Some enumerative and lattice theoretic aspects of islands (and lakes) and related investigations

Eszter K. Horváth, Szeged

Co-authors: János Barát, Péter Hajnal, Branimir Šešelja, Andreja Tepavčević, Sándor Radeleczki

Dresden, 2015, Jan 16.

Islands? Alcatraz, berüchtigt

Islands?

Islands?

Islands?

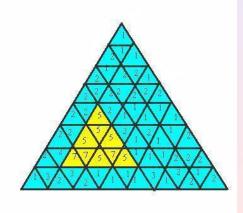
Lakes? (Aral sea, satellit photo)

Lakes?

Definition

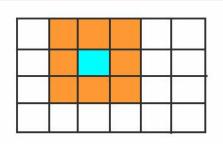
We call a rectangle/triangle a rectangular/triangular island, if for the cell t, if we denote its height by a_t , then for each cell \hat{t} neighbouring with a cell of the rectange/triangle T, the inequality $a_{\hat{t}} < min\{a_t : t \in T\}$ holds.

1	2	1	2	1
1	5	7	2	2
1	7	5	1	1
2	5	7	2	2
1	2	1	1	2
1	1	1	1	1



Definition

Grid, neighbourhood





We put heights into the cells. How many rectangular islands do we have?

2	1	3	2
2	1	3	2
3	1	1	1

Water level: 0,5

Number of rectangular islands: 1

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

Water level: 1,5

Number of rectangular islands: 2

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

Water level: 2,5

Number of rectangular islands: 2

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

Altogether: 1 + 2 + 2 = 5 rectangular islands.

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

2	1	3	2
2	ĩ	3	2
3	1	1	1

2	1	3	2
2	1	3	2
3	1	1	1

Could we put more rectangular islands onto this grid? (With other heights?)

Yes, we could put more rectangular islands, here we have 1+2+4+2=9 rectangular islands.

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

3	1	4	3
2	1	2	2
3	1	3	4

HOWEWER, WE CANNOT PUT MORE RECTANGULAR ISLANDS!!!

The maximum number of rectangular islands on the $m \times n$ size grid (Gábor Czédli , Szeged, 2007. june 17.)

$$f^{cz}(m,n) = \left\lceil \frac{mn+m+n-1}{2} \right\rceil$$

Coding theory

S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Coding theory

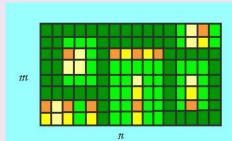
S. Földes and N. M. Singhi: On instantaneous codes, J. of Combinatorics, Information and System Sci., 31 (2006), 317-326.

Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f^{cz}(m,n) = \left[\frac{mn+m+n-1}{2}\right]$$

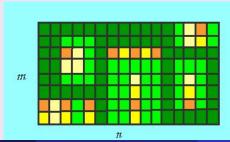


Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f^{cz}(m,n) = \left\lceil \frac{mn+m+n-1}{2} \right\rceil.$$

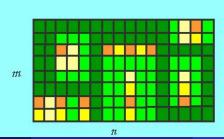


Rectangular islands

G. Czédli: The number of rectangular islands by means of distributive lattices, European Journal of Combinatorics 30 (2009), 208-215.

The maximum number of rectangular islands in a $m \times n$ rectangular board on square grid:

$$f^{cz}(m,n) = \left\lceil \frac{mn+m+n-1}{2} \right\rceil.$$



Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math. (Szeged) **75** (2009), 3-11.

Rectangular islands in higher dimensions

G. Pluhár: The number of brick islands by means of distributive lattices, Acta Sci. Math. (Szeged) **75** (2009), 3-11.

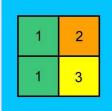
Proving $f(m, n) = \left[\frac{mn + m + n - 1}{2}\right]$

By induction on the number of the cells: $f(m, n) \ge \left[\frac{mn+m+n-1}{2}\right]$.

If m=1, then $\left[\frac{n+1+n-1}{2}\right]=n$, we put the numbers $1,2,3,\ldots,n$ in the cells and we will have exactly n islands.

