Lattices and islands

Eszter K. Horváth, Szeged

Co-authors: Zoltán Németh, Gabriella Pluhár, János Barát, Péter Hajnal, Csaba Szabó, Gábor Horváth, Branimir Šešelja, Andreja Tepavčević, Attila Máder, Sándor Radeleczki

Luxembourg, 2011, June 16.

Islands?

Islands?

Definition/1

Grid, neighbourhood

Definition/2

We call a rectangle/triangle an island, if for the cell t, if we denote its height by a_{t}, then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}}<\min \left\{a_{t}: t \in T\right\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1

The number of islands / 1

We put heights into the cells. How many islands do we have?

The number of islands / 2

The number of islands
Water level: 0,5
Nomber of islands: 1

2	1	3	2
2	1	3	2
3	1	1	1

The number of islands / 3

Water level: 1,5
Number of islands: 2

2	1	3	2
2	1	3	2
3	1	1	1

The number of islands / 4

Water level: 2,5
Number of islands: 2

2	1	3	2
2	1	3	2
3	1	1	1

The number of islands / 5

Altogether: $1+2+2=5$ islands.

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	11	3	2
3	1	i	11

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

Could we make more islands onto this grid? (With other heights?)

Count the islands! / 6

Yes, we could make more islands, here we have $1+2+3+1=7$ islands.

3	1	4	2
2	1	3	2
3	1	1	1

3	1	4	2
2	3	3	2
3	1	1	0

3	1	4	2
2	1	3	2
3	1	1	1

3	1	4	2
2	1	3	2
3	1	1	1

3	1	4	2
2	1	3	2
3	1	1	1

Could we make more islands onto this grid? (With other heights?)

Count the islands! / 7

Yes, we could make more islands, here we have $1+2+4+2=9$ islands.

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	11	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

HOWEWER, WE CANNOT CREATE MORE !!!

The maximum number of islands on the $m \times n$ size grid (Gábor Czédli, Szeged, 2007. june 17.)

$$
f(m, n)=\left[\frac{m n+m+n-1}{2}\right] .
$$

Soon we prove the formula!

History/1

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

History/1

Coding theory
S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215

The maximum number of rectangular islands in a $m \times n$ rectangular board

 on square grid:

12

History/2

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

History/2

Rectangular islands
G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$
f(m, n)=\left[\frac{m n+m+n-1}{2}\right]
$$

π

History/3

Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

History/3

Rectangular islands in higher dimensions
G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math., to appear.

History/4

Triangular islands

$$
\begin{aligned}
& \text { E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular } \\
& \text { islands on a triangular grid, Periodica Mathematica Hungarica, } 58 \\
& \text { (2009), 25-34. } \\
& \text { Available at http://www.math.u-szeged.hu/~ horvath }
\end{aligned}
$$

History/4

Triangular islands
E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25-34.

Available at http://www.math.u-szeged.hu/~horvath

History/4

Triangular islands
E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25-34.

Available at http://www.math.u-szeged.hu/~horvath

For the maximum number of triangular islands in an equilateral rectangle of side length $n, \frac{n^{2}+3 n}{5} \leq f(n) \leq \frac{3 n^{2}+9 n+2}{14}$ holds.

History/5

Square islands (also in higher dimensions)
square islands on a rectangular sea, Acta Sci. Math., to appear. Available at http://www.math.u-szeged.hu/~horvath

History/5

Square islands (also in higher dimensions)
E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., to appear. Available at http://www.math.u-szeged.hu/~horvath

History/5

Square islands (also in higher dimensions)
E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., to appear. Available at http://www.math.u-szeged.hu/~horvath

$$
\frac{1}{3}(r s-2 r-2 s) \leq f(r, s) \leq \frac{1}{3}(r s-1)
$$

History/5

Square islands (also in higher dimensions)
E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math., to appear. Available at http://www.math.u-szeged.hu/~horvath

$$
\frac{1}{3}(r s-2 r-2 s) \leq f(r, s) \leq \frac{1}{3}(r s-1)
$$

Proving $f(m, n)=\left[\frac{m n+m+n-1}{2}\right]$ THERE EXISTS:

By induction on the number of the cells: $f(m, n) \geq\left[\frac{m n+m+n-1}{2}\right]$.
If $m=1$, then $\left[\frac{n+1+n-1}{2}\right]=n$, we put the numbers $1,2,3, \ldots, n$ in the cells and we will have exactly n islands.
If $n=1$, then $\left[\frac{m+m+1-1}{2}\right]=m$.
If $m=n=2$:

Az $f(m, n)=\left[\frac{m n+m+n-1}{2}\right]$ képlet bizonyítása, THERE EXISTS:

