Lattices with many sublattices

Eszter K. Horváth, Szeged
Co-author: Gábor Czédli

Dresden 2019. January 18.

Subuniverses

For a lattice $L, \operatorname{Sub}(L)$ will denote its so-called sublattice lattice. Sub(L) consists of all subuniverses of L. By a subuniverse, we mean a sublattice or the emptyset.

Subuniverses

For a lattice $L, \operatorname{Sub}(L)$ will denote its so-called sublattice lattice.
Sub (L) consists of all subuniverses of L.

Subuniverses

For a lattice $L, \operatorname{Sub}(L)$ will denote its so-called sublattice lattice.
Sub(L) consists of all subuniverses of L. By a subuniverse, we mean a sublattice or the emptyset.

That is, a subset X of L is in $\operatorname{Sub}(L)$ iff X is closed with respect to join

Subuniverses

For a lattice $L, \operatorname{Sub}(L)$ will denote its so-called sublattice lattice.
Sub (L) consists of all subuniverses of L. By a subuniverse, we mean a sublattice or the emptyset.

That is, a subset X of L is in $\operatorname{Sub}(L)$ iff X is closed with respect to join and meet.

Subuniverses

For a lattice $L, \operatorname{Sub}(L)$ will denote its so-called sublattice lattice.
Sub(L) consists of all subuniverses of L. By a subuniverse, we mean a sublattice or the emptyset.

That is, a subset X of L is in $\operatorname{Sub}(L)$ iff X is closed with respect to join and meet.

In particular, $\emptyset \in \operatorname{Sub}(L)$. Note that for $X \in \operatorname{Sub}(L), X$ is a sublattice of L if and only if X is nonempty.

Glued sum of lattices

If K and L are finite lattices, then their glued sum $K+{ }_{g l u} L$ is the ordinal sum of the posets $K \backslash 1_{K}$, the singleton lattice, and $L \backslash\left\{0_{L}\right\}$, in this order.

Glued sum of lattices

If K and L are finite lattices, then their glued sum $K+{ }_{g l u} L$ is the ordinal sum of the posets $K \backslash 1_{K}$, the singleton lattice, and $L \backslash\left\{0_{L}\right\}$, in this order.

Glued sum of lattices

If K and L are finite lattices, then their glued sum $K+{ }_{g l u} L$ is the ordinal sum of the posets $K \backslash 1_{K}$, the singleton lattice, and $L \backslash\left\{0_{L}\right\}$, in this order.

In other words, we put L atop K and identify the elements 1_{K} and 0_{L} For examole if each of K and L is the two-element chain, then $K+, L$ is the three-element chain.

Glued sum of lattices

If K and L are finite lattices, then their glued sum $K+{ }_{g / u} L$ is the ordinal sum of the posets $K \backslash 1_{K}$, the singleton lattice, and $L \backslash\left\{0_{L}\right\}$, in this order.

In other words, we put L atop K and identify the elements 1_{K} and 0_{L}. the three-element chain.

Glued sum of lattices

If K and L are finite lattices, then their glued sum $K+{ }_{g / u} L$ is the ordinal sum of the posets $K \backslash 1_{K}$, the singleton lattice, and $L \backslash\left\{0_{L}\right\}$, in this order.

In other words, we put L atop K and identify the elements 1_{K} and 0_{L}. For example, if each of K and L is the two-element chain, then $K+{ }_{g^{\prime} u} L$ is the three-element chain.

The first three numbers

Theorem

If $5 \leq n \in \mathbb{N}^{+}$, then the following three assertions hold.

The first three numbers

Theorem

If $5 \leq n \in \mathbb{N}^{+}$, then the following three assertions hold.
(i) The largest number in $\mathrm{NS}(n)$ is $2^{n}=32 \cdot 2^{n-5}$. Furthermore, an n-element lattice L has exactly 2^{n} subuniverses if an only if L is a chain.

The first three numbers

Theorem

If $5 \leq n \in \mathbb{N}^{+}$, then the following three assertions hold.
(i) The largest number in $\mathrm{NS}(n)$ is $2^{n}=32 \cdot 2^{n-5}$. Furthermore, an n-element lattice L has exactly 2^{n} subuniverses if an only if L is a chain.
(ii) The second largest number in $\mathrm{NS}(n)$ is $26 \cdot 2^{n-5}$. Furthermore, an n-element lattice L has exactly $26 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_{1}+{ }_{g l u} B_{4}+_{g l u} C_{2}$, where C_{1} and C_{2} are chains.

