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Subuniverses

For a lattice L, Sub(L) will denote its so-called sublattice lattice.

Sub(L) consists of all subuniverses of L. By a subuniverse, we mean a
sublattice or the emptyset.

That is, a subset X of L is in Sub(L) iff X is closed with respect to join
and meet.

In particular, ∅ ∈ Sub(L). Note that for X ∈ Sub(L), X is a sublattice of L
if and only if X is nonempty.
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Glued sum of lattices

If K and L are finite lattices, then their glued sum K +glu L is the ordinal
sum of the posets K \ 1K , the singleton lattice, and L \ {0L}, in this order.

In other words, we put L atop K and identify the elements 1K and 0L.
For example, if each of K and L is the two-element chain, then K +glu L is
the three-element chain.
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The first three numbers

Theorem

If 5 ≤ n ∈ N+, then the following three assertions hold.

(i) The largest number in NS(n) is 2n = 32 · 2n−5. Furthermore, an
n-element lattice L has exactly 2n subuniverses if an only if L is a
chain.

(ii) The second largest number in NS(n) is 26 · 2n−5. Furthermore, an
n-element lattice L has exactly 26 · 2n−5 subuniverses if and only if
L ∼= C1 +glu B4 +glu C2, where C1 and C2 are chains.

(iii) The third largest number in NS(n) is 23 · 2n−5. Furthermore, an
n-element lattice L has exactly 23 · 2n−5 subuniverses if and only if
L ∼= C0 +glu N5 +glu C1, where C0 and C1 are chains.
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Notions and notations

For elements u, v in a lattice L, the interval [u, v ] := {x ∈ L : u ≤ x ≤ v}
is defined only if u ≤ v . For u ∈ L, the principal ideal and the principal
filter generated by u are ↓u := {x ∈ L : x ≤ u} and ↑u := {x ∈ L : u ≤ x},
respectively. We can also write ↓Lu and ↑Lv to specify the lattice L. For
u, v ∈ L, we write u ‖ v if u and v are incomparable, that is, u 6≤ v and
v 6≤ u. We say that u is join-irreducible if u has at most one lower cover;
note that 0 = 0L is join-irreducible by our convention. Meet-irreducibility
is defined dually, and an element is doubly irreducible if it is both
join-irreducible and meet-irreducible. Next, let us call an element u ∈ L
isolated if u is doubly irreducible and L = ↓u ∪ ↑u. That is, if u is doubly
irreducible and x ‖ u holds for no x ∈ L. Finally, an interval [u, v ] will be
called an isolated edge if it is a prime interval, that is, u ≺ v , and
L = ↓u ∪ ↑v .
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Basic lemma

Lemma

If K is a sublattice and H is a subset of a finite lattice L, then the
following three assertions hold.

(i) With the notation t := |{H ∩ S : S ∈ Sub(L)}|, we have that
| Sub(L)| ≤ t · 2|L|−|H|.

(ii) | Sub(L)| ≤ | Sub(K )| · 2|L|−|K |.

(iii) Assume, in addition, that K has neither an isolated element, nor
an isolated edge. Then |Sub(L)| = | Sub(K )| · 2|L|−|K | if and only if
L is (isomorphic to) C0 +glu K +glu C1 for some chains C0 and C1.
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Eszter K. Horváth, Szeged Co-author: Gábor Czédli ()Lattices with many sublattices Dresden 2019. January 18. 6 / 21



If H is a subset of L, then

| Sub(L)| ≤ |{H ∩ S : S ∈ Sub(L)}| · 2|L|−|H|

Proof
Let ϕ : Sub(L)→ {H ∩ S : S ∈ Sub(L)}, X 7→ H ∩ X .
Each Y ∈ {H ∩ S : S ∈ Sub(L)} has at most 2|L|−|H| preimages.
Q. E. D.

If K is a sublattice of L, then| Sub(L)| ≤ |Sub(K )| · 2|L|−|K |.

If | Sub(L)| = |Sub(K )| · 2|L|−|K |, then for every S ∈ Sub(K ) and every
subset X of L \ K , we have that S ∪ X ∈ Sub(L).
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Isolated element

We call an element u ∈ L isolated if u is doubly irreducible and
L = ↓u ∪ ↑u.

That is, if u is doubly irreducible and x ‖ u holds for no x ∈ L.

For an element u ∈ L, u is isolated if and only if for every X ∈ Sub(L), we
have that X ∪ {u} ∈ Sub(L) and X \ {u} ∈ Sub(L).

Proof
Assume that u is isolated and X ∈ Sub(L). Since u is doubly irreducible,
X \ {u} ∈ Sub(L). Since u is comparable with all elements of X ,
X ∪ {u} ∈ Sub(L).
To show the converse, assume that u is not isolated. If u is not doubly
irreducible, then u = a ∨ b with a, b < u or dually, and
X := {a, b, u, a ∧ b} ∈ Sub(L) but X \ {u} /∈ Sub(L). If u ‖ v for some
v ∈ L, then {v} ∈ Sub(L) but {v}∪{u} /∈ Sub(L).
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Numbers

Lemma

The following seven assertions hold.

(i) | Sub(B4)| = 13 = 26 · 24−5.

