Lattice-valued functions

Eszter K. Horváth, Szeged

Co-authors: Branimir Šešelja, Andreja Tepavčević

Dresden, 2016, Jan 22 .

Lattice-valued functions

Let S be a nonempty set and L a complete lattice. Every mapping $\mu: S \rightarrow L$ is called a lattice-valued (L-valued) function on S.

Cut set (p-cut)

Let $p \in L$. A cut set of an L-valued function $\mu: S \rightarrow L$ (a p-cut) is a
subset $\mu_{p} \subseteq S$ defined by:

$$
x \in \mu_{p} \text { if and only if } \mu(x) \geq p
$$

In other words, a p-cut of $\mu: S \rightarrow L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$
\mu_{p}=\mu^{-1}(\uparrow p) .
$$

Cut set (p-cut)

Let $p \in L$. A cut set of an L-valued function $\mu: S \rightarrow L$ (a p-cut) is a subset $\mu_{p} \subseteq S$ defined by:

$$
\begin{equation*}
x \in \mu_{p} \text { if and only if } \mu(x) \geq p \tag{1}
\end{equation*}
$$

Cut set (p-cut)

Let $p \in L$. A cut set of an L-valued function $\mu: S \rightarrow L$ (a p-cut) is a subset $\mu_{p} \subseteq S$ defined by:

$$
\begin{equation*}
x \in \mu_{p} \text { if and only if } \mu(x) \geq p \tag{1}
\end{equation*}
$$

In other words, a p-cut of $\mu: S \rightarrow L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$
\begin{equation*}
\mu_{p}=\mu^{-1}(\uparrow p) \tag{2}
\end{equation*}
$$

Cut set (p-cut)

Let $p \in L$. A cut set of an L-valued function $\mu: S \rightarrow L$ (a p-cut) is a subset $\mu_{p} \subseteq S$ defined by:

$$
\begin{equation*}
x \in \mu_{p} \text { if and only if } \mu(x) \geq p \tag{1}
\end{equation*}
$$

In other words, a p-cut of $\mu: S \rightarrow L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$
\begin{equation*}
\mu_{p}=\mu^{-1}(\uparrow p) \tag{2}
\end{equation*}
$$

It is obvious that for every $p, q \in L, p \leq q$ implies $\mu_{q} \subseteq \mu_{p}$.

Cut set (p-cut)

Let $p \in L$. A cut set of an L-valued function $\mu: S \rightarrow L$ (a p-cut) is a subset $\mu_{p} \subseteq S$ defined by:

$$
\begin{equation*}
x \in \mu_{p} \text { if and only if } \mu(x) \geq p \tag{1}
\end{equation*}
$$

In other words, a p-cut of $\mu: S \rightarrow L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$
\begin{equation*}
\mu_{p}=\mu^{-1}(\uparrow p) \tag{2}
\end{equation*}
$$

It is obvious that for every $p, q \in L, p \leq q$ implies $\mu_{q} \subseteq \mu_{p}$.

The collection $\mu_{L}=\left\{f \subseteq S \mid f=\mu_{p}\right.$, for some $\left.p \in L\right\}$ of all cuts of $\mu: S \rightarrow L$ is usually ordered by set-inclusion.

Cuts and closure systems

If $\mu: S \rightarrow L$ is an L-valued function on S, then the collection μ_{L} of all cuts of μ is a closure system on S under the set-inclusion.

Cuts and closure systems

If $\mu: S \rightarrow L$ is an L-valued function on S, then the collection μ_{L} of all cuts of μ is a closure system on S under the set-inclusion.

Let \mathcal{F} be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu: S \rightarrow L$, such that the collection μ_{L} of cuts of μ is \mathcal{F}.

A required lattice L is the collection \mathcal{F} ordered by the
reversed-inclusion, and that $\mu: S \rightarrow L$ can be defined as follows:

Cuts and closure systems

If $\mu: S \rightarrow L$ is an L-valued function on S, then the collection μ_{L} of all cuts of μ is a closure system on S under the set-inclusion.

Let \mathcal{F} be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu: S \rightarrow L$, such that the collection μ_{L} of cuts of μ is \mathcal{F}.

A required lattice L is the collection \mathcal{F} ordered by the reversed-inclusion, and that $\mu: S \rightarrow L$ can be defined as follows:

$$
\begin{equation*}
\mu(x)=\bigcap\{f \in \mathcal{F} \mid x \in f\} . \tag{3}
\end{equation*}
$$

The relation \approx on L

Given an L-valued function $\mu: S \rightarrow L$, we define the relation \approx on L : for $p, q \in L$

$$
\begin{equation*}
p \approx q \text { if and only if } \mu_{p}=\mu_{q} . \tag{4}
\end{equation*}
$$

The relation \approx on L

Given an L-valued function $\mu: S \rightarrow L$, we define the relation \approx on L : for $p, q \in L$

$$
\begin{equation*}
p \approx q \text { if and only if } \mu_{p}=\mu_{q} . \tag{4}
\end{equation*}
$$

The relation \approx is an equivalence on L, and

$$
\begin{equation*}
p \approx q \text { if and only if } \uparrow p \cap \mu(S)=\uparrow q \cap \mu(S) \tag{5}
\end{equation*}
$$

where $\mu(S)=\{r \in L \mid r=\mu(x)$ for some $x \in S\}$.

The relation \approx on L

Given an L-valued function $\mu: S \rightarrow L$, we define the relation \approx on L : for $p, q \in L$

$$
\begin{equation*}
p \approx q \text { if and only if } \mu_{p}=\mu_{q} \tag{4}
\end{equation*}
$$

The relation \approx is an equivalence on L, and

$$
\begin{equation*}
p \approx q \text { if and only if } \uparrow p \cap \mu(S)=\uparrow q \cap \mu(S) \tag{5}
\end{equation*}
$$

where $\mu(S)=\{r \in L \mid r=\mu(x)$ for some $x \in S\}$.

We denote by L / \approx the collection of equivalence classes under \approx.