Let $m, n>2$.

$$
\begin{aligned}
& f(m, n) \geq f(m-2, n)+f(1, n)+1 \geq\left[\frac{(m-2) n+(m-2)+n-1}{2}\right]+\left[\frac{n+1+n-1}{2}\right]+1= \\
& =\left[\frac{(m-2) n+(m-2)+n-1+2 n}{2}\right]+1=\left[\frac{m n+m+n-1}{2}\right] .
\end{aligned}
$$

Proving methods/1

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Proving methods/1

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Proving methods/1

LATTICE THEORETICAL METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

Proving methods/2

TREE-GRAPH METHOD

Proving methods/2

TREE-GRAPH METHOD

Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)
(i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ, moreover $|V|=2 \ell-1$.
(ii) Let T be a rooted tree such that anv non-leaf node hes at least 2 sons. Let ℓ be the number of leaves in T. Then

Proving methods/2

TREE-GRAPH METHOD

Lemma 2 (folklore)
(i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ, moreover $|V|=2 \ell-1$.
(ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then

Proving methods/2

TREE-GRAPH METHOD
Lemma 2 (folklore)
(i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ, moreover $|V|=2 \ell-1$.
(ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then

$$
|V| \leq 2 \ell-1
$$

Proving methods/2

TREE-GRAPH METHOD
Lemma 2 (folklore)
(i) Let T be a binary tree with ℓ leaves. Then the number of vertices of T depends only on ℓ, moreover $|V|=2 \ell-1$.
(ii) Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then

$$
|V| \leq 2 \ell-1
$$

We have $4 s+2 d \leq(n+1)(m+1)$.
The number of leaves of $T(\mathcal{I})$ is $\ell=s+d$. Hence by Lemma 2 the number of islands is

$$
|V|-d \leq(2 \ell-1)-d=2 s+d-1 \leq \frac{1}{2}(n+1)(m+1)-1
$$

Proving methods/3

ELEMENTARY METHOD

Proving methods/3

ELEMENTARY METHOD

We define

$$
\mu(R)=\mu(u, v):=(u+1)(v+1)
$$

Proving methods/3

ELEMENTARY METHOD

We define

$$
\mu(R)=\mu(u, v):=(u+1)(v+1)
$$

Now

$$
f(m, n)=1+\sum_{R \in \max \mathcal{I}} f(R)=1+\sum_{R \in \max \mathcal{I}}\left(\left[\frac{(u+1)(v+1)}{2}\right]-1\right)
$$

Proving methods/3

ELEMENTARY METHOD

We define

$$
\mu(R)=\mu(u, v):=(u+1)(v+1)
$$

Now

$$
\begin{gathered}
f(m, n)=1+\sum_{R \in \max \mathcal{I}} f(R)=1+\sum_{R \in \max \mathcal{I}}\left(\left[\frac{(u+1)(v+1)}{2}\right]-1\right) \\
=1+\sum_{R \in \max \mathcal{I}}\left(\left[\frac{\mu(u, v)}{2}\right]-1\right) \leq 1-|\max \mathcal{I}|+\left[\frac{\mu(\mathrm{C})}{2}\right] .
\end{gathered}
$$

If $|\max \mathcal{I}| \geq 2$, then the proof is ready. Case $|\max \mathcal{I}|=1$ is an easy exercise.

History/6

Some exact formulas
Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

History/6

Some exact formulas
Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

History/6

Some exact formulas
Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \geq 2$, then $t(m, n)=\left[\frac{m n}{2}\right]$.

History/6

Some exact formulas
Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \geq 2$, then $h_{1}(m, n)=\left[\frac{(m+1) n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):
If $n \geq 2$, then $h_{2}(m, n)=\left[\frac{(m+1) n}{2}\right]+\left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \geq 2$, then $t(m, n)=\left[\frac{m n}{2}\right]$.

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): $p(m, n)=f(m, n)=[(m n+m+n-1) / 2]$.

History/7

Further results on rectangular islands

History/7

Further results on rectangular islands
Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, 30 (2009), 216-219.

History/8

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

History/8

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

History/8

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

We denote the maximum number of islands in $B A=\{0,1\}^{n}$ by $b(n)$.

History/8

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $B A=\{0,1\}^{n}$.

We consider two cells neighbouring if their Hamming distance is 1 .

We denote the maximum number of islands in $B A=\{0,1\}^{n}$ by $b(n)$.

Island formula for Boolean algebras (P. Hajnal, E.K. Horváth)
$b(n)=1+2^{n-1}$.

High school competition exercise

Determine the maximum number of islands on n consecutive cells, if the possible heights on the grid are the following: $0,1,2, \ldots, h$; where $h \geq 1$.