If
$$n = 1$$
, then $\left[\frac{m+m+1-1}{2}\right] = m$.

If
$$m = n = 2$$
:



Proving $f(m, n) = \left[\frac{mn+m+n-1}{2}\right]$ THERE EXISTS:

Let m, n > 2.

$$f(m,n) \ge f(m-2,n) + f(1,n) + 1 \ge \left[\frac{(m-2)n + (m-2) + n - 1}{2}\right] + \left[\frac{n+1+n-1}{2}\right] + 1 = \left[\frac{(m-2)n + (m-2) + n - 1 + 2n}{2}\right] + 1 = \left[\frac{mn + m + n - 1}{2}\right].$$

LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

Any two weak bases of a finite distributive lattice have the same number of elements.

LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

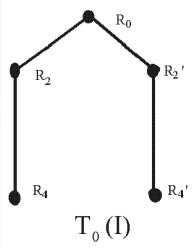
Any two weak bases of a finite distributive lattice have the same number of elements.

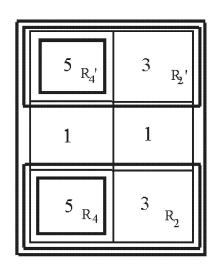
LATTICE METHOD

G. Czédli, A. P. Huhn and E. T. Schmidt: Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.

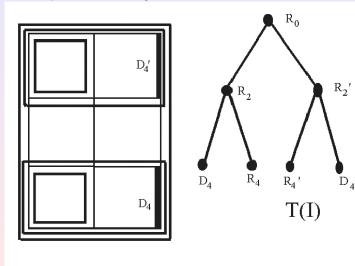
Any two weak bases of a finite distributive lattice have the same number of elements.

TREE-GRAPH METHOD





TREE-GRAPH METHOD



TREE-GRAPH METHOD

Lemma 2 (folklore)

Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \le 2\ell - 1$.

We have $4s + 2d \le (n+1)(m+1)$.

The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

$$|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n+1)(m+1) - 1$$

TREE-GRAPH METHOD

Lemma 2 (folklore)

Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \le 2\ell - 1$.

We have $4s+2d \leq (n+1)(m+1).$ The number of leaves of $T(\mathcal{I})$ is $\ell=s+d.$ Hence by Lemma 2 the number of islands is

$$|V| - d \le (2\ell - 1) - d = 2s + d - 1 \le \frac{1}{2}(n+1)(m+1) - 1$$

TREE-GRAPH METHOD

Lemma 2 (folklore)

Let T be a rooted tree such that any non-leaf node has at least 2 sons. Let ℓ be the number of leaves in T. Then $|V| \le 2\ell - 1$.

We have $4s + 2d \le (n+1)(m+1)$.

The number of leaves of $T(\mathcal{I})$ is $\ell = s + d$. Hence by Lemma 2 the number of islands is

$$|V|-d \le (2\ell-1)-d=2s+d-1 \le \frac{1}{2}(n+1)(m+1)-1.$$

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Nov

$$f(m,n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$

$$=1+\sum_{R\in \mathit{max}\mathcal{I}}\left(\left[\frac{\mu(\mathit{u},\mathit{v})}{2}\right]-1\right)\leq 1-|\mathit{max}\mathcal{I}|+\left[\frac{\mu(C)}{2}\right].$$

If $|\max \mathcal{I}| \geq 2$, then the proof is ready. Case $|\max \mathcal{I}| = 1$ is an easy exercise.

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Nov

$$f(m,n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$

$$=1+\sum_{R\in \mathit{max}\mathcal{I}}\left(\left[\frac{\mu(u,v)}{2}\right]-1\right)\leq 1-|\mathit{max}\mathcal{I}|+\left[\frac{\mu(C)}{2}\right].$$

If $|\max \mathcal{I}| \geq 2$, then the proof is ready. Case $|\max \mathcal{I}| = 1$ is an easy exercise.