The collection of cuts

Let (μ_{L}, \leq) be the poset with $\mu_{L}=\left\{\mu_{p} \mid p \in L\right\}$ (the collection of cuts of μ) and the order \leq being the inverse of the set-inclusion: for $\mu_{p}, \mu_{q} \in \mu_{L}$,

$$
\mu_{p} \leq \mu_{q} \text { if and only if } \mu_{q} \subseteq \mu_{p}
$$

The collection of cuts

Let (μ_{L}, \leq) be the poset with $\mu_{L}=\left\{\mu_{p} \mid p \in L\right\}$ (the collection of cuts of μ) and the order \leq being the inverse of the set-inclusion: for $\mu_{p}, \mu_{q} \in \mu_{L}$,

$$
\mu_{p} \leq \mu_{q} \text { if and only if } \mu_{q} \subseteq \mu_{p}
$$

(μ_{L}, \leq) is a complete lattice and for every collection $\left\{\mu_{p} \mid p \in L_{1}\right\}, L_{1} \subseteq L$ of cuts of μ, we have

$$
\begin{equation*}
\bigcap\left\{\mu_{p} \mid p \in L_{1}\right\}=\mu_{\vee\left(p \mid p \in L_{1}\right)} . \tag{6}
\end{equation*}
$$

The quotient L / \approx

Each \approx-class contains its supremum:

$$
\begin{equation*}
\bigvee[p]_{\approx} \in[p]_{\approx} . \tag{7}
\end{equation*}
$$

The quotient L / \approx

Each \approx-class contains its supremum:

$$
\begin{equation*}
\bigvee[p]_{\approx} \in[p]_{\approx} . \tag{7}
\end{equation*}
$$

The mapping $p \mapsto \bigvee[p]_{\approx}$ is a closure operator on L.

The quotient L / \approx

Each \approx-class contains its supremum:

$$
\begin{equation*}
\bigvee[p]_{\approx} \in[p]_{\approx} . \tag{7}
\end{equation*}
$$

The mapping $p \mapsto \bigvee[p]_{\approx}$ is a closure operator on L.

The quotient L / \approx can be ordered by the relation $\leq_{L / \approx}$ defined as follows:

$$
[p]_{\approx} \leq_{L / \approx}[q]_{\approx} \text { if and only if } \uparrow q \cap \mu(S) \subseteq \uparrow p \cap \mu(S)
$$

The order $\leq_{L / \approx}$ of classes in L / \approx corresponds to the order of suprema of classes in L (we denote the order in L by \leq_{L}):

The quotient L / \approx

Each \approx-class contains its supremum:

$$
\begin{equation*}
\bigvee[p]_{\approx} \in[p]_{\approx} . \tag{7}
\end{equation*}
$$

The mapping $p \mapsto \bigvee[p]_{\approx}$ is a closure operator on L.

The quotient L / \approx can be ordered by the relation $\leq_{L /} \approx$ defined as follows:

$$
[p]_{\approx} \leq_{L / \approx}[q]_{\approx} \text { if and only if } \uparrow q \cap \mu(S) \subseteq \uparrow p \cap \mu(S)
$$

The order $\leq_{L / \approx}$ of classes in L / \approx corresponds to the order of suprema of classes in L (we denote the order in L by \leq_{L}):

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:
(i) $[p]_{\approx} \leq_{L / \approx}[q]_{\approx}$ if and only if $\mathrm{V}[p]_{\approx} \leq_{L} \mathrm{~V}[q]_{\approx}$.
(ii) The mapping $[p]_{\approx \mapsto} \bigvee[p]_{\approx}$ is an injection of L / \approx into L.

The poset $\left(L / \approx, \leq_{L / \approx}\right)$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:

The poset $(L / \approx, \leq L / \approx)$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:

$$
\text { (i) }[p] \approx \leq_{L} / \approx[q] \approx \text { if and only if } \mathrm{V}[p] \approx \leq_{L} \mathrm{~V}[q] \approx \text {. }
$$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:
(i) $[p]_{\approx} \leq_{L / \approx}[q]_{\approx}$ if and only if $\mathrm{V}[p]_{\approx} \leq_{L} \mathrm{~V}[q]_{\approx}$.
(ii) The mapping $[p]_{\approx \mapsto} \mapsto[p]_{\approx}$ is an injection of L / \approx into L.

The poset $\left(L / \approx, \leq_{L / \approx}\right)$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:
(i) $[p]_{\approx} \leq_{L / \approx}[q]_{\approx}$ if and only if $\bigvee[p]_{\approx} \leq_{L} \bigvee[q]_{\approx}$.
(ii) The mapping $[p]_{\approx \mapsto} \mapsto[p]_{\approx}$ is an injection of L / \approx into L.

The sub-poset $\left(\bigvee[p]_{\approx}, \leq_{L}\right)$ of L is isomorphic to the lattice $\left(L / \approx, \leq_{L / \approx}\right)$ under $\bigvee[p]_{\approx} \mapsto[p]_{\approx}$.

The poset $(L / \approx, \leq L / \approx)$

The poset $\left(L / \approx, \leq_{L / \approx}\right)$ is a complete lattice fulfilling:
(i) $[p]_{\approx} \leq_{L / \approx}[q]_{\approx}$ if and only if $\bigvee[p]_{\approx} \leq_{L} \bigvee[q]_{\approx}$.
(ii) The mapping $[p]_{\approx \mapsto} \mapsto[p]_{\approx}$ is an injection of L / \approx into L.

The sub-poset $\left(\bigvee[p]_{\approx}, \leq_{L}\right)$ of L is isomorphic to the lattice $\left(L / \approx, \leq_{L / \approx}\right)$ under $\bigvee[p]_{\approx} \mapsto[p]_{\approx}$.

Let $\mu: S \rightarrow L$ be an L-valued function on S. The lattice (μ_{L}, \leq) of cuts of μ is isomorphic with the lattice $\left(L / \approx, \leq_{L / \approx)}\right)$ of \approx-classes in L under the mapping $\mu_{p} \mapsto[p]_{\approx}$.

