Lattices with many sublattices

Eszter K. Horváth, Szeged

Co-author: Gábor Czédli

Dresden 2019. January 18.

Sub(L) consists of all *subuniverses* of *L*. By a subuniverse, we mean a sublattice or the emptyset.

That is, a subset X of L is in Sub(L) iff X is closed with respect to join and meet.

In particular, $\emptyset \in \text{Sub}(L)$. Note that for $X \in \text{Sub}(L)$, X is a sublattice of L if and only if X is nonempty.

Sub(L) consists of all *subuniverses* of *L*. By a subuniverse, we mean a sublattice or the emptyset.

That is, a subset X of L is in Sub(L) iff X is closed with respect to join and meet.

In particular, $\emptyset \in \text{Sub}(L)$. Note that for $X \in \text{Sub}(L)$, X is a sublattice of L if and only if X is nonempty.

Sub(L) consists of all *subuniverses* of L. By a subuniverse, we mean a sublattice or the emptyset.

That is, a subset X of L is in Sub(L) iff X is closed with respect to join and meet.

In particular, $\emptyset \in \text{Sub}(L)$. Note that for $X \in \text{Sub}(L)$, X is a sublattice of L if and only if X is nonempty.

Sub(L) consists of all *subuniverses* of *L*. By a subuniverse, we mean a sublattice or the emptyset.

That is, a subset X of L is in Sub(L) iff X is closed with respect to join and meet.

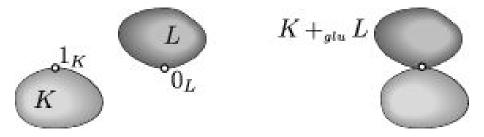
In particular, $\emptyset \in \text{Sub}(L)$. Note that for $X \in \text{Sub}(L)$, X is a sublattice of L if and only if X is nonempty.

Sub(L) consists of all *subuniverses* of *L*. By a subuniverse, we mean a sublattice or the emptyset.

That is, a subset X of L is in Sub(L) iff X is closed with respect to join and meet.

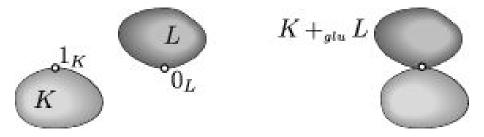
In particular, $\emptyset \in \text{Sub}(L)$. Note that for $X \in \text{Sub}(L)$, X is a sublattice of L if and only if X is nonempty.

If K and L are finite lattices, then their glued sum $K +_{glu} L$ is the ordinal sum of the posets $K \setminus 1_K$, the singleton lattice, and $L \setminus \{0_L\}$, in this order.



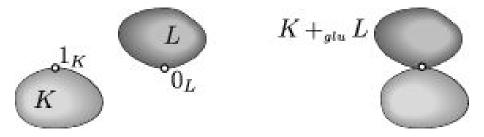
In other words, we put L atop K and identify the elements 1_K and 0_L . For example, if each of K and L is the two-element chain, then $K +_{glu} L$ is the three-element chain.

If K and L are finite lattices, then their glued sum $K +_{glu} L$ is the ordinal sum of the posets $K \setminus 1_K$, the singleton lattice, and $L \setminus \{0_L\}$, in this order.



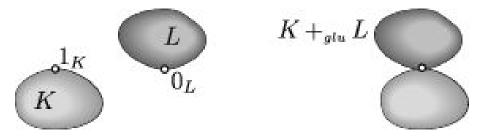
In other words, we put L atop K and identify the elements 1_K and 0_L . For example, if each of K and L is the two-element chain, then $K +_{glu} L$ is the three-element chain.

If K and L are finite lattices, then their glued sum $K +_{glu} L$ is the ordinal sum of the posets $K \setminus 1_K$, the singleton lattice, and $L \setminus \{0_L\}$, in this order.



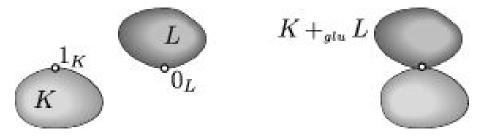
In other words, we put L atop K and identify the elements 1_K and 0_L . For example, if each of K and L is the two-element chain, then $K +_{glu} L$ is the three-element chain.

If K and L are finite lattices, then their glued sum $K +_{glu} L$ is the ordinal sum of the posets $K \setminus 1_K$, the singleton lattice, and $L \setminus \{0_L\}$, in this order.



In other words, we put L atop K and identify the elements 1_K and 0_L . For example, if each of K and L is the two-element chain, then $K +_{glu} L$ is the three-element chain.