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Now

$$f(m, n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$

$$=1+\sum_{R\in\mathit{max}\mathcal{I}}\left(\left[\frac{\mu(u,v)}{2}\right]-1\right)\leq 1-|\mathit{max}\mathcal{I}|+\left[\frac{\mu(C)}{2}\right].$$

If $|\max \mathcal{I}| \geq 2$, then the proof is ready. Case $|\max \mathcal{I}| = 1$ is an easy exercise.

Proving methods/3

ELEMENTARY METHOD

We define

$$\mu(R) = \mu(u, v) := (u+1)(v+1).$$

Now

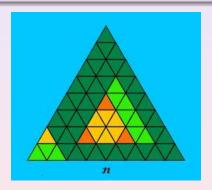
$$f(m, n) = 1 + \sum_{R \in max\mathcal{I}} f(R) = 1 + \sum_{R \in max\mathcal{I}} \left(\left[\frac{(u+1)(v+1)}{2} \right] - 1 \right)$$

$$=1+\sum_{R\in \mathit{max}\mathcal{I}}\big(\big[\frac{\mu(\mathit{u},\mathit{v})}{2}\big]-1\big)\leq 1-|\mathit{max}\mathcal{I}|+\big[\frac{\mu(C)}{2}\big].$$

If $|\mathit{max}\mathcal{I}| \geq 2$, then the proof is ready. Case $|\mathit{max}\mathcal{I}| = 1$ is an easy exercise.

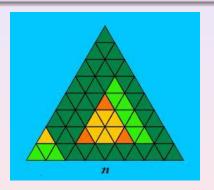
Triangular islands

For the maximum number of triangular islands in an equilateral triangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.



Triangular islands

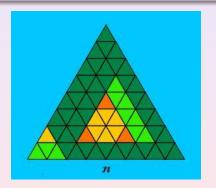
For the maximum number of triangular islands in an equilateral triangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.



E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34.

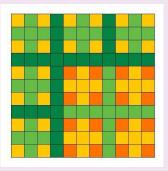
Triangular islands

For the maximum number of triangular islands in an equilateral triangle of side length n, $\frac{n^2+3n}{5} \le f(n) \le \frac{3n^2+9n+2}{14}$ holds.

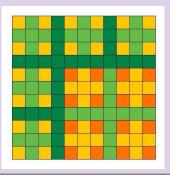


E. K. Horváth, Z. Németh and G. Pluhár: The number of triangular islands on a triangular grid, Periodica Mathematica Hungarica, 58 (2009), 25–34.

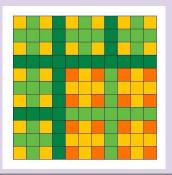
$$\frac{1}{3}(rs - 2r - 2s) \le f(r, s) \le \frac{1}{3}(rs - 1)$$



$$\frac{1}{3}(rs - 2r - 2s) \le f(r, s) \le \frac{1}{3}(rs - 1)$$

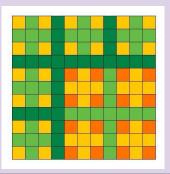


$$\frac{1}{3}(rs - 2r - 2s) \le f(r, s) \le \frac{1}{3}(rs - 1)$$



E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math.(Szeged) **76** (2010) 35-48.

$$\frac{1}{3}(rs - 2r - 2s) \le f(r, s) \le \frac{1}{3}(rs - 1)$$



E. K. Horváth, G. Horváth, Z. Németh, Cs. Szabó: The number of square islands on a rectangular sea, Acta Sci. Math.(Szeged) $\bf 76$ (2010) 35-48.

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m, n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K Horváth):

If $n \ge 2$, then $h_2(m, n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth) p(m,n)=f(m,n)=[(mn+m+n-1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m,n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If
$$n \geq 2$$
, then $h_2(m,n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth) p(m,n)=f(m,n)=[(mn+m+n-1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m,n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If $n \geq 2$, then $h_2(m,n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth) p(m,n)=f(m,n)=[(mn+m+n-1)/2].

Cylindric board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $n \ge 2$, then $h_1(m,n) = \left[\frac{(m+1)n}{2}\right]$.

Cylindric board, cylindric and rectangular islands (J. Barát, P. Hajnal, E.K. Horváth):

If $n \geq 2$, then $h_2(m,n) = \left[\frac{(m+1)n}{2}\right] + \left[\frac{(m-1)}{2}\right]$.