(ii) |Sub(N5)| = 23 = 23 · 25−5.

(iii) |Sub(C (2) × C (3))| = 38 = 19 · 26−5.

(iv) |Sub(B4 +glu B4)| = 85 = 21.25 · 27−5.

(v) |Sub(B4 +glu C (2) +glu B4)| = 169 = 21.125 · 28−5.

(vi) |Sub(M3)| = 20 = 20 · 25−5.

(vii) |Sub(B8)| = 74 = 9.25 · 28−5.
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Lattices
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| Sub(N5)| = 23 = 23 · 25−5

Observe that

|{S ∈ Sub(N5) : {a, c} ∩ S = ∅}| = 8, by (??),

|{S ∈ Sub(N5) : {a, c} ∩ S 6= ∅}, b /∈ S | = 3 · 4 = 12, and

|{S ∈ Sub(N5) : {a, c} ∩ S 6= ∅}, b ∈ S | = 3,

whereby | Sub(N5)| = 8 + 12 + 3 = 23.
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Free join-semilattice

Lemma

For every join-semilattice S generated by {a, b, c}, there is a unique
surjective homomorphism ϕ from the free join-semilattice Fjsl(ã, b̃, c̃) onto
S such that ϕ(ã) = a, ϕ(b̃) = b, and ϕ(c̃) = c.
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Free lattice

Lemma (I. Rival and R. Wille)

For every lattice K generated by {a, b, c} such that a < c, there is a
unique surjective homomorphism ϕ from the finitely presented lattice
Flat(ã, b̃, c̃) onto K such that ϕ(ã) = a, ϕ(b̃) = b, and ϕ(c̃) = c.

Eszter K. Horváth, Szeged Co-author: Gábor Czédli ()Lattices with many sublattices Dresden 2019. January 18. 13 / 21



3-antichain

Lemma

If an n-element lattice L has a 3-antichain, then we have that
| Sub(L)| ≤ 20 · 2n−5.

Proof Let {a, b, c} be a 3-antichain in L. Lemma 4 yields a unique
join-homomorphism from Fjsl((ã, b̃, c̃)) to
S := {a, b, c , a ∨ b, a ∨ c , b ∨ c , a ∨ b ∨ c} such that ϕ maps to ã, b̃, and c̃
to a, b, and c , respectively.
Since {a, b, c} is an antichain, none of the six lower edges of Fjsl((ã, b̃, c̃))
is collapsed by the kernel Θ := ker(ϕ) of ϕ. Hence, there are only four
cases for the join-subsemilattice S ∼= Fjsl((ã, b̃, c̃))/Θ of L, depending on
the number the upper edges collapsed by Θ.
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the number the upper edges collapsed by Θ.
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Case 1

None of the three upper edges is collapsed by Θ.

Then S is isomorphic to Fjsl((ã, b̃, c̃)), whereby {a ∨ b, a ∨ c , b ∨ c} is a
3-antichain.

We know that this 3-antichain generates a sublattice isomorphic to B8.
Hence, |Sub(L)| ≤ 9.25 · 2n−5 ≤ 20 · 2n−5.
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Case 2 and Case 3

Eszter K. Horváth, Szeged Co-author: Gábor Czédli ()Lattices with many sublattices Dresden 2019. January 18. 16 / 21



Case 4

All the three upper edges are collapsed.

Clearly, a ∨ b = a ∨ c = b ∨ c = a ∨ b ∨ c =: i .

If a ∧ b = a ∧ c = b ∧ c = a ∧ b ∧ c failed, then the dual of one of the
previous three cases would apply.

Hence, we can assume that the sublattice [{a, b, c}] generated by {a, b, c}
is isomorphic to M3.

Therefore, | Sub(L)| ≤ 20 · 2n−5.
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Third number

If L ∼= C0 +glu N5 +glu C1 for finite chains C0 and C1,
then | Sub(L)| = 23 · 2n−5.

It suffices to exclude the existence of a lattice L such that |L| = n,
23 · 2n−5 ≤ |Sub(L)| < 26 · 2n−5, but L is not of this form above.
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Sketch of proof

Suppose, for a contradiction, that L is a lattice satisfying |L| = n,
23 · 2n−5 ≤ |Sub(L)| < 26 · 2n−5, but L is not of form

L ∼= C0 +glu N5 +glu C1.

then, L has at least two 2-antichains but it has no 3-antichain.

We show that cannot have two non-disjoint 2-antichains.

If x , y , z ∈ L such that |{x , y , z}| = 3 and x ‖ y , then
either {x , y} ⊆ ↓z , or {x , y} ⊆ ↑z . (1)
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End of proof

We have a four-element subset {a, b, c , d} of L such that a ‖ b and c ‖ d .

Let S := {a ∧ b, a, b, u, v , c , d , c ∨ d}. Depending on u = v or u < v , S is
a sublattice isomorphic to B4 +glu B4 or B4 +glu C (2) +glu B4.

We obtain that |Sub(L)| ≤ 21.25 · 2n−5.
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Eszter K. Horváth, Szeged Co-author: Gábor Czédli ()Lattices with many sublattices Dresden 2019. January 18. 20 / 21



Thank you for your attention!

Thank you for your attention!
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