If K and L are finite lattices, then their glued sum $K +_{glu} L$ is the ordinal sum of the posets $K \setminus 1_K$, the singleton lattice, and $L \setminus \{0_L\}$, in this order.



In other words, we put L atop K and identify the elements 1_K and 0_L . For example, if each of K and L is the two-element chain, then $K +_{glu} L$ is the three-element chain.

If $5 \leq n \in \mathbb{N}^+$, then the following three assertions hold.

- The largest number in NS(n) is 2ⁿ = 32 · 2ⁿ⁻⁵. Furthermore, an n-element lattice L has exactly 2ⁿ subuniverses if an only if L is a chain.
- (ii) The second largest number in NS(n) is $26 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly $26 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_1 +_{glu} B_4 +_{glu} C_2$, where C_1 and C_2 are chains.

(iii) The third largest number in NS(n) is $23 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly $23 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_0 +_{glu} N_5 +_{glu} C_1$, where C_0 and C_1 are chains.

If $5 \leq n \in \mathbb{N}^+$, then the following three assertions hold.

- (i) The largest number in NS(n) is $2^n = 32 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly 2^n subuniverses if an only if L is a chain.
- (ii) The second largest number in NS(n) is $26 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly $26 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_1 +_{glu} B_4 +_{glu} C_2$, where C_1 and C_2 are chains.
- (iii) The third largest number in NS(n) is $23 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly $23 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_0 +_{glu} N_5 +_{glu} C_1$, where C_0 and C_1 are chains.

If $5 \leq n \in \mathbb{N}^+$, then the following three assertions hold.

- (i) The largest number in NS(n) is $2^n = 32 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly 2^n subuniverses if an only if L is a chain.
- (ii) The second largest number in NS(n) is $26 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly $26 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_1 +_{glu} B_4 +_{glu} C_2$, where C_1 and C_2 are chains.

(iii) The third largest number in NS(n) is $23 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly $23 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_0 +_{glu} N_5 +_{glu} C_1$, where C_0 and C_1 are chains.

If $5 \leq n \in \mathbb{N}^+$, then the following three assertions hold.

- (i) The largest number in NS(n) is $2^n = 32 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly 2^n subuniverses if an only if L is a chain.
- (ii) The second largest number in NS(n) is $26 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly $26 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_1 +_{glu} B_4 +_{glu} C_2$, where C_1 and C_2 are chains.
- (iii) The third largest number in NS(n) is $23 \cdot 2^{n-5}$. Furthermore, an *n*-element lattice L has exactly $23 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_0 +_{glu} N_5 +_{glu} C_1$, where C_0 and C_1 are chains.

For elements u, v in a lattice L, the interval $[u, v] := \{x \in L : u \le x \le v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal

For elements u, v in a lattice L, the interval $[u, v] := \{x \in L : u \le x \le v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal

For elements u, v in a lattice L, the interval $[u, v] := \{x \in L : u \le x \le v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u := \{x \in L : x \leq u\}$ and $\uparrow u := \{x \in L : u \leq x\}$, **respectively.** We can also write $\int_{U} u$ and $\uparrow_{U} v$ to specify the lattice L. For

For elements u, v in a lattice L, the *interval* $[u, v] := \{x \in L : u \le x \le v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u := \{x \in L : x \leq u\}$ and $\uparrow u := \{x \in L : u \leq x\}$, respectively. We can also write $\downarrow_I u$ and $\uparrow_I v$ to specify the lattice L. For

For elements u, v in a lattice L, the *interval* $[u, v] := \{x \in L : u \le x \le v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u := \{x \in L : x \leq u\}$ and $\uparrow u := \{x \in L : u \leq x\}$, respectively. We can also write $\downarrow_I u$ and $\uparrow_I v$ to specify the lattice L. For $u, v \in L$, we write $u \parallel v$ if u and v are *incomparable*, that is, $u \not\leq v$ and $v \not\leq u$. We say that u is *join-irreducible* if u has at most one lower cover;

For elements u, v in a lattice L, the *interval* $[u, v] := \{x \in L : u < x < v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u := \{x \in L : x \leq u\}$ and $\uparrow u := \{x \in L : u \leq x\}$, respectively. We can also write $\downarrow_I u$ and $\uparrow_I v$ to specify the lattice L. For $u, v \in L$, we write $u \parallel v$ if u and v are *incomparable*, that is, $u \not\leq v$ and $v \leq u$. We say that u is *join-irreducible* if u has at most one lower cover; note that $0 = 0_1$ is join-irreducible by our convention. Meet-irreducibility