The first three numbers

Theorem

If $5 \leq n \in \mathbb{N}^{+}$, then the following three assertions hold.
(i) The largest number in $\mathrm{NS}(n)$ is $2^{n}=32 \cdot 2^{n-5}$. Furthermore, an n-element lattice L has exactly 2^{n} subuniverses if an only if L is a chain.
(ii) The second largest number in $\mathrm{NS}(n)$ is $26 \cdot 2^{n-5}$. Furthermore, an n-element lattice L has exactly $26 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_{1}+{ }_{g l u} B_{4}+{ }_{g l u} C_{2}$, where C_{1} and C_{2} are chains.
(iii) The third largest number in $\mathrm{NS}(n)$ is $23 \cdot 2^{n-5}$. Furthermore, an n-element lattice L has exactly $23 \cdot 2^{n-5}$ subuniverses if and only if $L \cong C_{0}+{ }_{g l u} N_{5}+{ }_{g l u} C_{1}$, where C_{0} and C_{1} are chains.

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$.

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$.

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u:=\{x \in L: x \leq u\}$ and $\uparrow u:=\{x \in L: u \leq x\}$, respectively.

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u:=\{x \in L: x \leq u\}$ and $\uparrow u:=\{x \in L: u \leq x\}$, respectively. We can also write $\downarrow_{L} u$ and $\uparrow_{L} v$ to specify the lattice L.
note that $0=0_{L}$ is join-irreducible by our convention

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u:=\{x \in L: x \leq u\}$ and $\uparrow u:=\{x \in L: u \leq x\}$, respectively. We can also write $\downarrow_{L} u$ and $\uparrow_{L} v$ to specify the lattice L. For $u, v \in L$, we write $u \| v$ if u and v are incomparable, that is, $u \not \leq v$ and $v \not \leq u$.

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u:=\{x \in L: x \leq u\}$ and $\uparrow u:=\{x \in L: u \leq x\}$, respectively. We can also write $\downarrow_{L} u$ and $\uparrow_{L} v$ to specify the lattice L. For $u, v \in L$, we write $u \| v$ if u and v are incomparable, that is, $u \not \leq v$ and $v \not \leq u$. We say that u is join-irreducible if u has at most one lower cover; note that $0=0_{L}$ is join-irreducible by our convention.
join-irreducible and meet-irreducible.

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u:=\{x \in L: x \leq u\}$ and $\uparrow u:=\{x \in L: u \leq x\}$, respectively. We can also write $\downarrow_{L} u$ and $\uparrow_{L} v$ to specify the lattice L. For $u, v \in L$, we write $u \| v$ if u and v are incomparable, that is, $u \not \leq v$ and $v \not \leq u$. We say that u is join-irreducible if u has at most one lower cover; note that $0=0_{L}$ is join-irreducible by our convention. Meet-irreducibility is defined dually,

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u:=\{x \in L: x \leq u\}$ and $\uparrow u:=\{x \in L: u \leq x\}$, respectively. We can also write $\downarrow_{L} u$ and $\uparrow_{L} v$ to specify the lattice L. For $u, v \in L$, we write $u \| v$ if u and v are incomparable, that is, $u \not \leq v$ and $v \npreceq u$. We say that u is join-irreducible if u has at most one lower cover; note that $0=0_{L}$ is join-irreducible by our convention. Meet-irreducibility is defined dually, and an element is doubly irreducible if it is both join-irreducible and meet-irreducible.

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u:=\{x \in L: x \leq u\}$ and $\uparrow u:=\{x \in L: u \leq x\}$, respectively. We can also write $\downarrow_{L} u$ and $\uparrow_{L} v$ to specify the lattice L. For $u, v \in L$, we write $u \| v$ if u and v are incomparable, that is, $u \not \leq v$ and $v \not \leq u$. We say that u is join-irreducible if u has at most one lower cover; note that $0=0_{L}$ is join-irreducible by our convention. Meet-irreducibility is defined dually, and an element is doubly irreducible if it is both join-irreducible and meet-irreducible. Next, let us call an element $u \in L$ isolated if u is doubly irreducible and $L=\downarrow u \cup \uparrow u$.