The solution:

High school competition exercise

Determine the maximum number of islands on n consecutive cells, if the possible heights on the grid are the following: $0,1,2, \ldots, h$; where $h \geq 1$.

The solution:
$I(n, h)=n-\left[\frac{n}{2^{h}}\right]$.

Rectangular height functions/1

Joint work with Branimir Šešelja and Andreja Tepavčević
A height function h is a mapping from $\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ to \mathbb{N}, $h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$.

The co-domain of the height function is the lattice (\mathbb{N}, \leq), where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

Rectangular height functions/1

Joint work with Branimir Šešelja and Andreja Tepavčević
A height function h is a mapping from $\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ to \mathbb{N}, $h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$.

The co-domain of the height function is the lattice (\mathbb{N}, \leq), where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

For every $p \in \mathbb{N}$, the cut of the height function, i.e. the p-cut of h is an ordinary relation h_{p} on $\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ defined by

$$
(x, y) \in h_{p} \text { if and only if } h(x, y) \geq p
$$

Rectangular height functions/2

We say that two rectangles $\{\alpha, \ldots, \beta\} \times\{\gamma, \ldots, \delta\}$ and $\left\{\alpha_{1}, \ldots, \beta_{1}\right\} \times\left\{\gamma_{1}, \ldots, \delta_{1}\right\}$ are distant if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a-c)^{2}+(b-d)^{2} \geq 4$.

Rectangular height functions/2

We say that two rectangles $\{\alpha, \ldots, \beta\} \times\{\gamma, \ldots, \delta\}$ and $\left\{\alpha_{1}, \ldots, \beta_{1}\right\} \times\left\{\gamma_{1}, \ldots, \delta_{1}\right\}$ are distant if they are disjoint and for every two cells, namely (a, b) from the first rectangle and (c, d) from the second, we have $(a-c)^{2}+(b-d)^{2} \geq 4$.

The height function h is called rectangular if for every $p \in \mathbb{N}$, every nonempty p-cut of h is a union of distant rectangles.

Rectangular height functions/3

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

Rectangular height functions/3

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

$$
\begin{aligned}
& \Gamma_{1}=\{1,2,3,4,5\} \times\{1,2,3\}, \\
& \Gamma_{2}=\{1,2,3,4,5\} \times\{1,2,3\} \backslash\{(3,1)\}, \\
& \Gamma_{3}=\{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\
& \Gamma_{4}=\{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text { and } \\
& \Gamma_{5}=\{(1,3),(2,3),(4,3),(5,3)\}
\end{aligned}
$$

Rectangular height functions/4 CHARACTERIZATION THEOREM

Theorem 1

A height function $h_{\mathbb{N}}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ is rectangular if and only if for all $(\alpha, \gamma),(\beta, \delta) \in\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $h_{\mathbb{N}}(\mu, \nu)<\min \left\{h_{\mathbb{N}}(\alpha, \gamma), h_{\mathbb{N}}(\beta, \delta)\right\}$, or

Rectangular height functions/4 CHARACTERIZATION THEOREM

Theorem 1

A height function $h_{\mathbb{N}}:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ is rectangular if and only if for all $(\alpha, \gamma),(\beta, \delta) \in\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $h_{\mathbb{N}}(\mu, \nu)<\min \left\{h_{\mathbb{N}}(\alpha, \gamma), h_{\mathbb{N}}(\beta, \delta)\right\}$, or
- for all $(\mu, \nu) \in[\min \{\alpha, \beta\}, \max \{\alpha, \beta\}] \times[\min \{\gamma, \delta\}, \max \{\gamma, \delta\}]$,

$$
h_{\mathbb{N}}(\mu, \nu) \geq \min \left\{h_{\mathbb{N}}(\alpha, \gamma), h_{\mathbb{N}}(\beta, \delta)\right\} .
$$

Rectangular height functions/5

Theorem 2

For every height function $h:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, there is a rectangular height function $h^{*}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N}$, such that $\mathcal{I}_{\text {rect }}(h)=\mathcal{I}_{\text {rect }}\left(h^{*}\right)$.

Rectangular height functions/6 CONSTRUCTING ALGORITHM

1. $\mathrm{FOR} i=t \mathrm{TO} 0$
2. FOR $y=1 \mathrm{TO} n$
3. $\mathrm{FOR} x=1 \mathrm{TO} m$
4. IF $h(x, y)=a_{i}$ THEN
5. $\mathrm{j}:=\mathrm{i}$
6. WHILE there is no island of h which is a subset of $h_{a_{j}}$ that contains
(x, y) DO $\mathrm{j}:=\mathrm{j}-1$
7. ENDWHILE
8. Let $h^{*}(x, y):=a_{j}$.
9. ENDIF
10. NEXT x
11. NEXT y
12. NEXT i
13. END.