For elements u, v in a lattice L, the interval $[u, v] := \{x \in L : u \le x \le v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u := \{x \in L : x \leq u\}$ and $\uparrow u := \{x \in L : u \leq x\}$, respectively. We can also write $\downarrow_I u$ and $\uparrow_I v$ to specify the lattice L. For $u, v \in L$, we write $u \parallel v$ if u and v are *incomparable*, that is, $u \not\leq v$ and $v \not\leq u$. We say that u is join-irreducible if u has at most one lower cover; note that $0 = 0_1$ is join-irreducible by our convention. *Meet-irreducibility* is defined dually, and an element is *doubly irreducible* if it is both

For elements u, v in a lattice L, the interval $[u, v] := \{x \in L : u \le x \le v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u := \{x \in L : x \leq u\}$ and $\uparrow u := \{x \in L : u \leq x\}$, respectively. We can also write $\downarrow_I u$ and $\uparrow_I v$ to specify the lattice L. For $u, v \in L$, we write $u \parallel v$ if u and v are *incomparable*, that is, $u \not\leq v$ and $v \leq u$. We say that u is *join-irreducible* if u has at most one lower cover; note that $0 = 0_1$ is join-irreducible by our convention. *Meet-irreducibility* is defined dually, and an element is *doubly irreducible* if it is both join-irreducible and meet-irreducible. Next, let us call an element $u \in L$

For elements u, v in a lattice L, the *interval* $[u, v] := \{x \in L : u < x < v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u := \{x \in L : x \leq u\}$ and $\uparrow u := \{x \in L : u \leq x\}$, respectively. We can also write $\downarrow_I u$ and $\uparrow_I v$ to specify the lattice L. For $u, v \in L$, we write $u \parallel v$ if u and v are *incomparable*, that is, $u \not\leq v$ and $v \leq u$. We say that u is *join-irreducible* if u has at most one lower cover; note that $0 = 0_1$ is join-irreducible by our convention. *Meet-irreducibility* is defined dually, and an element is *doubly irreducible* if it is both join-irreducible and meet-irreducible. Next, let us call an element $u \in L$ *isolated* if u is doubly irreducible and $L = \downarrow u \cup \uparrow u$. That is, if u is doubly

For elements u, v in a lattice L, the *interval* $[u, v] := \{x \in L : u < x < v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u := \{x \in L : x \leq u\}$ and $\uparrow u := \{x \in L : u \leq x\}$, respectively. We can also write $\downarrow_I u$ and $\uparrow_I v$ to specify the lattice L. For $u, v \in L$, we write $u \parallel v$ if u and v are *incomparable*, that is, $u \not\leq v$ and $v \leq u$. We say that u is *join-irreducible* if u has at most one lower cover; note that $0 = 0_1$ is join-irreducible by our convention. *Meet-irreducibility* is defined dually, and an element is *doubly irreducible* if it is both join-irreducible and meet-irreducible. Next, let us call an element $u \in L$ *isolated* if u is doubly irreducible and $L = \downarrow u \cup \uparrow u$. That is, if u is doubly irreducible and $x \parallel u$ holds for no $x \in L$. Finally, an interval [u, v] will be

For elements u, v in a lattice L, the *interval* $[u, v] := \{x \in L : u < x < v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u := \{x \in L : x \leq u\}$ and $\uparrow u := \{x \in L : u \leq x\}$, respectively. We can also write $\downarrow_I u$ and $\uparrow_I v$ to specify the lattice L. For $u, v \in L$, we write $u \parallel v$ if u and v are *incomparable*, that is, $u \not\leq v$ and $v \not\leq u$. We say that u is *join-irreducible* if u has at most one lower cover; note that $0 = 0_1$ is join-irreducible by our convention. *Meet-irreducibility* is defined dually, and an element is *doubly irreducible* if it is both join-irreducible and meet-irreducible. Next, let us call an element $u \in L$ *isolated* if u is doubly irreducible and $L = \downarrow u \cup \uparrow u$. That is, if u is doubly irreducible and $x \parallel u$ holds for no $x \in L$. Finally, an interval [u, v] will be called an *isolated edge* if it is a prime interval, that is, $u \prec v$, and $L = \downarrow u \cup \uparrow v.$

If K is a sublattice and H is a subset of a finite lattice L, then the following three assertions hold.

- (i) With the notation $t := |\{H \cap S : S \in Sub(L)\}|$, we have that $|Sub(L)| \le t \cdot 2^{|L| |H|}$.
- (ii) $|\operatorname{Sub}(L)| \leq |\operatorname{Sub}(K)| \cdot 2^{|L| |K|}$.

If K is a sublattice and H is a subset of a finite lattice L, then the following three assertions hold.