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u:=\{x \in L: x \leq u\}$ and $\uparrow u:=\{x \in L: u \leq x\}$, respectively. We can also write $\downarrow_{L} u$ and $\uparrow_{L} v$ to specify the lattice L. For $u, v \in L$, we write $u \| v$ if u and v are incomparable, that is, $u \not \leq v$ and $v \not \leq u$. We say that u is join-irreducible if u has at most one lower cover; note that $0=0_{L}$ is join-irreducible by our convention. Meet-irreducibility is defined dually, and an element is doubly irreducible if it is both join-irreducible and meet-irreducible. Next, let us call an element $u \in L$ isolated if u is doubly irreducible and $L=\downarrow u \cup \uparrow u$. That is, if u is doubly irreducible and $x \| u$ holds for no $x \in L$.

Notions and notations

For elements u, v in a lattice L, the interval $[u, v]:=\{x \in L: u \leq x \leq v\}$ is defined only if $u \leq v$. For $u \in L$, the principal ideal and the principal filter generated by u are $\downarrow u:=\{x \in L: x \leq u\}$ and $\uparrow u:=\{x \in L: u \leq x\}$, respectively. We can also write $\downarrow_{L} u$ and $\uparrow_{L} v$ to specify the lattice L. For $u, v \in L$, we write $u \| v$ if u and v are incomparable, that is, $u \not \leq v$ and $v \not \leq u$. We say that u is join-irreducible if u has at most one lower cover; note that $0=0_{L}$ is join-irreducible by our convention. Meet-irreducibility is defined dually, and an element is doubly irreducible if it is both join-irreducible and meet-irreducible. Next, let us call an element $u \in L$ isolated if u is doubly irreducible and $L=\downarrow u \cup \uparrow u$. That is, if u is doubly irreducible and $x \| u$ holds for no $x \in L$. Finally, an interval $[u, v]$ will be called an isolated edge if it is a prime interval, that is, $u \prec v$, and $L=\downarrow u \cup \uparrow v$.

Basic lemma

Lemma

If K is a sublattice and H is a subset of a finite lattice L, then the following three assertions hold.

Basic lemma

Lemma

If K is a sublattice and H is a subset of a finite lattice L, then the following three assertions hold.
(i) With the notation $t:=|\{H \cap S: S \in \operatorname{Sub}(L)\}|$, we have that $|\operatorname{Sub}(L)| \leq t \cdot 2^{|L|-|H|}$.

Basic lemma

Lemma

If K is a sublattice and H is a subset of a finite lattice L, then the following three assertions hold.
(i) With the notation $t:=|\{H \cap S: S \in \operatorname{Sub}(L)\}|$, we have that $|\operatorname{Sub}(L)| \leq t \cdot 2^{|L|-|H|}$.
(ii) $|\operatorname{Sub}(L)| \leq|\operatorname{Sub}(K)| \cdot 2^{|L|-|K|}$.

Basic lemma

Lemma

If K is a sublattice and H is a subset of a finite lattice L, then the following three assertions hold.
(i) With the notation $t:=|\{H \cap S: S \in \operatorname{Sub}(L)\}|$, we have that $|\operatorname{Sub}(L)| \leq t \cdot 2^{|L|-|H|}$.
(ii) $|\operatorname{Sub}(L)| \leq|\operatorname{Sub}(K)| \cdot 2^{|L|-|K|}$.
(iii) Assume, in addition, that K has neither an isolated element, nor an isolated edge. Then $|\operatorname{Sub}(L)|=|\operatorname{Sub}(K)| \cdot 2^{|L|-|K|}$ if and only if L is (isomorphic to) $C_{0}+{ }_{\text {glu }} K+{ }_{g l u} C_{1}$ for some chains C_{0} and C_{1}.

If H is a subset of L, then $|\operatorname{Sub}(L)| \leq|\{H \cap S: S \in \operatorname{Sub}(L)\}| \cdot 2^{|L|-|H|}$

Proof
Let $\varphi: \operatorname{Sub}(L) \rightarrow\{H \cap S: S \in \operatorname{Sub}(L)\}, X \mapsto H \cap X$.