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.
Let $\widehat{\mu}: S \rightarrow \mathcal{F}$, where

$$
\begin{equation*}
\widehat{\mu}(x):=\bigcap\left\{\mu_{p} \in \mu_{L} \mid x \in \mu_{p}\right\} \tag{8}
\end{equation*}
$$

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.
Let $\widehat{\mu}: S \rightarrow \mathcal{F}$, where

$$
\begin{equation*}
\widehat{\mu}(x):=\bigcap\left\{\mu_{p} \in \mu_{L} \mid x \in \mu_{p}\right\} . \tag{8}
\end{equation*}
$$

Properties:

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.
Let $\widehat{\mu}: S \rightarrow \mathcal{F}$, where

$$
\begin{equation*}
\widehat{\mu}(x):=\bigcap\left\{\mu_{p} \in \mu_{L} \mid x \in \mu_{p}\right\} . \tag{8}
\end{equation*}
$$

Properties:
$\widehat{\mu}$ has the same cuts as μ.
$\widehat{\mu}$ has one-element classes of the equivalence relation \approx
Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\widehat{\mu}$

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.
Let $\widehat{\mu}: S \rightarrow \mathcal{F}$, where

$$
\begin{equation*}
\widehat{\mu}(x):=\bigcap\left\{\mu_{p} \in \mu_{L} \mid x \in \mu_{p}\right\} . \tag{8}
\end{equation*}
$$

Properties:
$\widehat{\mu}$ has the same cuts as μ.
$\widehat{\mu}$ has one-element classes of the equivalence relation \approx.
Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\widehat{\mu}$.

Canonical representation of lattice-valued functions

We take the lattice (\mathcal{F}, \leq), where $\mathcal{F}=\mu_{L} \subseteq \mathcal{P}(S)$ is the collection of cuts of μ, and the order \leq is the dual of the set inclusion.
Let $\widehat{\mu}: S \rightarrow \mathcal{F}$, where

$$
\begin{equation*}
\widehat{\mu}(x):=\bigcap\left\{\mu_{p} \in \mu_{L} \mid x \in \mu_{p}\right\} . \tag{8}
\end{equation*}
$$

Properties:
$\widehat{\mu}$ has the same cuts as μ.
$\widehat{\mu}$ has one-element classes of the equivalence relation \approx.
Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\widehat{\mu}$.

Canonical representation of $\mu: S \rightarrow L$

By the definition, every element of the codomain lattice of $\widehat{\mu}$ is a cut of μ. Therefore, if $f \in \mathcal{F}$, then $f=\mu_{p}$ for some $p \in L$, and for the cut $\widehat{\mu}_{f}$ of $\widehat{\mu}$, by the definition of a cut and by (8), we have

$$
\begin{aligned}
\widehat{\mu}_{f} & =\{x \in S \mid \widehat{\mu}(x) \geq f\}=\left\{x \in S \mid \widehat{\mu}(x) \subseteq \mu_{p}\right\} \\
& =\left\{x \in S \mid \bigcap\left\{\mu_{q} \mid x \in \mu_{q}\right\} \subseteq \mu_{p}\right\}=\mu_{p}=f
\end{aligned}
$$

Therefore, the collection of cuts of $\widehat{\mu}$ is

$$
\widehat{\mu}_{\mathcal{F}}=\left\{Y \subseteq S \mid Y=\widehat{\mu}_{\mu_{p}}, \text { for some } \mu_{p} \in \mu_{L}\right\}
$$

The lattices of cuts of a lattice-valued function μ and of its canonical representation $\widehat{\mu}$ coincide.

Example

$$
S=\{a, b, c, d\}
$$

$$
\begin{aligned}
\mu & =\left(\begin{array}{cccc}
a & b & c & d \\
p & s & r & t
\end{array}\right) \\
\widehat{\mu} & =\widehat{\nu}=\left(\begin{array}{cccc}
a & b & c & d \\
\{a\} & \{a, b\} & \{c\} & \{c, d\}
\end{array}\right)
\end{aligned}
$$

Lattice-valued Boolean functions

A Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}, n \in \mathbb{N}$.
where L is a complete lattice.
M/e alon deal wnith Iattien walued n-variable functions on a finite
where L is a complete lattice.

Lattice-valued Boolean functions

A Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}, n \in \mathbb{N}$. A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^{n} \rightarrow L
$$

where L is a complete lattice.
where L is a complete lattice.
We uce alen n_cute of lattico-walued functions as characteristic

Lattice-valued Boolean functions

A Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}, n \in \mathbb{N}$.
A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^{n} \rightarrow L
$$

where L is a complete lattice.
We also deal with lattice-valued n-variable functions on a finite domain $\{0,1, \ldots, k-1\}$:

$$
f:\{0,1, \ldots, k-1\}^{n} \rightarrow L
$$

where L is a complete lattice.
\qquad
\qquad

Lattice-valued Boolean functions

A Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}, n \in \mathbb{N}$.
A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^{n} \rightarrow L
$$

where L is a complete lattice.
We also deal with lattice-valued n-variable functions on a finite domain $\{0,1, \ldots, k-1\}$:

$$
f:\{0,1, \ldots, k-1\}^{n} \rightarrow L
$$

where L is a complete lattice.
We use also p-cuts of lattice-valued functions as characteristic functions: for $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$ and $p \in L$, we have

$$
f_{p}:\{0,1, \ldots, k-1\}^{n} \rightarrow\{0,1\}
$$

such that $f_{p}\left(x_{1}, \ldots, x_{n}\right)=1$ if and only if $f\left(x_{1}, \ldots, x_{n}\right) \geq p$.
characteristic function) a Boolean function.

Lattice-valued Boolean functions

A Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow\{0,1\}, n \in \mathbb{N}$.
A lattice-valued Boolean function is a mapping

$$
f:\{0,1\}^{n} \rightarrow L
$$

where L is a complete lattice.
We also deal with lattice-valued n-variable functions on a finite domain $\{0,1, \ldots, k-1\}$:

$$
f:\{0,1, \ldots, k-1\}^{n} \rightarrow L
$$

where L is a complete lattice.
We use also p-cuts of lattice-valued functions as characteristic functions: for $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$ and $p \in L$, we have

$$
f_{p}:\{0,1, \ldots, k-1\}^{n} \rightarrow\{0,1\}
$$

such that $f_{p}\left(x_{1}, \ldots, x_{n}\right)=1$ if and only if $f\left(x_{1}, \ldots, x_{n}\right) \geq p$. Clearly, a cut of a lattice-valued Boolean function is (as a characteristic function) a Boolean function.