- (i) With the notation $t := |\{H \cap S : S \in Sub(L)\}|$, we have that $|Sub(L)| \le t \cdot 2^{|L|-|H|}$.
- (ii) $|\operatorname{Sub}(L)| \leq |\operatorname{Sub}(K)| \cdot 2^{|L| |K|}$.

If K is a sublattice and H is a subset of a finite lattice L, then the following three assertions hold.

- (i) With the notation $t := |\{H \cap S : S \in Sub(L)\}|$, we have that $|Sub(L)| \le t \cdot 2^{|L|-|H|}$.
- (ii) $|\operatorname{Sub}(L)| \leq |\operatorname{Sub}(K)| \cdot 2^{|L|-|K|}$.

If K is a sublattice and H is a subset of a finite lattice L, then the following three assertions hold.

(i) With the notation $t := |\{H \cap S : S \in Sub(L)\}|$, we have that $|Sub(L)| \le t \cdot 2^{|L|-|H|}$.

(ii)
$$|\operatorname{Sub}(L)| \leq |\operatorname{Sub}(K)| \cdot 2^{|L| - |K|}$$
.

<u>Proof</u>

Let φ : Sub(L) \rightarrow { $H \cap S : S \in$ Sub(L)}, $X \mapsto H \cap X$. Each $Y \in$ { $H \cap S : S \in$ Sub(L)} has at most $2^{|L|-|H|}$ preimages. Q. E. D.

If K is a sublattice of L, then $|\operatorname{Sub}(L)| \leq |\operatorname{Sub}(K)| \cdot 2^{|L| - |K|}$.

Proof

Let φ : Sub $(L) \rightarrow \{H \cap S : S \in Sub(L)\}, X \mapsto H \cap X$. Each $Y \in \{H \cap S : S \in Sub(L)\}$ has at most $2^{|L|-|H|}$ preimages. Q. E. D.

If K is a sublattice of L, then $|\operatorname{Sub}(L)| \leq |\operatorname{Sub}(K)| \cdot 2^{|L| - |K|}$.

Proof

Let φ : Sub $(L) \rightarrow \{H \cap S : S \in Sub(L)\}$, $X \mapsto H \cap X$. Each $Y \in \{H \cap S : S \in Sub(L)\}$ has at most $2^{|L|-|H|}$ preimages. Q. E. D.

If K is a sublattice of L, then $|\operatorname{Sub}(L)| \leq |\operatorname{Sub}(K)| \cdot 2^{|L| - |K|}$.

Proof

Let φ : Sub $(L) \rightarrow \{H \cap S : S \in Sub(L)\}$, $X \mapsto H \cap X$. Each $Y \in \{H \cap S : S \in Sub(L)\}$ has at most $2^{|L|-|H|}$ preimages. Q. E. D.

If K is a sublattice of L, then $|\operatorname{Sub}(L)| \leq |\operatorname{Sub}(K)| \cdot 2^{|L| - |K|}$.

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L = \downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \parallel u$ holds for no $x \in L$.

For an element $u \in L$, u is isolated if and only if for every $X \in Sub(L)$, we have that $X \cup \{u\} \in Sub(L)$ and $X \setminus \{u\} \in Sub(L)$.

Proof

Assume that u is isolated and $X \in Sub(L)$. Since u is doubly irreducible, $X \setminus \{u\} \in Sub(L)$. Since u is comparable with all elements of X, $X \cup \{u\} \in Sub(L)$.

To show the converse, assume that u is not isolated. If u is not doubly irreducible, then $u = a \lor b$ with a, b < u or dually, and $X := \{a, b, u, a \land b\} \in \text{Sub}(L)$ but $X \setminus \{u\} \notin \text{Sub}(L)$. If $u \parallel v$ for some $v \in L$ then $\{v\} \in \text{Sub}(L)$ but $\{v\} \sqcup \{u\} \notin \text{Sub}(L)$

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L = \downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \parallel u$ holds for no $x \in L$.

For an element $u \in L$, u is isolated if and only if for every $X \in Sub(L)$, we have that $X \cup \{u\} \in Sub(L)$ and $X \setminus \{u\} \in Sub(L)$.

Proof

Assume that u is isolated and $X \in Sub(L)$. Since u is doubly irreducible, $X \setminus \{u\} \in Sub(L)$. Since u is comparable with all elements of X, $X \cup \{u\} \in Sub(L)$.

To show the converse, assume that u is not isolated. If u is not doubly irreducible, then $u = a \lor b$ with a, b < u or dually, and $X := \{a, b, u, a \land b\} \in Sub(L)$ but $X \setminus \{u\} \notin Sub(L)$. If $u \parallel v$ for some $v \in L$, then $\{v\} \in Sub(L)$ but $\{v\} \cup \{u\} \notin Sub(L)$.