If H is a subset of L, then $|\operatorname{Sub}(L)| \leq|\{H \cap S: S \in \operatorname{Sub}(L)\}| \cdot 2^{|L|-|H|}$

```
Proof
Let \(\varphi: \operatorname{Sub}(L) \rightarrow\{H \cap S: S \in \operatorname{Sub}(L)\}, X \mapsto H \cap X\).
Each \(Y \in\{H \cap S: S \in \operatorname{Sub}(L)\}\) has at most \(2^{|L|-|H|}\) preimages.
Q. E. D.
```


If H is a subset of L, then $|\operatorname{Sub}(L)| \leq|\{H \cap S: S \in \operatorname{Sub}(L)\}| \cdot 2^{|L|-|H|}$

Proof
Let $\varphi: \operatorname{Sub}(L) \rightarrow\{H \cap S: S \in \operatorname{Sub}(L)\}, X \mapsto H \cap X$. Each $Y \in\{H \cap S: S \in \operatorname{Sub}(L)\}$ has at most $2^{|L|-|H|}$ preimages. Q. E. D.

If K is a sublattice of L, then $|\operatorname{Sub}(L)| \leq|\operatorname{Sub}(K)| \cdot 2^{|L|-|K|}$.

subset X of $L \backslash K$, we have that $S \cup X \in \operatorname{Sub}(L)$

If H is a subset of L, then

 $|\operatorname{Sub}(L)| \leq|\{H \cap S: S \in \operatorname{Sub}(L)\}| \cdot 2^{|L|-|H|}$Proof
Let $\varphi: \operatorname{Sub}(L) \rightarrow\{H \cap S: S \in \operatorname{Sub}(L)\}, X \mapsto H \cap X$. Each $Y \in\{H \cap S: S \in \operatorname{Sub}(L)\}$ has at most $2^{|L|-|H|}$ preimages. Q. E. D.

If K is a sublattice of L, then $|\operatorname{Sub}(L)| \leq|\operatorname{Sub}(K)| \cdot 2^{|L|-|K|}$.
If $|\operatorname{Sub}(L)|=|\operatorname{Sub}(K)| \cdot 2^{|L|-|K|}$, then for every $S \in \operatorname{Sub}(K)$ and every subset X of $L \backslash K$, we have that $S \cup X \in \operatorname{Sub}(L)$.

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L=\downarrow u \cup \uparrow u$.

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L=\downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \| u$ holds for no $x \in L$.

Proof
Assume that u is isolated and $X \in \operatorname{Sub}(L)$. Since u is doubly irreducible

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L=\downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \| u$ holds for no $x \in L$.
For an element $u \in L, u$ is isolated if and only if for every $X \in \operatorname{Sub}(L)$, we have that $X \cup\{u\} \in \operatorname{Sub}(L)$ and $X \backslash\{u\} \in \operatorname{Sub}(L)$.

Proof

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L=\downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \| u$ holds for no $x \in L$.
For an element $u \in L, u$ is isolated if and only if for every $X \in \operatorname{Sub}(L)$, we have that $X \cup\{u\} \in \operatorname{Sub}(L)$ and $X \backslash\{u\} \in \operatorname{Sub}(L)$.

Proof
Assume that u is isolated and $X \in \operatorname{Sub}(L)$. Since u is doubly irreducible, $X \backslash\{u\} \in \operatorname{Sub}(L)$.

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L=\downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \| u$ holds for no $x \in L$.
For an element $u \in L, u$ is isolated if and only if for every $X \in \operatorname{Sub}(L)$, we have that $X \cup\{u\} \in \operatorname{Sub}(L)$ and $X \backslash\{u\} \in \operatorname{Sub}(L)$.

Proof
Assume that u is isolated and $X \in \operatorname{Sub}(L)$. Since u is doubly irreducible, $X \backslash\{u\} \in \operatorname{Sub}(L)$. Since u is comparable with all elements of X, $X \cup\{u\} \in \operatorname{Sub}(L)$.

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L=\downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \| u$ holds for no $x \in L$.
For an element $u \in L, u$ is isolated if and only if for every $X \in \operatorname{Sub}(L)$, we have that $X \cup\{u\} \in \operatorname{Sub}(L)$ and $X \backslash\{u\} \in \operatorname{Sub}(L)$.

Proof
Assume that u is isolated and $X \in \operatorname{Sub}(L)$. Since u is doubly irreducible, $X \backslash\{u\} \in \operatorname{Sub}(L)$. Since u is comparable with all elements of X, $X \cup\{u\} \in \operatorname{Sub}(L)$.
To show the converse, assume that u is not isolated. If u is not doubly irreducible, then $u=a \vee b$ with $a, b<u$ or dually, and $X:=\{a, b, u, a \wedge b\} \in \operatorname{Sub}(L)$ but $X \backslash\{u\} \notin \operatorname{Sub}(L)$.