Rectangular height functions/7 LATTICE-VALUED REPRESENTATION

Theorem 3

Let $h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ be a rectangular height function. Then there is a lattice L and an L-valued mapping Φ, such that the cuts of Φ are precisely all islands of h.

Rectangular height functions/8

Let $h:\{1,2,3,4,5\} \times\{1,2,3,4\} \rightarrow \mathbb{N}$ be a height function.

4	9	8	7	1	5
3	8	8	7	1	4
2	7	7	7	1	5
1	2	2	2	1	6
	1	2	3	4	5

Rectangular height functions/9

h is a rectangular height function. Its islands are:

$$
\begin{aligned}
& I_{1}=\{(1,4)\}, \\
& I_{2}=\{(1,3),(1,4),(2,3),(2,4)\}, \\
& I_{3}=\{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}, \\
& I_{4}=\{(5,1)\}, \\
& I_{5}=\{(5,1),(5,2)\}, \\
& I_{6}=\{(5,4)\}, \\
& I_{7}=\{(5,1),(5,2),(5,3),(5,4)\}, \\
& I_{8}=\{(1,2),(1,3),(1,4),(2,2),(2,3), \\
& (2,4),(3,2),(3,3),(3,4),(1,1),(2,1),(3,1)\}, \\
& I_{9}=\{1,2,3,4,5\} \times\{1,2,3,4\} .
\end{aligned}
$$

Rectangular height functions/10

Its cut relations are:

```
h10}=
h9}=\mp@subsup{I}{1}{}\mathrm{ (one-element island)
h8}=\mp@subsup{I}{2}{}\mathrm{ (four-element square island)
h}=\mp@subsup{I}{3}{}\mathrm{ (nine-element square island)
h6}=\mp@subsup{I}{3}{}\cup\mp@subsup{I}{4}{}\mathrm{ (this cut is a disjoint union of two islands)
h
h4}=\mp@subsup{I}{3}{}\cup\mp@subsup{I}{7}{}\mathrm{ (union of two islands)
h}\mp@subsup{h}{2}{}=\mp@subsup{I}{7}{}\cup\mp@subsup{I}{8}{\prime}\mathrm{ (union of two islands)
h
```


Rectangular height functions/11

Rectangular height functions/12

Theorem 4

For every rectangular height function

$$
h^{*}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N},
$$

there is a rectangular height function

$$
h^{* *}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N},
$$

such that $\mathcal{I}_{\text {rect }}\left(h^{*}\right)=\mathcal{I}_{\text {rect }}\left(h^{* *}\right)$ and in $h^{* *}$ every island appears exactly in one cut.

Rectangular height functions/12

Theorem 4

For every rectangular height function

$$
h^{*}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N},
$$

there is a rectangular height function

$$
h^{* *}:\{1,2, \ldots, n\} \times\{1,2, \ldots, m\} \rightarrow \mathbb{N},
$$

such that $\mathcal{I}_{\text {rect }}\left(h^{*}\right)=\mathcal{I}_{\text {rect }}\left(h^{* *}\right)$ and in $h^{* *}$ every island appears exactly in one cut.

If a rectangular height function $h^{* *}$ has the property that each island appears exactly in one cut, then we call it standard rectangular height function.

Rectangular height functions/13

We denote by $\Lambda_{\max }(m, n)$ the maximum number of different nonempty p-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Rectangular height functions/13

We denote by $\Lambda_{\max }(m, n)$ the maximum number of different nonempty p-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Theorem $5 \Lambda_{\max }(m, n)=m+n-1$.

Rectangular height functions/14

The maximum number of different nonempty p-cuts of a standard rectangular height function is equal to the minimum cardinality of maximal systems of islands.

Rectangular height functions/15

Lemma 1

If $m \geq 3$ and $n \geq 3$ and a height function
$h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ has maximally many islands, then it has exactly two maximal islands.

Rectangular height functions/15

Lemma 1

If $m \geq 3$ and $n \geq 3$ and a height function
$h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ has maximally many islands, then it has exactly two maximal islands.

Lemma 2

If $m \geq 3$ or $n \geq 3$, then for any odd number $t=2 k+1$ with
$1 \leq t \leq \max \{m-2, n-2\}$, there is a standard rectangular height function $h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ having the maximum number of islands $f(m, n)$, such that one of the side-lengths of one of the maximal islands is equal to t.
(Remark: The statement is not true for even side-lengths, one can construct counterexample easily!)