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L = \downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \parallel u$ holds for no $x \in L$.

For an element $u \in L$, u is isolated if and only if for every $X \in Sub(L)$, we have that $X \cup \{u\} \in Sub(L)$ and $X \setminus \{u\} \in Sub(L)$.

Proof

Assume that u is isolated and $X \in Sub(L)$. Since u is doubly irreducible, $X \setminus \{u\} \in Sub(L)$. Since u is comparable with all elements of X, $X \cup \{u\} \in Sub(L)$.

To show the converse, assume that u is not isolated. If u is not doubly irreducible, then $u = a \lor b$ with a, b < u or dually, and

 $X := \{a, b, u, a \land b\} \in Sub(L) \text{ but } X \setminus \{u\} \notin Sub(L). \text{ If } u \parallel v \text{ for some} \\ v \in L, \text{ then } \{v\} \in Sub(L) \text{ but } \{v\} \cup \{u\} \notin Sub(L).$

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L = \downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \parallel u$ holds for no $x \in L$.

For an element $u \in L$, u is isolated if and only if for every $X \in Sub(L)$, we have that $X \cup \{u\} \in Sub(L)$ and $X \setminus \{u\} \in Sub(L)$.

Proof

Assume that *u* is isolated and $X \in Sub(L)$. Since *u* is doubly irreducible, $X \setminus \{u\} \in Sub(L)$. Since *u* is comparable with all elements of *X*, $X \cup \{u\} \in Sub(L)$. To show the converse, assume that *u* is not isolated. If *u* is not doubly irreducible, then $u = a \lor b$ with a, b < u or dually, and $X := \{a, b, u, a \land b\} \in Sub(L)$ but $X \setminus \{u\} \notin Sub(L)$. If $u \parallel v$ for some $v \in L$, then $\{v\} \in Sub(L)$ but $\{v\} \cup \{u\} \notin Sub(L)$. We call an element $u \in L$ isolated if u is doubly irreducible and $L = \downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \parallel u$ holds for no $x \in L$.

For an element $u \in L$, u is isolated if and only if for every $X \in Sub(L)$, we have that $X \cup \{u\} \in Sub(L)$ and $X \setminus \{u\} \in Sub(L)$.

Proof

Assume that *u* is isolated and $X \in Sub(L)$. Since *u* is doubly irreducible, $X \setminus \{u\} \in Sub(L)$. Since *u* is comparable with all elements of *X*, $X \cup \{u\} \in Sub(L)$.

To show the converse, assume that u is not isolated. If u is not doubly irreducible, then $u = a \lor b$ with a, b < u or dually, and $X := \{a, b, u, a \land b\} \in \text{Sub}(L)$ but $X \setminus \{u\} \notin \text{Sub}(L)$. If $u \parallel v$ for some $v \in L$, then $\{v\} \in \text{Sub}(L)$ but $\{v\} \cup \{u\} \notin \text{Sub}(L)$.

We call an element $u \in L$ isolated if u is doubly irreducible and $L = \downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \parallel u$ holds for no $x \in L$.

For an element $u \in L$, u is isolated if and only if for every $X \in Sub(L)$, we have that $X \cup \{u\} \in Sub(L)$ and $X \setminus \{u\} \in Sub(L)$.

Proof

Assume that *u* is isolated and $X \in Sub(L)$. Since *u* is doubly irreducible, $X \setminus \{u\} \in Sub(L)$. Since *u* is comparable with all elements of *X*, $X \cup \{u\} \in Sub(L)$. To show the converse, assume that *u* is not isolated. If *u* is not doubly irreducible, then $u = a \lor b$ with a, b < u or dually, and $X := \{a, b, u, a \land b\} \in Sub(L)$ but $X \setminus \{u\} \notin Sub(L)$. If $u \parallel v$ for some $v \in L$ then $\{v\} \in Sub(L)$ but $\{v\} \cup \{u\} \notin Sub(L)$. We call an element $u \in L$ isolated if u is doubly irreducible and $L = \downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \parallel u$ holds for no $x \in L$.

For an element $u \in L$, u is isolated if and only if for every $X \in Sub(L)$, we have that $X \cup \{u\} \in Sub(L)$ and $X \setminus \{u\} \in Sub(L)$.

Proof

Assume that u is isolated and $X \in Sub(L)$. Since u is doubly irreducible, $X \setminus \{u\} \in Sub(L)$. Since u is comparable with all elements of X, $X \cup \{u\} \in Sub(L)$. To show the converse, assume that u is not isolated. If u is not doubly irreducible, then $u = a \lor b$ with a, b < u or dually, and $X := \{a, b, u, a \land b\} \in Sub(L)$ but $X \setminus \{u\} \notin Sub(L)$. If $u \parallel v$ for some $v \in L$, then $\{v\} \in Sub(L)$ but $\{v\} \cup \{u\} \notin Sub(L)$.