Torus board, rectangular islands (J. Barát, P. Hajnal, E.K. Horváth): If $m, n \ge 2$, then $t(m, n) = \left[\frac{mn}{2}\right]$.

Peninsulas (semi islands) (J. Barát, P. Hajnal, E.K. Horváth): p(m,n) = f(m,n) = [(mn+m+n-1)/2].

Maximal systems of rectangular islands

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, **30** (2009), 216–219.

Maximal systems of rectangular islands

Further results on rectangular islands

Zs. Lengvárszky: The minimum cardinality of maximal systems of rectangular islands, European Journal of Combinatorics, **30** (2009), 216-219.

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0,1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0,1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0,1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

The board consists of all vertices of a hypercube, i.e. the elements of a Boolean algebra $BA = \{0,1\}^n$.

We consider two cells neighbouring if their Hamming distance is 1.

We denote the maximum number of islands in $BA = \{0, 1\}^n$ by b(n).

High school competition exercise

Determine the maximum number of islands on n consecutive cells, if the possible heights on the grid are the following: 0, 1, 2, ..., h; where $h \ge 1$.

The solution:

$$I(n,h)=n-\left[\frac{n}{2^h}\right]$$

High school competition exercise

Determine the maximum number of islands on n consecutive cells, if the possible heights on the grid are the following: 0, 1, 2, ..., h; where $h \ge 1$.

The solution:

$$I(n,h) = n - \left[\frac{n}{2^h}\right].$$

Joint work with Branimir Šešelja and Andreja Tepavčević

A height function h is a mapping from $\{1,2,...,m\} \times \{1,2,...,n\}$ to \mathbb{N} , $h:\{1,2,...,m\} \times \{1,2,...,n\} \to \mathbb{N}$.

The co-domain of the height function is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

For every $p \in \mathbb{N}$, the *cut of the height function*, i.e. the p-cut of h is an ordinary relation h_p on $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ defined by

 $(x,y) \in h_p$ if and only if $h(x,y) \ge p$.

Joint work with Branimir Šešelja and Andreja Tepavčević

A height function h is a mapping from $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ to \mathbb{N} , $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \rightarrow \mathbb{N}$.

The co-domain of the height function is the lattice (\mathbb{N}, \leq) , where \mathbb{N} is the set of natural numbers under the usual ordering \leq and suprema and infima are max and min, respectively.

For every $p \in \mathbb{N}$, the *cut of the height function*, i.e. the *p-cut* of *h* is an ordinary relation h_p on $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ defined by

$$(x,y) \in h_p$$
 if and only if $h(x,y) \ge p$.

We say that two rectangles $\{\alpha,...,\beta\} \times \{\gamma,...,\delta\}$ and $\{\alpha_1,...,\beta_1\} \times \{\gamma_1,...,\delta_1\}$ are distant if they are disjoint and for every two cells, namely (a,b) from the first rectangle and (c,d) from the second, we have $(a-c)^2+(b-d)^2\geq 4$.

The height function h is called *rectangular* if for every $p \in \mathbb{N}$, every nonempty p-cut of h is a union of distant rectangles.

We say that two rectangles $\{\alpha,...,\beta\} \times \{\gamma,...,\delta\}$ and $\{\alpha_1,...,\beta_1\} \times \{\gamma_1,...,\delta_1\}$ are distant if they are disjoint and for every two cells, namely (a,b) from the first rectangle and (c,d) from the second, we have $(a-c)^2+(b-d)^2\geq 4$.

The height function h is called *rectangular* if for every $p \in \mathbb{N}$, every nonempty p-cut of h is a union of distant rectangles.