Rectangular height functions/16

We denote by $\Lambda_{h}^{c z}(m, n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$
f(m, n)=\left\lfloor\frac{m n+m+n-1}{2}\right\rfloor .
$$

Rectangular height functions/16

We denote by $\Lambda_{h}^{c z}(m, n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$
f(m, n)=\left\lfloor\frac{m n+m+n-1}{2}\right\rfloor .
$$

Theorem 6

Let $h:\{1,2, \ldots, m\} \times\{1,2, \ldots, n\} \rightarrow \mathbb{N}$ be a standard rectangular height function having maximally many islands $f(m, n)$. Then, $\Lambda_{h}^{c z}(m, n) \geq\left\lceil\log _{2}(m+1)\right\rceil+\left\lceil\log _{2}(n+1)\right\rceil-1$.

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2

 Any two CD-bases of a finite distributive lattice have the same number of
CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

CD-independent subsets in distributive lattices

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

If all finite lattices in a lattice variety have this property, then the variety must coincide with the variety of distributive lattices.

CD-independent subsets in posets

Definitions

CD-independent subsets in posets

Definitions

Let $\mathbb{P}=(P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called disjoint and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf \{a, b\}=0$, or if \mathbb{P} is without 0 , then a and b have no common lowerbound.

CD-independent subsets in posets

Definitions

Let $\mathbb{P}=(P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called disjoint and we write $a \perp b$ if
either \mathbb{P} has least element $0 \in P$ and $\inf \{a, b\}=0$,
or if \mathbb{P} is without 0 , then a and b have no common lowerbound.

- Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

CD-independent subsets in posets

Definitions

Let $\mathbb{P}=(P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called disjoint and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf \{a, b\}=0$, or if \mathbb{P} is without 0 , then a and b have no common lowerbound.

- Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called $C D$-independent if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

CD-independent subsets in posets

Definitions

Let $\mathbb{P}=(P, \leq)$ be a partially ordered set and $a, b \in P$. The elements a and b are called disjoint and we write $a \perp b$ if either \mathbb{P} has least element $0 \in P$ and $\inf \{a, b\}=0$, or if \mathbb{P} is without 0 , then a and b have no common lowerbound.

- Notice, that $a \perp b$ implies $x \perp y$ for all $x, y \in P$ with $x \leq a$ and $y \leq b$.

A nonempty set $X \subseteq P$ is called $C D$-independent if for any $x, y \in X$, $x \leq y$ or $y \leq x$ or $x \perp y$ holds.

Maximal CD-independent sets (with respect to \subseteq) are called CD-bases in \mathbb{P}.

Disjoint systems

Definition

A nonempty set D of nonzero elements of P is called a disjoint system in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

Remarks

Disjoint systems

Definition

A nonempty set D of nonzero elements of P is called a disjoint system in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

Remarks

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.

Disjoint systems

Definition

A nonempty set D of nonzero elements of P is called a disjoint system in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

Remarks

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P}.

Disjoint systems

Definition

A nonempty set D of nonzero elements of P is called a disjoint system in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$.

Remarks

- Any disjoint system $D \subseteq P$ and any chain $C \subseteq P$ is a CD-independent set.
- D is a disjoint system, if and only if it is a CD-independent antichain in \mathbb{P}.
- If X is a CD-independent set in \mathbb{P}, then any antichain $A \subseteq X$ is a disjoint system in \mathbb{P}.

Order ideals

Any antichain $A=\left\{a_{i} \mid i \in I\right\}$ of a poset \mathbb{P} determines a unique order-ideal $I(A)$ of \mathbb{P} :

$$
I(A)=\bigcup_{i \in I}\left(a_{i}\right]=\left\{x \in P \mid x \leq a_{i}, \text { for some } i \in I\right\}
$$

where (a] stands for the principal ideal of an element $a \in P$.

Definition

Remarks

Order ideals

Any antichain $A=\left\{a_{i} \mid i \in I\right\}$ of a poset \mathbb{P} determines a unique order-ideal $I(A)$ of \mathbb{P} :

$$
I(A)=\bigcup_{i \in I}\left(a_{i}\right]=\left\{x \in P \mid x \leq a_{i}, \text { for some } i \in I\right\}
$$

where (a] stands for the principal ideal of an element $a \in P$.