Lemma

The following seven assertions hold.

(i)
$$|\operatorname{Sub}(B_4)| = 13 = 26 \cdot 2^{4-5}$$
.

(ii)
$$|\operatorname{Sub}(N_5)| = 23 = 23 \cdot 2^{5-5}$$

(iii)
$$|\operatorname{Sub}(C^{(2)} \times C^{(3)})| = 38 = 19 \cdot 2^{6-5}.$$

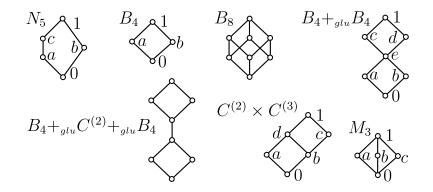
(iv)
$$|\operatorname{Sub}(B_4 +_{glu} B_4)| = 85 = 21.25 \cdot 2^{7-5}$$
.

(v)
$$|\operatorname{Sub}(B_4 +_{glu} C^{(2)} +_{glu} B_4)| = 169 = 21.125 \cdot 2^{8-5}.$$

(vi)
$$|\operatorname{Sub}(M_3)| = 20 = 20 \cdot 2^{5-5}$$
.

(vii)
$$|\operatorname{Sub}(B_8)| = 74 = 9.25 \cdot 2^{8-5}$$
.

Lattices



Observe that

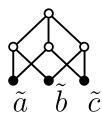
$$\begin{split} |\{S \in \mathsf{Sub}(N_5) : \{a, c\} \cap S = \emptyset\}| &= 8, \qquad \text{by (??),} \\ |\{S \in \mathsf{Sub}(N_5) : \{a, c\} \cap S \neq \emptyset\}, \ b \notin S| &= 3 \cdot 4 = 12, \text{ and} \\ |\{S \in \mathsf{Sub}(N_5) : \{a, c\} \cap S \neq \emptyset\}, \ b \in S| &= 3, \end{split}$$

whereby $|Sub(N_5)| = 8 + 12 + 3 = 23$.

Lemma

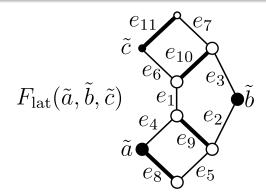
For every join-semilattice S generated by $\{a, b, c\}$, there is a unique surjective homomorphism φ from the free join-semilattice $F_{jsl}(\tilde{a}, \tilde{b}, \tilde{c})$ onto S such that $\varphi(\tilde{a}) = a$, $\varphi(\tilde{b}) = b$, and $\varphi(\tilde{c}) = c$.

$$F_{\rm jsl}(\tilde{a}, \tilde{b}, \tilde{c})$$



Lemma (I. Rival and R. Wille)

For every lattice K generated by $\{a, b, c\}$ such that a < c, there is a unique surjective homomorphism φ from the finitely presented lattice $F_{\text{lat}}(\tilde{a}, \tilde{b}, \tilde{c})$ onto K such that $\varphi(\tilde{a}) = a$, $\varphi(\tilde{b}) = b$, and $\varphi(\tilde{c}) = c$.



Lemma

If an n-element lattice L has a 3-antichain, then we have that $|\operatorname{Sub}(L)| \leq 20 \cdot 2^{n-5}$.

<u>*Proof*</u> Let $\{a, b, c\}$ be a 3-antichain in *L*. Lemma 4 yields a unique join-homomorphism from $F_{jsl}((\tilde{a}, \tilde{b}, \tilde{c}))$ to

 $S := \{a, b, c, a \lor b, a \lor c, b \lor c, a \lor b \lor c\}$ such that φ maps to \tilde{a} , \tilde{b} , and \tilde{c} to a, b, and c, respectively.

Since $\{a, b, c\}$ is an antichain, none of the six lower edges of $F_{jsl}((\tilde{a}, \tilde{b}, \tilde{c}))$ is collapsed by the kernel $\Theta := \ker(\varphi)$ of φ . Hence, there are only four cases for the join-subsemilattice $S \cong F_{jsl}((\tilde{a}, \tilde{b}, \tilde{c}))/\Theta$ of L, depending on the number the upper edges collapsed by Θ .

Lemma

If an n-element lattice L has a 3-antichain, then we have that $|\operatorname{Sub}(L)| \leq 20 \cdot 2^{n-5}$.