Invariance group

As usual, by S_{n} we denote the symmetric group of all permutations over an n-element set. If f is an n-variable function on a finite domain X and $\sigma \in S_{n}$, then f is invariant under σ, symbolically $\sigma \vdash f$, if for all $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

Invariance group

As usual, by S_{n} we denote the symmetric group of all permutations over an n-element set. If f is an n-variable function on a finite domain X and $\sigma \in S_{n}$, then f is invariant under σ, symbolically $\sigma \vdash f$, if for all $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

If f is invariant under all permutations in $G \leq S_{n}$ and not invariant under any permutation from $S_{n} \backslash G$, then G is called the invariance group of f, and it is denoted by $G(f)$.

Representability

A group $G \leq S_{n}$ is said to be (k, m)-representable if there is a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{1, \ldots, m\}$ whose invariance group is G.

Representability

A group $G \leq S_{n}$ is said to be (k, m)-representable if there is a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow \mathbb{N}$, then it is called (k, ∞)-representable.

Representability

A group $G \leq S_{n}$ is said to be (k, m)-representable if there is a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow \mathbb{N}$, then it is called (k, ∞)-representable.
$G \leq S_{n}$ is called m-representable if it is the invariance group of a function $f:\{0,1\}^{n} \rightarrow\{1, \ldots, m\}$;

By the above, representability is equivalent with
(2 -) manumsantahilit..

Representability

A group $G \leq S_{n}$ is said to be (k, m)-representable if there is a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow \mathbb{N}$, then it is called (k, ∞)-representable.
$G \leq S_{n}$ is called m-representable if it is the invariance group of a function $f:\{0,1\}^{n} \rightarrow\{1, \ldots, m\}$;
it is called representable if it is m-representable for some $m \in \mathbb{N}$.

Representability

A group $G \leq S_{n}$ is said to be (k, m)-representable if there is a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow\{1, \ldots, m\}$ whose invariance group is G.

If G is the invariance group of a function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow \mathbb{N}$, then it is called (k, ∞)-representable.
$G \leq S_{n}$ is called m-representable if it is the invariance group of a function $f:\{0,1\}^{n} \rightarrow\{1, \ldots, m\}$;
it is called representable if it is m-representable for some $m \in \mathbb{N}$.
By the above, representability is equivalent with
($2, \infty$)-representability.

Representability by lattice-valued functions

We say that a permutation group $G \leq S_{n}$ is (k, L)-representable, if there is a lattice-valued function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.

Representability by lattice-valued functions

We say that a permutation group $G \leq S_{n}$ is (k, L)-representable, if there is a lattice-valued function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.
In particular, a $(2, L)$-representable group is the invariance group of a lattice-valued Boolean function $f:\{0,1\}^{n} \rightarrow L$.
\qquad

Representability by lattice-valued functions

We say that a permutation group $G \leq S_{n}$ is (k, L)-representable, if there is a lattice-valued function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.
In particular, a $(2, L)$-representable group is the invariance group of a lattice-valued Boolean function $f:\{0,1\}^{n} \rightarrow L$.
The notion of $(2, L)$-representability is more general than $(2,2)$-representability. An example is the Klein 4-group: $\{$ id, $(12)(34),(13)(24),(14)(23)\}$, which is $(2, L)$ representable (for L being a three element chain), but not $(2,2)$-representable.

Representability by lattice-valued functions

We say that a permutation group $G \leq S_{n}$ is (k, L)-representable, if there is a lattice-valued function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.
In particular, a $(2, L)$-representable group is the invariance group of a lattice-valued Boolean function $f:\{0,1\}^{n} \rightarrow L$.
The notion of $(2, L)$-representability is more general than $(2,2)$-representability. An example is the Klein 4-group: $\{$ id $,(12)(34),(13)(24),(14)(23)\}$, which is $(2, L)$ representable (for L being a three element chain), but not $(2,2)$-representable.
One can easily check that a permutation group $G \subseteq S_{n}$ is L-representable if and only if it is Galois closed over 2.

[^0](k, L)-representable if and only if it is Galois closed over the

Representability by lattice-valued functions

We say that a permutation group $G \leq S_{n}$ is (k, L)-representable, if there is a lattice-valued function $f:\{0,1, \ldots, k-1\}^{n} \rightarrow L$, such that $\sigma \vdash f$ if and only if $\sigma \in G$.
In particular, a $(2, L)$-representable group is the invariance group of a lattice-valued Boolean function $f:\{0,1\}^{n} \rightarrow L$.
The notion of $(2, L)$-representability is more general than $(2,2)$-representability. An example is the Klein 4-group: $\{$ id, $(12)(34),(13)(24),(14)(23)\}$, which is $(2, L)$ representable (for L being a three element chain), but not $(2,2)$-representable.
One can easily check that a permutation group $G \subseteq S_{n}$ is L-representable if and only if it is Galois closed over 2.
Similarly, it is easy to show that a permutation group is (k, L)-representable if and only if it is Galois closed over the k-element domain.

A Galois connection for invariance groups

Let $O_{k}^{(n)}=\left\{f \mid f: \mathbf{k}^{n} \rightarrow \mathbf{k}\right\}$ denote the set of all n-ary operations on \mathbf{k}, and for $F \subseteq O_{k}^{(n)}$ and $G \subseteq S_{n}$ let

$$
\begin{array}{ll}
F^{\vdash}:=\left\{\sigma \in S_{n} \mid \forall f \in F: \sigma \vdash f\right\}, & \bar{F}^{(k)}:=\left(F^{\vdash}\right)^{\vdash}, \\
G^{\vdash}:=\left\{f \in O_{k}^{(n)} \mid \forall \sigma \in G: \sigma \vdash f\right\}, & \bar{G}^{(k)}:=\left(G^{\vdash}\right)^{\vdash} .
\end{array}
$$

over \mathbf{k}, and we say that G is Galois closed over \mathbf{k} if $\bar{G}^{(k)}=G$.