Isolated element

We call an element $u \in L$ isolated if u is doubly irreducible and $L=\downarrow u \cup \uparrow u$.

That is, if u is doubly irreducible and $x \| u$ holds for no $x \in L$.
For an element $u \in L, u$ is isolated if and only if for every $X \in \operatorname{Sub}(L)$, we have that $X \cup\{u\} \in \operatorname{Sub}(L)$ and $X \backslash\{u\} \in \operatorname{Sub}(L)$.

Proof
Assume that u is isolated and $X \in \operatorname{Sub}(L)$. Since u is doubly irreducible, $X \backslash\{u\} \in \operatorname{Sub}(L)$. Since u is comparable with all elements of X, $X \cup\{u\} \in \operatorname{Sub}(L)$.
To show the converse, assume that u is not isolated. If u is not doubly irreducible, then $u=a \vee b$ with $a, b<u$ or dually, and $X:=\{a, b, u, a \wedge b\} \in \operatorname{Sub}(L)$ but $X \backslash\{u\} \notin \operatorname{Sub}(L)$. If $u \| v$ for some $v \in L$, then $\{v\} \in \operatorname{Sub}(L)$ but $\{v\} \cup\{u\} \notin \operatorname{Sub}(L)$.

Numbers

Lemma

The following seven assertions hold.
(i) $\left|\operatorname{Sub}\left(B_{4}\right)\right|=13=26 \cdot 2^{4-5}$.
(ii) $\left|\operatorname{Sub}\left(N_{5}\right)\right|=23=23 \cdot 2^{5-5}$.
(iii) $\left|\operatorname{Sub}\left(C^{(2)} \times C^{(3)}\right)\right|=38=19 \cdot 2^{6-5}$.
(iv) $\left|\operatorname{Sub}\left(B_{4}+_{g l u} B_{4}\right)\right|=85=21.25 \cdot 2^{7-5}$.
(v) $\left|\operatorname{Sub}\left(B_{4}+{ }_{g^{\prime} u} C^{(2)}+{ }_{g^{\prime} u} B_{4}\right)\right|=169=21.125 \cdot 2^{8-5}$.
(vi) $\left|\operatorname{Sub}\left(M_{3}\right)\right|=20=20 \cdot 2^{5-5}$.
(vii) $\left|\operatorname{Sub}\left(B_{8}\right)\right|=74=9.25 \cdot 2^{8-5}$.

Lattices

$$
B_{4}+{ }_{g l u} C^{(2)}++_{g l u} B_{4}
$$

$$
C^{(2)} \times C_{0}^{(3)}
$$

$\left|\operatorname{Sub}\left(N_{5}\right)\right|=23=23 \cdot 2^{5-5}$

Observe that

$$
\begin{aligned}
& \left|\left\{S \in \operatorname{Sub}\left(N_{5}\right):\{a, c\} \cap S=\emptyset\right\}\right|=8, \quad \text { by }(? ?), \\
& \left|\left\{S \in \operatorname{Sub}\left(N_{5}\right):\{a, c\} \cap S \neq \emptyset\right\}, \quad b \notin S\right|=3 \cdot 4=12 \text {, and } \\
& \left|\left\{S \in \operatorname{Sub}\left(N_{5}\right):\{a, c\} \cap S \neq \emptyset\right\}, \quad b \in S\right|=3,
\end{aligned}
$$

whereby $\left|\operatorname{Sub}\left(N_{5}\right)\right|=8+12+3=23$.

Free join-semilattice

Lemma

For every join-semilattice S generated by $\{a, b, c\}$, there is a unique surjective homomorphism φ from the free join-semilattice $F_{\mathrm{jsl}}(\tilde{a}, \tilde{b}, \tilde{c})$ onto S such that $\varphi(\tilde{a})=a, \varphi(\tilde{b})=b$, and $\varphi(\tilde{c})=c$.

$$
F_{\mathrm{jSl}}(\tilde{a}, \tilde{b}, \tilde{c})
$$

Free lattice

Lemma (I. Rival and R. Wille)

For every lattice K generated by $\{a, b, c\}$ such that $a<c$, there is a unique surjective homomorphism φ from the finitely presented lattice $F_{\text {lat }}(\tilde{a}, \tilde{b}, \tilde{c})$ onto K such that $\varphi(\tilde{a})=a, \varphi(\tilde{b})=b$, and $\varphi(\tilde{c})=c$.