Definition

If A_{1}, A_{2} are antichains in \mathbb{P}, then we say that A_{1} is dominated by A_{2}, and we denote it by $A_{1} \leqslant A_{2}$ if

$$
I\left(A_{1}\right) \subseteq I\left(A_{2}\right)
$$

Remarks

Order ideals

Any antichain $A=\left\{a_{i} \mid i \in I\right\}$ of a poset \mathbb{P} determines a unique order-ideal $I(A)$ of \mathbb{P} :

$$
I(A)=\bigcup_{i \in I}\left(a_{i}\right]=\left\{x \in P \mid x \leq a_{i}, \text { for some } i \in I\right\}
$$

where (a] stands for the principal ideal of an element $a \in P$.

Definition

If A_{1}, A_{2} are antichains in \mathbb{P}, then we say that A_{1} is dominated by A_{2}, and we denote it by $A_{1} \leqslant A_{2}$ if

$$
I\left(A_{1}\right) \subseteq I\left(A_{2}\right)
$$

Remarks

- \leqslant is a partial order

Order ideals

Any antichain $A=\left\{a_{i} \mid i \in I\right\}$ of a poset \mathbb{P} determines a unique order-ideal $I(A)$ of \mathbb{P} :

$$
I(A)=\bigcup_{i \in I}\left(a_{i}\right]=\left\{x \in P \mid x \leq a_{i}, \text { for some } i \in I\right\}
$$

where (a] stands for the principal ideal of an element $a \in P$.

Definition

If A_{1}, A_{2} are antichains in \mathbb{P}, then we say that A_{1} is dominated by A_{2}, and we denote it by $A_{1} \leqslant A_{2}$ if

$$
I\left(A_{1}\right) \subseteq I\left(A_{2}\right)
$$

Remarks

- \leqslant is a partial order
- $A_{1} \leqslant A_{2}$ is satisfied if and only if

$$
\begin{equation*}
\text { for each } x \in A_{1} \text { there exists an } y \in A_{2} \text {, with } x \leq y \text {. } \tag{A}
\end{equation*}
$$

Order ideals

Remarks

- $I\left(A_{1}\right) \prec I\left(A_{2}\right) \Leftrightarrow A_{1} \prec A_{2}$, for any antichains $A_{1}, A_{2} \subseteq P$.

Order ideals

Remarks

- $I\left(A_{1}\right) \prec I\left(A_{2}\right) \Leftrightarrow A_{1} \prec A_{2}$, for any antichains $A_{1}, A_{2} \subseteq P$.
- If D_{1}, D_{2} are disjoint systems in P, then $D_{1} \subseteq D_{2}$ implies $D_{1} \leqslant D_{2}$.

Order ideals

Remarks

- $I\left(A_{1}\right) \prec I\left(A_{2}\right) \Leftrightarrow A_{1} \prec A_{2}$, for any antichains $A_{1}, A_{2} \subseteq P$.
- If D_{1}, D_{2} are disjoint systems in P, then $D_{1} \subseteq D_{2}$ implies $D_{1} \leqslant D_{2}$.
- If $D_{1} \leqslant D_{2}$, then for any $x \in D_{1}$ and $y \in D_{2}$ either $x \leq y$ or $x \perp y$ is satisfied.

Order ideals

Remarks

- $I\left(A_{1}\right) \prec I\left(A_{2}\right) \Leftrightarrow A_{1} \prec A_{2}$, for any antichains $A_{1}, A_{2} \subseteq P$.
- If D_{1}, D_{2} are disjoint systems in P, then $D_{1} \subseteq D_{2}$ implies $D_{1} \leqslant D_{2}$.
- If $D_{1} \leqslant D_{2}$, then for any $x \in D_{1}$ and $y \in D_{2}$ either $x \leq y$ or $x \perp y$ is satisfied.
- The poset (P, \leq) can be order-embedded into $(\mathcal{D}(P), \leqslant)$.

Tolerance relation

Definition

Let $\rho \subseteq P \times P$.
For any $x, y \in P,(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

Remarks

Tolerance relation

Definition

Let $\rho \subseteq P \times P$.
For any $x, y \in P,(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

Remarks

- ρ is a tolerance relation on P.

Tolerance relation

Definition

Let $\rho \subseteq P \times P$.
For any $x, y \in P,(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

Remarks

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ.

Tolerance relation

Definition

Let $\rho \subseteq P \times P$.
For any $x, y \in P,(x, y) \in \rho \Leftrightarrow$ either $x \leq y$ or $y \leq x$ or $x \perp y$.

Remarks

- ρ is a tolerance relation on P.
- The CD-bases of \mathbb{P} are exactly the tolerance classes (tolerance blocks) of ρ.
- Any poset $\mathbb{P}=(P, \leq)$ hast at least one $C D$-base, and the set P is covered by the $C D$-bases of \mathbb{P}.

Theorem

Let B be a $C D$-base of a finite poset (P, \leq), and let $|B|=n$.