A Galois connection for invariance groups

Let $O_{k}^{(n)}=\left\{f \mid f: \mathbf{k}^{n} \rightarrow \mathbf{k}\right\}$ denote the set of all n-ary operations on \mathbf{k}, and for $F \subseteq O_{k}^{(n)}$ and $G \subseteq S_{n}$ let

$$
\begin{array}{lll}
F^{\vdash}:=\left\{\sigma \in S_{n} \mid \forall f \in F: \sigma \vdash f\right\}, & \bar{F}^{(k)}:=\left(F^{\vdash}\right)^{\vdash}, \\
G^{\vdash}:=\left\{f \in O_{k}^{(n)} \mid \forall \sigma \in G: \sigma \vdash f\right\}, & \bar{G}^{(k)}:=\left(G^{\vdash}\right)^{\vdash} .
\end{array}
$$

The assignment $G \mapsto \bar{G}^{(k)}$ is a closure operator on S_{n}, and it is easy to see that $\bar{G}^{(k)}$ is a subgroup of S_{n} for every subset $G \subseteq S_{n}$ (even if G is not a group). For $G \leq S_{n}$, we call $\bar{G}^{(k)}$ the Galois closure of G over \mathbf{k}, and we say that G is Galois closed over \mathbf{k} if $\bar{G}^{(k)}=G$.

Galois closed groups

A group $G \leq S_{n}$ is Galois closed over \mathbf{k} if and only if G is (k, ∞)-representable.

Galois closed groups

A group $G \leq S_{n}$ is Galois closed over \mathbf{k} if and only if G is (k, ∞)-representable.

For every $G \leq S_{n}$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}}\left(S_{n}\right)_{a} \cdot G
$$

Galois closed groups

A group $G \leq S_{n}$ is Galois closed over \mathbf{k} if and only if G is (k, ∞)-representable.

For every $G \leq S_{n}$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}}\left(S_{n}\right)_{a} \cdot G .
$$

For arbitrary $k, n \geq 2$, characterize those subgroups of S_{n} that are Galois closed over \mathbf{k}.

Galois closed groups

A group $G \leq S_{n}$ is Galois closed over \mathbf{k} if and only if G is (k, ∞)-representable.

For every $G \leq S_{n}$, we have

$$
\bar{G}^{(k)}=\bigcap_{a \in \mathbf{k}^{n}}\left(S_{n}\right)_{a} \cdot G
$$

For arbitrary $k, n \geq 2$, characterize those subgroups of S_{n} that are Galois closed over \mathbf{k}.

Let $n>\max \left(2^{d}, d^{2}+d\right)$ and $G \leq S_{n}$. Then G is not Galois closed over \mathbf{k} if and only if $G=A_{B} \times L$ or $G<_{\text {sd }} S_{B} \times L$, where $B \subseteq \mathbf{n}$ is such that $D:=\mathbf{n} \backslash B$ has less than d elements, and L is an arbitrary permutation group on D.

Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma: A \rightarrow A, \mu: A \rightarrow L, \psi: L \rightarrow L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_{p}=\sigma \circ \mu \circ \psi_{p} .
$$

Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma: A \rightarrow A, \mu: A \rightarrow L, \psi: L \rightarrow L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_{p}=\sigma \circ \mu \circ \psi_{p} .
$$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu: A \rightarrow L$. Then the following holds.

Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma: A \rightarrow A, \mu: A \rightarrow L, \psi: L \rightarrow L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_{p}=\sigma \circ \mu \circ \psi_{p} .
$$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu: A \rightarrow L$. Then the following holds.

$$
\text { (i) } \mu_{p}=\mu \circ\left(\mathcal{I}_{L}\right)_{p} \text {, where } \mathcal{I}_{L} \text { is the identity mapping } \mathcal{I}_{\mathcal{L}}: L \rightarrow L \text {. }
$$

Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma: A \rightarrow A, \mu: A \rightarrow L, \psi: L \rightarrow L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_{p}=\sigma \circ \mu \circ \psi_{p} .
$$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu: A \rightarrow L$. Then the following holds.
(i) $\mu_{p}=\mu \circ\left(\mathcal{I}_{L}\right)_{p}$, where \mathcal{I}_{L} is the identity mapping $\mathcal{I}_{\mathcal{L}}: L \rightarrow L$.
(ii) $(\sigma \circ \mu)_{p}=\sigma \circ \mu_{p}$, for $\sigma: A \rightarrow A$.

Cuts of composition of functions

Theorem Let L be a complete lattice, let $A \neq \emptyset$ be a set and let $\sigma: A \rightarrow A, \mu: A \rightarrow L, \psi: L \rightarrow L$. Then, for every $p \in L$,

$$
(\sigma \circ \mu \circ \psi)_{p}=\sigma \circ \mu \circ \psi_{p} .
$$

Corollary Let L be a complete lattice, let $A \neq \emptyset$ and let $\mu: A \rightarrow L$. Then the following holds.
(i) $\mu_{p}=\mu \circ\left(\mathcal{I}_{L}\right)_{p}$, where \mathcal{I}_{L} is the identity mapping $\mathcal{I}_{\mathcal{L}}: L \rightarrow L$.
(ii) $(\sigma \circ \mu)_{p}=\sigma \circ \mu_{p}$, for $\sigma: A \rightarrow A$.
(iii) $(\mu \circ \psi)_{p}=\mu \circ \psi_{p}$, where ψ is a map $\psi: L \rightarrow L$.

Invariance groups of lattice-valued functions via cuts

Proposition Let $f:\{0, \ldots, k-1\}^{n} \rightarrow L$ and $\sigma \in S_{n}$. Then $\sigma \vdash f$ if and only if for every $p \in L, \sigma \vdash f_{p}$.

Invariance groups of lattice-valued functions via cuts

Proposition Let $f:\{0, \ldots, k-1\}^{n} \rightarrow L$ and $\sigma \in S_{n}$. Then

$$
\sigma \vdash f \text { if and only if for every } p \in L, \sigma \vdash f_{p} \text {. }
$$

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

Invariance groups of lattice-valued functions via cuts

Proposition Let $f:\{0, \ldots, k-1\}^{n} \rightarrow L$ and $\sigma \in S_{n}$. Then $\sigma \vdash f$ if and only if for every $p \in L, \sigma \vdash f_{p}$.

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

If $f_{1}:\{0, \ldots, k-1\}^{n} \rightarrow L_{1}$ and $f_{2}:\{0, \ldots, k-1\}^{n} \rightarrow L_{2}$ are two n-variable lattice-valued functions on the same domain, then $\widehat{f}_{1}=\widehat{f}_{2}$ implies $G\left(f_{1}\right)=G\left(f_{2}\right)$.