3-antichain

Lemma

If an n-element lattice L has a 3-antichain, then we have that $|\operatorname{Sub}(L)| \leq 20 \cdot 2^{n-5}$.

3-antichain

Lemma

If an n-element lattice L has a 3-antichain, then we have that $|\operatorname{Sub}(L)| \leq 20 \cdot 2^{n-5}$.

Proof Let $\{a, b, c\}$ be a 3-antichain in L. Lemma 4 yields a unique join-homomorphism from $F_{\text {jsl }}((\tilde{a}, \tilde{b}, \tilde{c}))$ to $S:=\{a, b, c, a \vee b, a \vee c, b \vee c, a \vee b \vee c\}$ such that φ maps to \tilde{a}, \tilde{b}, and \tilde{c} to a, b, and c, respectively.
Since $\{a, b, c\}$ is an antichain, none of the six lower edges of $F_{\mathrm{jsl}}((\tilde{a}, \tilde{b}, \tilde{c}))$ is collapsed by the kernel $\Theta:=\operatorname{ker}(\varphi)$ of φ. Hence, there are only four cases for the join-subsemilattice $S \cong F_{\text {jsl }}((\tilde{a}, \tilde{b}, \tilde{c})) / \Theta$ of L, depending on the number the upper edges collapsed by Θ.

Case 1

None of the three upper edges is collapsed by Θ. Then S is isomorphic to $F_{\mathrm{jsl}}((\tilde{a}, \tilde{b}, \tilde{c}))$, whereby 3-antichain. We know that this 3-antichain generates a sublattice isomorphic to B_{8}

Case 1

None of the three upper edges is collapsed by Θ.
Then S is isomorphic to $F_{\mathrm{jsI}}((\tilde{a}, \tilde{b}, \tilde{c}))$, whereby $\{a \vee b, a \vee c, b \vee c\}$ is a 3 -antichain.

We know that this 3-antichain generates a sublattice isomorphic to B_{8}

Case 1

None of the three upper edges is collapsed by Θ.
Then S is isomorphic to $F_{\mathrm{jsI}}((\tilde{a}, \tilde{b}, \tilde{c}))$, whereby $\{a \vee b, a \vee c, b \vee c\}$ is a 3-antichain.

We know that this 3-antichain generates a sublattice isomorphic to B_{8}.

Case 1

None of the three upper edges is collapsed by Θ.
Then S is isomorphic to $F_{\mathrm{jl\mid}}((\tilde{a}, \tilde{b}, \tilde{c}))$, whereby $\{a \vee b, a \vee c, b \vee c\}$ is a 3-antichain.

We know that this 3-antichain generates a sublattice isomorphic to B_{8}. Hence, $|\operatorname{Sub}(L)| \leq 9.25 \cdot 2^{n-5} \leq 20 \cdot 2^{n-5}$.

Case 2 and Case 3

Case 4

All the three upper edges are collapsed.

previous three cases would apply.

Case 4

All the three upper edges are collapsed.
Clearly, $a \vee b=a \vee c=b \vee c=a \vee b \vee c=: i$.
\qquad

Case 4

All the three upper edges are collapsed.
Clearly, $a \vee b=a \vee c=b \vee c=a \vee b \vee c=: i$.
If $a \wedge b=a \wedge c=b \wedge c=a \wedge b \wedge c$ failed, then the dual of one of the previous three cases would apply.

Case 4

All the three upper edges are collapsed.
Clearly, $a \vee b=a \vee c=b \vee c=a \vee b \vee c=: i$.
If $a \wedge b=a \wedge c=b \wedge c=a \wedge b \wedge c$ failed, then the dual of one of the previous three cases would apply.

Hence, we can assume that the sublattice $[\{a, b, c\}$] generated by $\{a, b, c\}$ is isomorphic to M_{3}.

Case 4

All the three upper edges are collapsed.
Clearly, $a \vee b=a \vee c=b \vee c=a \vee b \vee c=: i$.
If $a \wedge b=a \wedge c=b \wedge c=a \wedge b \wedge c$ failed, then the dual of one of the previous three cases would apply.

Hence, we can assume that the sublattice $[\{a, b, c\}$] generated by $\{a, b, c\}$ is isomorphic to M_{3}.

Therefore, $|\operatorname{Sub}(L)| \leq 20 \cdot 2^{n-5}$.