<u>Proof</u> Let $\{a, b, c\}$ be a 3-antichain in L. Lemma 4 yields a unique join-homomorphism from $F_{jsl}((\tilde{a}, \tilde{b}, \tilde{c}))$ to $S := \{a, b, c, a \lor b, a \lor c, b \lor c, a \lor b \lor c\}$ such that φ maps to \tilde{a} , \tilde{b} , and \tilde{c} to a, b, and c, respectively. Since $\{a, b, c\}$ is an antichain, none of the six lower edges of $F_{jsl}((\tilde{a}, \tilde{b}, \tilde{c}))$ is collapsed by the kernel $\Theta := \ker(\varphi)$ of φ . Hence, there are only four cases for the join-subsemilattice $S \cong F_{jsl}((\tilde{a}, \tilde{b}, \tilde{c}))/\Theta$ of L, depending on the number the upper edges collapsed by Θ .

Then S is isomorphic to $F_{jsl}((\tilde{a}, \tilde{b}, \tilde{c}))$, whereby $\{a \lor b, a \lor c, b \lor c\}$ is a 3-antichain.

We know that this 3-antichain generates a sublattice isomorphic to B_8 . Hence, $|\operatorname{Sub}(L)| \le 9.25 \cdot 2^{n-5} \le 20 \cdot 2^{n-5}$.

Then S is isomorphic to $F_{jsl}((\tilde{a}, \tilde{b}, \tilde{c}))$, whereby $\{a \lor b, a \lor c, b \lor c\}$ is a 3-antichain.

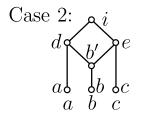
We know that this 3-antichain generates a sublattice isomorphic to B_8 . Hence, $|\operatorname{Sub}(L)| \leq 9.25 \cdot 2^{n-5} \leq 20 \cdot 2^{n-5}$.

Then S is isomorphic to $F_{jsl}((\tilde{a}, \tilde{b}, \tilde{c}))$, whereby $\{a \lor b, a \lor c, b \lor c\}$ is a 3-antichain.

We know that this 3-antichain generates a sublattice isomorphic to B_8 . Hence, $|\operatorname{Sub}(L)| \le 9.25 \cdot 2^{n-5} \le 20 \cdot 2^{n-5}$.

Then S is isomorphic to $F_{jsl}((\tilde{a}, \tilde{b}, \tilde{c}))$, whereby $\{a \lor b, a \lor c, b \lor c\}$ is a 3-antichain.

We know that this 3-antichain generates a sublattice isomorphic to B_8 . Hence, $|\operatorname{Sub}(L)| \leq 9.25 \cdot 2^{n-5} \leq 20 \cdot 2^{n-5}$.



Case 3:

$$d = a \lor b$$

 $a \lor b$
 $a \lor b$
 $a \lor c$
 $b \lor c$
 $a \lor b$
 $a \to b$
 $a \lor b$
 $a \lor b$
 $a \to b$
 $a \lor b$
 $a \to b$

Clearly, $a \lor b = a \lor c = b \lor c = a \lor b \lor c =: i$.

If $a \wedge b = a \wedge c = b \wedge c = a \wedge b \wedge c$ failed, then the dual of one of the previous three cases would apply.

Hence, we can assume that the sublattice $[\{a, b, c\}]$ generated by $\{a, b, c\}$ is isomorphic to M_3 .

Clearly, $a \lor b = a \lor c = b \lor c = a \lor b \lor c =: i$.

If $a \wedge b = a \wedge c = b \wedge c = a \wedge b \wedge c$ failed, then the dual of one of the previous three cases would apply.

Hence, we can assume that the sublattice $[\{a, b, c\}]$ generated by $\{a, b, c\}$ is isomorphic to M_3 .

Clearly, $a \lor b = a \lor c = b \lor c = a \lor b \lor c =: i$.

If $a \wedge b = a \wedge c = b \wedge c = a \wedge b \wedge c$ failed, then the dual of one of the previous three cases would apply.

Hence, we can assume that the sublattice $[\{a, b, c\}]$ generated by $\{a, b, c\}$ is isomorphic to M_3 .

Clearly, $a \lor b = a \lor c = b \lor c = a \lor b \lor c =: i$.

If $a \wedge b = a \wedge c = b \wedge c = a \wedge b \wedge c$ failed, then the dual of one of the previous three cases would apply.

Hence, we can assume that the sublattice $[\{a, b, c\}]$ generated by $\{a, b, c\}$ is isomorphic to M_3 .

Clearly, $a \lor b = a \lor c = b \lor c = a \lor b \lor c =: i$.

If $a \wedge b = a \wedge c = b \wedge c = a \wedge b \wedge c$ failed, then the dual of one of the previous three cases would apply.