Representation theorem

For every $n \in \mathbb{N}$, there is a lattice L and a lattice valued Boolean function $F:\{0,1\}^{n} \rightarrow L$ satisfying the following: If $G \leq S_{n}$ and $G=G(f)$ for a Boolean function f, then $G=G\left(F_{p}\right)$, for a cut F_{p} of F.

Representation theorem on the k-element set

Every subgroups of S_{n} is an invariance group of a function $\{0, \ldots, k-1\}^{n} \rightarrow\{0, \ldots, k-1\}$ if and only if $k \geq n$.

Representation theorem on the k-element set

Every subgroups of S_{n} is an invariance group of a function $\{0, \ldots, k-1\}^{n} \rightarrow\{0, \ldots, k-1\}$ if and only if $k \geq n$.
If $k \geq n$, then for every subgroup G of S_{n} there exists a function $f:\{0, \ldots, k-1\}^{n} \rightarrow\{0,1\}$ such that the invariance group of f is exactly G.

Representation theorem on the k-element set

Every subgroups of S_{n} is an invariance group of a function $\{0, \ldots, k-1\}^{n} \rightarrow\{0, \ldots, k-1\}$ if and only if $k \geq n$.
If $k \geq n$, then for every subgroup G of S_{n} there exists a function $f:\{0, \ldots, k-1\}^{n} \rightarrow\{0,1\}$ such that the invariance group of f is exactly G.
For $k, n \in \mathbb{N}$ and $k \geq n$, there is a lattice L and a lattice valued function $F:\{0, \ldots, k-1\}^{n} \rightarrow L$ such that the following holds: If $G \leq S_{n}$, then $G=G\left(F_{p}\right)$ for a cut F_{p} of of F.

Linear combination

A lattice-valued Boolean function is a map $\mu:\{0,1\}^{n} \rightarrow L$ where L is a bounded lattice and $n \in\langle 1,2,3, \ldots\rangle$.

Linear combination

A lattice-valued Boolean function is a map $\mu:\{0,1\}^{n} \rightarrow L$ where L is a bounded lattice and $n \in\langle 1,2,3, \ldots\rangle$.
We say that μ can be given by a linear combination (in L) if there are $w_{1}, \ldots, w_{n} \in L$ such that, for all $x=\left\{x_{1}, \ldots, x_{n}\right\} \in\{0,1\}^{n}$,

$$
\begin{equation*}
\mu(x)=\bigvee_{i=1}^{n} w_{i} x_{i}, \quad \text { that is, } \quad \mu(x)=\bigvee_{i=1}^{n}\left(w_{i} \wedge x_{i}\right) \tag{9}
\end{equation*}
$$

Cuts and closure systems

For $p \in L$, the set

$$
\begin{equation*}
\mu_{p}:=\left\{x \in\{0,1\}^{n}: \mu(x) \geq p\right\} \tag{10}
\end{equation*}
$$

is called a cut of μ.
A closure system \mathcal{F} over B_{n} is a \cap-subsemilattice of the powerset
necessarily a complete \cap-semilattice.
A closure system \mathcal{F} determines a closur operator in the standard way. We only need the closures of singleton sets, that is,

Cuts and closure systems

For $p \in L$, the set

$$
\begin{equation*}
\mu_{p}:=\left\{x \in\{0,1\}^{n}: \mu(x) \geq p\right\} \tag{10}
\end{equation*}
$$

is called a cut of μ.
A closure system \mathcal{F} over B_{n} is a \cap-subsemilattice of the powerset lattice $P\left(B_{n}\right)=\left\langle P\left(B_{n}\right) ; \cup, \cap\right\rangle$ such that $B_{n} \in \mathcal{F}$. By finiteness, \mathcal{F} is necessarily a complete \cap-semilattice.
A closure system \mathcal{F} determines a closure operator in the standard way. We only need the closures of singleton sets, that is, for $x \in B_{n}$, we have $\bar{x}:=\bigcap\{f \in \mathcal{F}: x \in f\}$

Cuts and closure systems

For $p \in L$, the set

$$
\begin{equation*}
\mu_{p}:=\left\{x \in\{0,1\}^{n}: \mu(x) \geq p\right\} \tag{10}
\end{equation*}
$$

is called a cut of μ.
A closure system \mathcal{F} over B_{n} is a \cap-subsemilattice of the powerset lattice $P\left(B_{n}\right)=\left\langle P\left(B_{n}\right) ; \cup \cap\right\rangle$ such that $B_{n} \in \mathcal{F}$. By finiteness, \mathcal{F} is necessarily a complete \cap-semilattice.
A closure system \mathcal{F} determines a closure operator in the standard way. We only need the closures of singleton sets, that is,

$$
\begin{equation*}
\text { for } x \in B_{n} \text {, we have } \bar{x}:=\bigcap\{f \in \mathcal{F}: x \in f\} . \tag{11}
\end{equation*}
$$

$\{\mathrm{V}, 0\}$-homomorphism

If $\mu: B_{n} \rightarrow L$ such that $\mu(0)=0$ and, for all $x, y \in B_{n}$, $\mu(x \vee y)=\mu(x) \vee \mu(y)$, then μ is called a $\{\vee, 0\}$-homomorphism.

$\{\mathrm{V}, 0\}$-homomorphism

If $\mu: B_{n} \rightarrow L$ such that $\mu(0)=0$ and, for all $x, y \in B_{n}$, $\mu(x \vee y)=\mu(x) \vee \mu(y)$, then μ is called a $\{\vee, 0\}$-homomorphism.

A lattice-valued function $B_{n} \rightarrow L$ can be given by a linear combination in L iff it is a $\{\vee, 0\}$-homomorphism.

$\{\mathrm{V}, 0\}$-homomorphism

If $\mu: B_{n} \rightarrow L$ such that $\mu(0)=0$ and, for all $x, y \in B_{n}$, $\mu(x \vee y)=\mu(x) \vee \mu(y)$, then μ is called a $\{\vee, 0\}$-homomorphism.