Then there exists a maximal chain $\left\{D_{i}\right\}_{1 \leq i \leq n}$ in $\mathcal{D}(P)$ such that $B=\bigcup_{i=1}^{n} D_{i}$.

Theorem

Let B be a $C D$-base of a finite poset (P, \leq), and let $|B|=n$.

Then there exists a maximal chain $\left\{D_{i}\right\}_{1 \leq i \leq n}$ in $\mathcal{D}(P)$ such that $B=\bigcup_{i=1}^{n} D_{i}$.

Moreover, for any maximal chain $\left\{D_{i}\right\}_{1 \leq i \leq m}$ in $\mathcal{D}(P)$ the set $D=\bigcup_{i=1}^{m} D_{i}$ is a $C D$-base in (P, \leq) with $|D|=m$.

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq), then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

Lemma

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq), then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

If $D_{1} \prec D_{2}$ in $\mathcal{D}(P)$, then $D_{2}=\{a\} \cup\left\{y \in D_{1} \backslash\{0\} \mid y \perp a\right\}$ for some minimal element a of the set
$S=\left\{s \in P \backslash\left(D_{1} \cup\{0\}\right) \mid y \perp s\right.$ or $y<s$ for all $\left.y \in D_{1}\right\}$.
Moreover, $D_{1} \prec\{a\} \cup\left\{y \in D_{1} \backslash\{0\} \mid y \perp a\right\}$ holds for any minimal element a of the set S.

Lemma

Proof of the Theorem

Proposition

If B is a CD-base and $D \subseteq B$ is a disjoint system in the poset (P, \leq), then $I(D) \cap B$ is also a CD-base in the subposet $(I(D), \leq)$.

Lemma

If $D_{1} \prec D_{2}$ in $\mathcal{D}(P)$, then $D_{2}=\{a\} \cup\left\{y \in D_{1} \backslash\{0\} \mid y \perp a\right\}$ for some minimal element a of the set
$S=\left\{s \in P \backslash\left(D_{1} \cup\{0\}\right) \mid y \perp s\right.$ or $y<s$ for all $\left.y \in D_{1}\right\}$.
Moreover, $D_{1} \prec\{a\} \cup\left\{y \in D_{1} \backslash\{0\} \mid y \perp a\right\}$ holds for any minimal element a of the set S.

Lemma

Assume that B is a $C D$-base with at least two elements in a finite poset $\mathbb{P}=(P, \leq), M=\max (B)$, and $m \in M$. Then M and
$N:=\max (B \backslash\{m\})$ are disjoint sets. Moreover M is a maximal element in $\mathcal{D}(P)$, and $N \prec M$ holds in $\mathcal{D}(P)$.

Corollary

Let $\mathbb{P}=(P, \leq)$ be a finite poset.
Let $\mathbb{P}=(P, \leq)$ be a finite poset. Then the $C D$-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Corollary

Let $\mathbb{P}=(P, \leq)$ be a finite poset.
Let $\mathbb{P}=(P, \leq)$ be a finite poset. Then the $C D$-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a $C D$-base of \mathbb{P}, and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C}=\left\{D_{i}\right\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

Corollary

Let $\mathbb{P}=(P, \leq)$ be a finite poset.
Let $\mathbb{P}=(P, \leq)$ be a finite poset. Then the $C D$-bases of \mathbb{P} have the same number of elements if and only if the poset $\mathcal{D}(P)$ is graded.

Let $B \subseteq P$ be a $C D$-base of \mathbb{P}, and (B, \leq) the poset under the restricted ordering. Then any maximal chain $\mathcal{C}=\left\{D_{i}\right\}_{1 \leq i \leq m}$ in $\mathcal{D}(B)$ is also a maximal chain in $\mathcal{D}(P)$.

If D is a disjoint set in \mathbb{P} and the $C D$-bases of \mathbb{P} have the same number of elements, then the CD-bases of the subposet $(I(D), \leq)$ also have the same number of elements.

$\mathcal{D}(P)$ is graded

The poset \mathbb{P} is called graded, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P, \leq)$ be a finite poset with 0 . Then the following conditions are equivalent:
(i) The CD-bases of \mathbb{P} have the same number of elements,

A disjoint system D of a poset (P, \leq) is called complete, if there is no $p \in P \backslash D$ such that $D \cup\{p\}$ is also a disjoint system.

$\mathcal{D}(P)$ is graded

The poset \mathbb{P} is called graded, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P, \leq)$ be a finite poset with 0 . Then the following conditions are equivalent:
(i) The CD-bases of \mathbb{P} have the same number of elements,
(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called complete, if there is no $p \in P \backslash D$ such that $D \cup\{p\}$ is also a disjoint system.