Hence, we can assume that the sublattice $[\{a, b, c\}]$ generated by $\{a, b, c\}$ is isomorphic to M_3 .

If $L \cong C_0 +_{glu} N_5 +_{glu} C_1$ for finite chains C_0 and C_1 , then $|\operatorname{Sub}(L)| = 23 \cdot 2^{n-5}$.

It suffices to exclude the existence of a lattice *L* such that |L| = n, $23 \cdot 2^{n-5} \le |\operatorname{Sub}(L)| < 26 \cdot 2^{n-5}$, but *L* is not of this form above.

If $L \cong C_0 +_{glu} N_5 +_{glu} C_1$ for finite chains C_0 and C_1 , then $|\operatorname{Sub}(L)| = 23 \cdot 2^{n-5}$.

It suffices to exclude the existence of a lattice *L* such that |L| = n, $23 \cdot 2^{n-5} \le |\operatorname{Sub}(L)| < 26 \cdot 2^{n-5}$, but *L* is not of this form above.

If $L \cong C_0 +_{glu} N_5 +_{glu} C_1$ for finite chains C_0 and C_1 , then $|\operatorname{Sub}(L)| = 23 \cdot 2^{n-5}$.

It suffices to exclude the existence of a lattice L such that |L| = n, $23 \cdot 2^{n-5} \le |\operatorname{Sub}(L)| < 26 \cdot 2^{n-5}$, but L is not of this form above.

$$L\cong C_0+_{{}_{glu}}N_5+_{{}_{glu}}C_1.$$

then, L has at least two 2-antichains but it has no 3-antichain.

We show that cannot have two *non-disjoint* 2-antichains.

If $x, y, z \in L$ such that $|\{x, y, z\}| = 3$ and $x \parallel y$, then either $\{x, y\} \subseteq \downarrow z$, or $\{x, y\} \subseteq \uparrow z$.

$$L\cong C_0+_{glu}N_5+_{glu}C_1.$$

then, L has at least two 2-antichains but it has no 3-antichain.

We show that cannot have two *non-disjoint* 2-antichains.

If $x, y, z \in L$ such that $|\{x, y, z\}| = 3$ and $x \parallel y$, then either $\{x, y\} \subseteq \downarrow z$, or $\{x, y\} \subseteq \uparrow z$.

$$L\cong C_0+_{glu}N_5+_{glu}C_1.$$

then, L has at least two 2-antichains but it has no 3-antichain.

We show that cannot have two *non-disjoint* 2-antichains.

If $x, y, z \in L$ such that $|\{x, y, z\}| = 3$ and $x \parallel y$, then either $\{x, y\} \subseteq \downarrow z$, or $\{x, y\} \subseteq \uparrow z$.

$$L\cong C_0+_{glu}N_5+_{glu}C_1.$$

then, L has at least two 2-antichains but it has no 3-antichain.

We show that cannot have two *non-disjoint* 2-antichains.

If
$$x, y, z \in L$$
 such that $|\{x, y, z\}| = 3$ and $x \parallel y$, then
either $\{x, y\} \subseteq \downarrow z$, or $\{x, y\} \subseteq \uparrow z$. (1)

We have a four-element subset $\{a, b, c, d\}$ of L such that $a \parallel b$ and $c \parallel d$.

Let $S := \{a \land b, a, b, u, v, c, d, c \lor d\}$. Depending on u = v or u < v, S is a sublattice isomorphic to $B_4 +_{glu} B_4$ or $B_4 +_{glu} C^{(2)} +_{glu} B_4$.

We obtain that $|\operatorname{Sub}(L)| \leq 21.25 \cdot 2^{n-5}$.

We have a four-element subset $\{a, b, c, d\}$ of L such that $a \parallel b$ and $c \parallel d$.

Let $S := \{a \land b, a, b, u, v, c, d, c \lor d\}$. Depending on u = v or u < v, S is a sublattice isomorphic to $B_4 +_{glu} B_4$ or $B_4 +_{glu} C^{(2)} +_{glu} B_4$.

We obtain that $|\operatorname{Sub}(L)| \leq 21.25 \cdot 2^{n-5}$.

We have a four-element subset $\{a, b, c, d\}$ of L such that $a \parallel b$ and $c \parallel d$.

Let $S := \{a \land b, a, b, u, v, c, d, c \lor d\}$. Depending on u = v or u < v, S is a sublattice isomorphic to $B_4 +_{glu} B_4$ or $B_4 +_{glu} C^{(2)} +_{glu} B_4$.

We obtain that $|\operatorname{Sub}(L)| \leq 21.25 \cdot 2^{n-5}$.

Thank you for your attention!

Thank you for your attention!