A lattice-valued function $B_{n} \rightarrow L$ can be given by a linear combination in L iff it is a $\{\vee, 0\}$-homomorphism.

$$
\begin{aligned}
& \mu(x \vee y)=\bigvee_{i} w_{i}\left(x_{i} \vee y_{i}\right)=\bigvee_{i}\left(w_{i} x_{i} \vee w_{i} y_{i}\right)=\bigvee_{i} w_{i} x_{i} \vee \bigvee_{i} w_{i} y_{i}= \\
& \mu(x) \vee \mu(y) .
\end{aligned}
$$

$\{\mathrm{V}, 0\}$-homomorphism

If $\mu: B_{n} \rightarrow L$ such that $\mu(0)=0$ and, for all $x, y \in B_{n}$, $\mu(x \vee y)=\mu(x) \vee \mu(y)$, then μ is called a $\{\vee, 0\}$-homomorphism.

A lattice-valued function $B_{n} \rightarrow L$ can be given by a linear combination in L iff it is a $\{\vee, 0\}$-homomorphism.
$\mu(x \vee y)=\bigvee_{i} w_{i}\left(x_{i} \vee y_{i}\right)=\bigvee_{i}\left(w_{i} x_{i} \vee w_{i} y_{i}\right)=\bigvee_{i} w_{i} x_{i} \vee \bigvee_{i} w_{i} y_{i}=$ $\mu(x) \vee \mu(y)$.

Let $e^{(i)}=\langle 0, \ldots, 0,1,0, \ldots, 0\rangle \in B_{n}$ where 1 stands in the i-th place. Define $w_{i}:=\mu\left(e^{(i)}\right)$. Observe that $\mu\left(e^{(i)} \cdot 1\right)=w_{i}=w_{i} \cdot 1$ and $\mu\left(e^{(i)} \cdot 0\right)=0=w_{i} \cdot 0$, that is, $\mu\left(e^{(i)} \cdot x_{i}\right)=w_{i} \cdot x_{i}$. Therefore, for $x \in B_{n}$, we obtain $\mu(x)=\mu\left(\bigvee_{i} e^{(i)} x_{i}\right)=\bigvee_{i} \mu\left(e^{(i)} x_{i}\right)=\bigvee_{i} w_{i} \cdot x_{i}$.

Up-sets

If $\varnothing \neq X \subseteq B_{n}$ such that $(\forall x \in X)\left(\forall y \in B_{n}\right)(x \leq y$ then $y \in X)$, then X is an up-set of B_{n}.

Up-sets

If $\varnothing \neq X \subseteq B_{n}$ such that $(\forall x \in X)\left(\forall y \in B_{n}\right)(x \leq y$ then $y \in X)$, then X is an up-set of B_{n}.

The lattice-valued function $\mu: B_{n} \rightarrow L$ is isotone iff all the cuts of μ are up-sets.

Closure systems of up-sets, linear combinations

Let \mathcal{F} a set consisting of some up-sets of B_{n}. Then, the following three conditions are equivalent.

Closure systems of up-sets, linear combinations

Let \mathcal{F} a set consisting of some up-sets of B_{n}. Then, the following three conditions are equivalent.
(i) \mathcal{F} be a closure system over B_{n}, and for all $x, y \in B_{n}, \bar{x} \subseteq \bar{y}$ impliesb $\overline{x \vee y}=\bar{x}$.
(iii) There exist a bounded lattice L and a lattice-valued function $\mu: B_{n} \rightarrow L$ given by a linear combination such that \mathcal{F} is the family c

Closure systems of up-sets, linear combinations

Let \mathcal{F} a set consisting of some up-sets of B_{n}. Then, the following three conditions are equivalent.
(i) \mathcal{F} be a closure system over B_{n}, and for all $x, y \in B_{n}, \bar{x} \subseteq \bar{y}$ impliesb $\overline{x \vee y}=\bar{x}$.
(ii) \mathcal{F} be a closure system over B_{n}, and for all $x, y \in B_{n}$, $\overline{x \vee y}=\bar{x} \cap \bar{y}$.

Closure systems of up-sets, linear combinations

Let \mathcal{F} a set consisting of some up-sets of B_{n}. Then, the following three conditions are equivalent.
(i) \mathcal{F} be a closure system over B_{n}, and for all $x, y \in B_{n}, \bar{x} \subseteq \bar{y}$ impliesb $\overline{x \vee y}=\bar{x}$.
(ii) \mathcal{F} be a closure system over B_{n}, and for all $x, y \in B_{n}$, $\overline{x \vee y}=\bar{x} \cap \bar{y}$.
(iii) There exist a bounded lattice L and a lattice-valued function $\mu: B_{n} \rightarrow L$ given by a linear combination such that \mathcal{F} is the family of cuts of μ.

Proving (ii) from (i)

Let $x, y \in B_{n}$. Since the closure induced by \mathcal{F} is clearly order-reversing in the sense that

Proving (ii) from (i)

Let $x, y \in B_{n}$. Since the closure induced by \mathcal{F} is clearly order-reversing in the sense that
$x \leq y$ implies $\bar{x} \supseteq \bar{y}$,

Proving (ii) from (i)

Let $x, y \in B_{n}$. Since the closure induced by \mathcal{F} is clearly order-reversing in the sense that
$x \leq y$ implies $\bar{x} \supseteq \bar{y}$,
we have $\overline{x \vee y} \subseteq \bar{x}$ and $\overline{x \vee y} \subseteq \bar{y}$. Hence, $\overline{x \vee y} \subseteq \bar{x} \cap \bar{y}$.

Proving (ii) from (i)

Let $x, y \in B_{n}$. Since the closure induced by \mathcal{F} is clearly order-reversing in the sense that
$x \leq y$ implies $\bar{x} \supseteq \bar{y}$,
we have $\overline{x \vee y} \subseteq \bar{x}$ and $\overline{x \vee y} \subseteq \bar{y}$. Hence, $\overline{x \vee y} \subseteq \bar{x} \cap \bar{y}$.

To show the converse inclusion, let $z \in \bar{x} \cap \bar{y}$. By well-known properties of closure operators, $\bar{z} \subseteq \bar{x}$ and $\bar{z} \subseteq \bar{y}$. Using (i), $\bar{z}=\overline{z \vee x}$ and $\bar{z}=\overline{z \vee y}$. Using (i) again for the inclusion $\overline{z \vee x} \subseteq \overline{z \vee y}$, which is actually an equality, and applying the reverse inclusion thereafter, we obtain $z \in \bar{z}=\overline{z \vee x}=\overline{z \vee x \vee z \vee y} \subseteq \overline{x \vee y}$. Hence, $\overline{x \vee y}=\bar{x} \cap \bar{y}$.

