$, $a \wedge b = 0$, $x \wedge a = 0$ and $x \wedge b = 0$ imply $x \wedge (a \vee b) = 0$.

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d\in L$ with $d\prec 1$, or D consist of two elements $d_1,d_2\in L$ and $d_1\vee d_2=1$.

Theorem

Let L be a finite 0-modular and weakly 0-distributive lattice. Then the following are equivalent:

- (i) L is graded and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.
- (ii) The CD-bases of L have the same number of elements

CD-bases in particular lattice classes

Definition

We say that a lattice L is weakly 0-distributive, if for any $a, b, x \in L$, $a \wedge b = 0$, $x \wedge a = 0$ and $x \wedge b = 0$ imply $x \wedge (a \vee b) = 0$.

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d\in L$ with $d\prec 1$, or D consist of two elements $d_1,d_2\in L$ and $d_1\vee d_2=1$.

Theorem

Let L be a finite 0-modular and weakly 0-distributive lattice. Then the following are equivalent:

• (i) L is graded and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

27 / 32

• (ii) The CD-bases of L have the same number of elements

CD-bases in particular lattice classes

Definition

We say that a lattice L is weakly 0-distributive, if for any $a, b, x \in L$, $a \wedge b = 0$, $x \wedge a = 0$ and $x \wedge b = 0$ imply $x \wedge (a \vee b) = 0$.

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d\in L$ with $d\prec 1$, or D consist of two elements $d_1,d_2\in L$ and $d_1\vee d_2=1$.

Theorem

Let L be a finite 0-modular and weakly 0-distributive lattice. Then the following are equivalent:

• (i) L is graded and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.

27 / 32

• (ii) The CD-bases of L have the same number of elements.

Definitions

We say that two elements $a, b \in L$ form a modular pair in the lattice L, and we write (a, b)M, if for any $x \in L$, $x \le b$ implies $x \lor (a \land b) = (x \lor a) \land b.$

Proposition

Definitions

We say that two elements $a, b \in L$ form a modular pair in the lattice L, and we write (a, b)M, if for any $x \in L$, $x \leq b$ implies $x \lor (a \land b) = (x \lor a) \land b.$

a, b is called a dual-modular pair if for any $x \in L$, $x \ge b$ implies $x \wedge (a \vee b) = (x \wedge a) \vee b$. This is denoted by $(a, b)M^*$.

Proposition

Definitions

We say that two elements $a, b \in L$ form a modular pair in the lattice L, and we write (a, b)M, if for any $x \in L$, $x \leq b$ implies $x \lor (a \land b) = (x \lor a) \land b.$

a, b is called a dual-modular pair if for any $x \in L$, $x \ge b$ implies $x \wedge (a \vee b) = (x \wedge a) \vee b$. This is denoted by $(a, b)M^*$.

Proposition

If L is a lattice with 0 such that $(a,b)M^*$ holds for all $a,b \in L$ with $a \wedge b = 0$, then L is 0-modular. If in addition L is a graded lattice of finite length, then $I(a \lor b) = I(a) + I(b)$ holds for all $a, b \in L$ with $a \wedge b = 0$.

Definition

A lattice L with 0 is called *pseudocomplemented* if for each $x \in L$ there exists an element $x^* \in L$ such that for any $y \in L$, $y \land x = 0 \Leftrightarrow y \leq x^*$.

Corollary

- (i) Let L be a finite weakly 0-distributive lattice such that for all $a,b \in L$ with $a \wedge b = 0$, the condition $(a,b)M^*$ holds. Then the CD-bases of L have the same number of elements if and only if L is graded.
- (ii) If L is a finite, pseudocomplemented and modular lattice, then the CD-bases of L have the same number of elements.

Definition

A lattice L with 0 is called *pseudocomplemented* if for each $x \in L$ there exists an element $x^* \in L$ such that for any $y \in L$, $y \land x = 0 \Leftrightarrow y \leq x^*$.

Corollary

- (i) Let L be a finite weakly 0-distributive lattice such that for all $a, b \in L$ with $a \land b = 0$, the condition $(a, b)M^*$ holds. Then the CD-bases of L have the same number of elements if and only if L is graded.
- (ii) If L is a finite, pseudocomplemented and modular lattice, then the CD-bases of L have the same number of elements.

Corollary

- (i) Any dp-distributive lattice is 0-modular. If L is a dp-distributive graded lattice with a finite length, then $I(a \lor b) = I(a) + I(b)$ holds for all $a, b \in L$ with $a \land b = 0$.
- (ii) The CD-bases in a finite dp-distributive lattice L have the same number of elements if and only if L is graded.

Definitions

A lattice L with 0 is called weakly modular if for any $a \in L$ the principal ideal [a) is a modular lattice. Let us consider now the condition:

If
$$a \wedge b \neq 0$$
, then $(x \leq a \vee b \text{ and } x \wedge a = 0) \Rightarrow x \leq b$, for all $a, b, x \in L$ (I)

Theorem

Let L be a finite, weakly modular lattice satisfying condition (\mathcal{I}) . Then the CD-bases of L have the same number of elements.

Definitions

A lattice L with 0 is called weakly modular if for any $a \in L$ the principal ideal [a) is a modular lattice. Let us consider now the condition:

If
$$a \land b \neq 0$$
, then $(x \leq a \lor b \text{ and } x \land a = 0) \Rightarrow x \leq b$, for all $a, b, x \in L$ (*I*)

Theorem

Let L be a finite, weakly modular lattice satisfying condition (\mathcal{I}) . Then the CD-bases of L have the same number of elements.

Definitions

A lattice L with 0 is called weakly modular if for any $a \in L$ the principal ideal [a) is a modular lattice. Let us consider now the condition:

If
$$a \land b \neq 0$$
, then $(x \leq a \lor b \text{ and } x \land a = 0) \Rightarrow x \leq b$, for all $a, b, x \in L$ (I)

Theorem

Let L be a finite, weakly modular lattice satisfying condition (\mathcal{I}) . Then the CD-bases of L have the same number of elements.

Definition

An interval system (V, \mathcal{I}) is an algebraic closure system satisfying the axioms :

- (I_0) $\{x\} \in \mathcal{I}$ for all $x \in V$, and $\emptyset \in \mathcal{I}$;
- (I_1) $A, B \in \mathcal{I}$ and $A \cap B \neq \emptyset$ imply $A \cup B \in \mathcal{I}$;
- (I₂) For any $A, B \in \mathcal{I}$ the relations $A \cap B \neq \emptyset$, $A \nsubseteq B$ and $B \nsubseteq A$ imply $A \setminus B \in \mathcal{I}$ (and $B \setminus A \in \mathcal{I}$).

Corollary

If (V, \mathcal{I}) is a finite interval system, then the CD-bases of the lattice (\mathcal{I}, \subseteq) contain the same number of elements.

Definition

An interval system (V, \mathcal{I}) is an algebraic closure system satisfying the axioms :

- (I_0) $\{x\} \in \mathcal{I}$ for all $x \in V$, and $\emptyset \in \mathcal{I}$;
- (I_1) $A, B \in \mathcal{I}$ and $A \cap B \neq \emptyset$ imply $A \cup B \in \mathcal{I}$;
- (I₂) For any $A, B \in \mathcal{I}$ the relations $A \cap B \neq \emptyset$, $A \nsubseteq B$ and $B \nsubseteq A$ imply $A \setminus B \in \mathcal{I}$ (and $B \setminus A \in \mathcal{I}$).

Corollary

If (V, \mathcal{I}) is a finite interval system, then the CD-bases of the lattice (\mathcal{I}, \subseteq) contain the same number of elements.