Third number

If $L \cong C_{0}+{ }_{g l u} N_{5}+{ }_{g l u} C_{1}$ for finite chains C_{0} and C_{1},

 It suffices to exclude the existence of a lattice L such that $|L|=n$,$23 \cdot 2^{n-5} \leq|\operatorname{Sub}(L)|<26 \cdot 2^{n-5}$, but L is not of this form above.

Third number

If $L \cong C_{0}+{ }_{g l u} N_{5}+{ }_{g l u} C_{1}$ for finite chains C_{0} and C_{1}, then $|\operatorname{Sub}(L)|=23 \cdot 2^{n-5}$.

Third number

If $L \cong C_{0}+{ }_{g \mid u} N_{5}+{ }_{g / u} C_{1}$ for finite chains C_{0} and C_{1}, then $|\operatorname{Sub}(L)|=23 \cdot 2^{n-5}$.

It suffices to exclude the existence of a lattice L such that $|L|=n$, $23 \cdot 2^{n-5} \leq|\operatorname{Sub}(L)|<26 \cdot 2^{n-5}$, but L is not of this form above.

Sketch of proof

Suppose, for a contradiction, that L is a lattice satisfying $|L|=n$, $23 \cdot 2^{n-5} \leq|\operatorname{Sub}(L)|<26 \cdot 2^{n-5}$, but L is not of form

$$
L \cong C_{0}+{ }_{g / u} N_{5}+{ }_{g l u} C_{1}
$$

then, L has at least two 2-antichains but it has no 3-antichain

We show that cannot have two non-disjoint 2-antichains.

Sketch of proof

Suppose, for a contradiction, that L is a lattice satisfying $|L|=n$, $23 \cdot 2^{n-5} \leq|\operatorname{Sub}(L)|<26 \cdot 2^{n-5}$, but L is not of form

$$
L \cong C_{0}+{ }_{g l u} N_{5}+{ }_{g l u} C_{1}
$$

then, L has at least two 2-antichains but it has no 3-antichain.

We show that cannot have two non-disjoint 2-antichains.

Sketch of proof

Suppose, for a contradiction, that L is a lattice satisfying $|L|=n$, $23 \cdot 2^{n-5} \leq|\operatorname{Sub}(L)|<26 \cdot 2^{n-5}$, but L is not of form

$$
L \cong C_{0}+{ }_{g / u} N_{5}+{ }_{g^{\prime} u} C_{1}
$$

then, L has at least two 2-antichains but it has no 3-antichain.

We show that cannot have two non-disjoint 2-antichains.

Sketch of proof

Suppose, for a contradiction, that L is a lattice satisfying $|L|=n$, $23 \cdot 2^{n-5} \leq|\operatorname{Sub}(L)|<26 \cdot 2^{n-5}$, but L is not of form

$$
L \cong C_{0}+{ }_{g l u} N_{5}+{ }_{g l u} C_{1} .
$$

then, L has at least two 2-antichains but it has no 3-antichain.

We show that cannot have two non-disjoint 2-antichains.

$$
\begin{align*}
& \text { If } x, y, z \in L \text { such that }|\{x, y, z\}|=3 \text { and } x \| y \text {, then } \\
& \text { either }\{x, y\} \subseteq \downarrow z \text {, or }\{x, y\} \subseteq \uparrow z \text {. } \tag{1}
\end{align*}
$$

End of proof

We have a four-element subset $\{a, b, c, d\}$ of L such that $a \| b$ and $c \| d$.

End of proof

We have a four-element subset $\{a, b, c, d\}$ of L such that $a \| b$ and $c \| d$.
Let $S:=\{a \wedge b, a, b, u, v, c, d, c \vee d\}$. Depending on $u=v$ or $u<v, S$ is a sublattice isomorphic to $B_{4}+{ }_{g l u} B_{4}$ or $B_{4}+{ }_{g l u} C^{(2)}+_{g / u} B_{4}$.

End of proof

We have a four-element subset $\{a, b, c, d\}$ of L such that $a \| b$ and $c \| d$.
Let $S:=\{a \wedge b, a, b, u, v, c, d, c \vee d\}$. Depending on $u=v$ or $u<v, S$ is a sublattice isomorphic to $B_{4}+{ }_{g l u} B_{4}$ or $B_{4}+{ }_{g l u} C^{(2)}+_{g l u} B_{4}$.

We obtain that $|\operatorname{Sub}(L)| \leq 21.25 \cdot 2^{n-5}$.

Thank you for your attention!

Think, think, think.

Thank you for your attention!