Proving (iii) from (ii)

Since \mathcal{F} is a finite \cap-closed family of subsets of B_{n} and $B_{n} \in \mathcal{F},\langle\mathcal{F} ; \subseteq\rangle$ is a lattice. Let L be the dual $\langle\mathcal{F} ; \supseteq\rangle$ of this lattice and define $\mu: B_{n} \rightarrow L$ by $x \mapsto \bar{x}$. We claim that the cuts of μ are exactly the members of \mathcal{F}. First, let $f \in \mathcal{F}$. Then

$$
f=\left\{x \in B_{n}: x \in f\right\}=\left\{x \in B_{n}: \bar{x} \subseteq f\right\}=\left\{x \in B_{n}: \mu(x) \geq f\right\}=\mu_{f}
$$

is a cut of μ. Second, every cut of μ is of the form μ_{f} for some $f \in \mathcal{F}$, and $\mu_{f}=f$, which is in \mathcal{F}. This proves that \mathcal{F} is the family of cuts of μ. Since \mathcal{F} consists of up-sets of B_{n}, the only member of \mathcal{F} containing 0 is B_{n}. Hence $\mu(0)=\overline{0}=B_{n}=0_{L}$. Finally, since \cap is the meet in $\langle\mathcal{F}, \subseteq\rangle$, it is the join in L. Thus, μ is a $\{\vee, 0\}$-homomorphism, μ can be given by a linear combination.

Proving (i) from (iii)

We show first that whenever \mathcal{F} is the collection of cuts of an isotone lattice-valued function $\mu: B_{n} \rightarrow L$ and $x \in B_{n}$, then
\mathcal{F} is a closure system and

$$
\bar{x}=\left\{z \in B_{n}: \mu(z) \geq \mu(x)\right\}=\mu_{\mu(x)}
$$

where \bar{x}. Note that $B_{n}=\left\{x \in B_{n}: \mu(x) \geq 0\right\}=\mu_{0} \in \mathcal{F}$. For any two members of \mathcal{F}, say, $\mu_{p}, \mu_{q} \in \mathcal{F}$, we have $\mu_{p} \cap \mu_{q}=\left\{x \in B_{n}: x \geq\right.$ p and $x \geq q\}=\left\{x \in B_{n}: x \geq p \vee q\right\}=\mu_{p \vee q} \in \mathcal{F}$. Hence, \mathcal{F} is a closure system over B_{n}. Next, let $x \in B_{n}$, and denote $\mu(x)$ by q; we have to show that \bar{x} equals $\left\{z \in B_{n}: \mu(z) \geq q\right\}$, which is μ_{q}. Since $x \in \mu_{q} \in \mathcal{F}$ is clear, we have to verify that for all $p \in L, x \in \mu_{p}$ implies $\mu_{q} \subseteq \mu_{p}$. So consider an element $p \in L$ such that $x \in \mu_{p}$, that is, $\mu(x) \geq p$. For any $z \in \mu_{q}$, we have $\mu(z) \geq q=\mu(x)$, and $\mu(z) \geq p$ follows by transitivity. That is, $z \in \mu_{p}$, implying the required inclusion $\mu_{q} \subseteq \mu_{p}$.

Proving (i) from (iii)

Since μ is a $\{\vee, 0\}$-homomorphism, the standard trick $x \leq y$ implies $\mu(y)=\mu(x \vee y)=\mu(x) \vee \mu(y)$ implies $\mu(x) \leq \mu(y)$ shows that μ is isotone.

Proving (i) from (iii)

Since μ is a $\{\vee, 0\}$-homomorphism, the standard trick $x \leq y$ implies $\mu(y)=\mu(x \vee y)=\mu(x) \vee \mu(y)$ implies $\mu(x) \leq \mu(y)$ shows that μ is isotone.
Let $x, y \in B_{n}$ such that $\bar{x} \subseteq \bar{y}$.

Proving (i) from (iii)

Since μ is a $\{\vee, 0\}$-homomorphism, the standard trick $x \leq y$ implies $\mu(y)=\mu(x \vee y)=\mu(x) \vee \mu(y)$ implies $\mu(x) \leq \mu(y)$ shows that μ is isotone.
Let $x, y \in B_{n}$ such that $\bar{x} \subseteq \bar{y}$.
Since we have $\overline{x \vee y} \subseteq \bar{x}$, it suffices to deal with the converse inclusion.

Proving (i) from (iii)

Since μ is a $\{\vee, 0\}$-homomorphism, the standard trick $x \leq y$ implies $\mu(y)=\mu(x \vee y)=\mu(x) \vee \mu(y)$ implies $\mu(x) \leq \mu(y)$ shows that μ is isotone.
Let $x, y \in B_{n}$ such that $\bar{x} \subseteq \bar{y}$.
Since we have $\overline{x \vee y} \subseteq \bar{x}$, it suffices to deal with the converse inclusion.
So let $z \in \bar{x}$. We have, $\mu(z) \geq \mu(x)$. We also have $\mu(z) \geq \mu(y)$ by the same reason and since $z \in \bar{x} \subseteq \bar{y}$.

Proving (i) from (iii)

Since μ is a $\{\vee, 0\}$-homomorphism, the standard trick $x \leq y$ implies $\mu(y)=\mu(x \vee y)=\mu(x) \vee \mu(y)$ implies $\mu(x) \leq \mu(y)$ shows that μ is isotone.
Let $x, y \in B_{n}$ such that $\bar{x} \subseteq \bar{y}$.
Since we have $\overline{x \vee y} \subseteq \bar{x}$, it suffices to deal with the converse inclusion.
So let $z \in \bar{x}$. We have, $\mu(z) \geq \mu(x)$. We also have $\mu(z) \geq \mu(y)$ by the same reason and since $z \in \bar{x} \subseteq \bar{y}$. Hence, $\mu(z) \geq \mu(x) \vee \mu(y)=\mu(x \vee y)$ and finally we have $z \in \overline{x \vee y}$.

Thank you for your attention!

Thank you for your attention!

[^0]: Similarly, it is easy to show that a permutation group is