$\mathcal{D}(P)$ is graded

The poset \mathbb{P} is called graded, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P, \leq)$ be a finite poset with 0 . Then the following conditions are equivalent:
(i) The CD-bases of \mathbb{P} have the same number of elements,
(ii) $\mathcal{D}(P)$ is graded.

A disjoint system D of a poset (P, \leq) is called complete, if there is no $p \in P \backslash D$ such that $D \cup\{p\}$ is also a disjoint system.
(iii) $\mathcal{D C}(P)$ is graded.

If \mathbb{P} is a finite poset with 0

If all the principal ideals $(a]$ of \mathbb{P} are weakly 0 -modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P}.

If \mathbb{P} is a finite poset with 0

If all the principal ideals $(a]$ of \mathbb{P} are weakly 0 -modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P}.

If \mathbb{P} has weakly 0 -modular principal ideals and $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any $C D$-base of \mathbb{P} contains $|A(P)|+I(P)$ elements.

CD-bases in semilattices and lattices / 1

Lemma

Let \mathbb{P} be a poset with 0 and $D_{k}, k \in K(K \neq \emptyset)$ disjoint sets in \mathbb{P}. If the meet $\bigwedge_{k \in K} a^{(k)}$ of any system of elements $a^{(k)} \in D_{k}, k \in K$ exist in \mathbb{P}, then $\bigwedge_{k \in K} D_{k}$ also exists in $\mathcal{D}(P)$.

CD-bases in semilattices and lattices / 2

A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a distributive pair, if $(c \wedge a) \vee(c \wedge b)$ exists in \mathbb{P} for any $c \in P$, and $c \wedge(a \vee b)=(c \wedge a) \vee(c \wedge b)$.
We say that (P, \wedge) is dp-distributive, if any $a, b \in P$ with $a \wedge b=0$ is a distributive pair.

Theorem

(i) If $\mathbb{P}=(P, \wedge)$ is a semilattice with 0 , then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_{1} \cup D_{2}$ is a $C D$-independent set for some $D_{1}, D_{2} \in \mathcal{D}(P)$, then D_{1}, D_{2} is a distributive pair in $\mathcal{D}(P)$.

CD-bases in semilattices and lattices / 2

A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a distributive pair, if $(c \wedge a) \vee(c \wedge b)$ exists in \mathbb{P} for any $c \in P$, and $c \wedge(a \vee b)=(c \wedge a) \vee(c \wedge b)$.
We say that (P, \wedge) is dp-distributive, if any $a, b \in P$ with $a \wedge b=0$ is a distributive pair.
Theorem
(i) If $\mathbb{P}=(P, \wedge)$ is a semilattice with 0 , then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_{1} \cup D_{2}$ is a $C D$-independent set for some $D_{1}, D_{2} \in \mathcal{D}(P)$, then D_{1}, D_{2} is a distributive pair in $\mathcal{D}(P)$.
(ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a dp-distributive complete lattice.

CD-bases in semilattices and lattices / 3

Let (P, \leq) be a poset and $A \subseteq P .(A, \leq)$ is called a sublattice of (P, \leq), if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq). If the relation $x \prec y$ in (A, \leq) for some $x, y \in A$ implies $x \prec y$ in the poset (P, \leq), then we say that (A, \leq) is a cover-preserving subposet of (P, \leq). Theorem

Let $\mathbb{P}=(P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leqslant)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leqslant)$. If \mathbb{P} is a \wedge-semilattice, then for any $D \in \mathcal{D}(P)$ and $D_{1}, D_{2} \in \mathcal{D}(B)$ we have $\left(D_{1} \vee D_{2}\right) \wedge D=\left(D_{1} \wedge D\right) \vee\left(D_{2} \wedge D\right)$ in $(\mathcal{D}(P), \leqslant)$.

CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ and $d_{1} \vee d_{2}=1$.

Theorem

CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in
$\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ and $d_{1} \vee d_{2}=1$.

Theorem

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in
$\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ and $d_{1} \vee d_{2}=1$.

Theorem

Let L be a finite, weakly 0 -distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a)+I(b)=I(a \vee b)$ holds for all $a, b \in L$ with $a \wedge b=0$.

CD-bases in particular lattice classes

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in
$\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_{1}, d_{2} \in L$ and $d_{1} \vee d_{2}=1$.

Theorem

Let L be a finite, weakly 0 -distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a)+I(b)=I(a \vee b)$ holds for all $a, b \in L$ with $a \wedge b=0$.
- (ii) L is 0 -modular, and the CD-bases of L have the same number of elements.