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

```
\begin{split} &\Gamma_1 = \{1,2,3,4,5\} \times \{1,2,3\}, \\ &\Gamma_2 = \{1,2,3,4,5\} \times \{1,2,3\} \setminus \{(3,1)\}, \\ &\Gamma_3 = \{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\ &\Gamma_4 = \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text{ and } \\ &\Gamma_5 = \{(1,3),(2,3),(4,3),(5,3)\} \end{split}
```

5	5	3	5	5
4	4	2	4	4
2	2	1	2	2

$$\begin{split} &\Gamma_1 = \{1,2,3,4,5\} \times \{1,2,3\}, \\ &\Gamma_2 = \{1,2,3,4,5\} \times \{1,2,3\} \setminus \{(3,1)\}, \\ &\Gamma_3 = \{(1,2),(1,3),(2,2),(2,3),(3,3),(4,2),(4,3),(5,2),(5,3)\}, \\ &\Gamma_4 = \{(1,2),(1,3),(2,2),(2,3),(4,2),(4,3),(5,2),(5,3)\} \text{ and } \\ &\Gamma_5 = \{(1,3),(2,3),(4,3),(5,3)\} \end{split}$$

Rectangular height functions/4 CHARACTERIZATION THEOREM

Theorem 1

A height function $h_{\mathbb{N}}: \{1,2,...,m\} \times \{1,2,...,n\} \to \mathbb{N}$ is rectangular if and only if for all $(\alpha,\gamma), (\beta,\delta) \in \{1,2,...,m\} \times \{1,2,...,n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $h_{\mathbb{N}}(\mu, \nu) < \min\{h_{\mathbb{N}}(\alpha, \gamma), h_{\mathbb{N}}(\beta, \delta)\}$, or
- for all $(\mu, \nu) \in [\min\{\alpha, \beta\}, \max\{\alpha, \beta\}] \times [\min\{\gamma, \delta\}, \max\{\gamma, \delta\}]$,

$$h_{\mathbb{N}}(\mu,\nu) \geq \min\{h_{\mathbb{N}}(\alpha,\gamma),h_{\mathbb{N}}(\beta,\delta)\}.$$

Rectangular height functions/4 CHARACTERIZATION THEOREM

Theorem 1

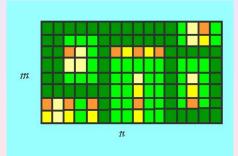
A height function $h_{\mathbb{N}}: \{1,2,...,m\} \times \{1,2,...,n\} \to \mathbb{N}$ is rectangular if and only if for all $(\alpha,\gamma), (\beta,\delta) \in \{1,2,...,m\} \times \{1,2,...,n\}$ either

- these are not neighboring cells and there is a cell (μ, ν) between (α, γ) and (β, δ) such that $h_{\mathbb{N}}(\mu, \nu) < \min\{h_{\mathbb{N}}(\alpha, \gamma), h_{\mathbb{N}}(\beta, \delta)\}$, or
- $\bullet \text{ for all } (\mu,\nu) \in [\min\{\alpha,\beta\},\max\{\alpha,\beta\}] \times [\min\{\gamma,\delta\},\max\{\gamma,\delta\}],$

$$h_{\mathbb{N}}(\mu,\nu) \geq \min\{h_{\mathbb{N}}(\alpha,\gamma),h_{\mathbb{N}}(\beta,\delta)\}.$$

Theorem 2

For every height function $h: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N}$, there is a rectangular height function $h^*: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N}$, such that $\mathcal{I}_{rect}(h) = \mathcal{I}_{rect}(h^*)$.



Rectangular height functions/6 CONSTRUCTING ALGORITHM

- 1. FOR i = t TO 0
- 2. FOR y = 1 TO n
- 3. FOR x = 1 TO m
- 4. IF $h(x, y) = a_i$ THEN
- 5. j := i
- 6. WHILE there is no island of h which is a subset of h_{a_j} that contains

$$(x, y)$$
 DO j:=j-1

- 7. ENDWHILE
- 8. Let $h^*(x, y) := a_i$.
- 9. ENDIF
- 10. NEXT x
- 11. NEXT *y*
- 12. NEXT i
- 13. END.

Rectangular height functions/7 LATTICE-VALUED REPRESENTATION

Theorem 3

Let $h:\{1,2,...,m\}\times\{1,2,...,n\}\to\mathbb{N}$ be a rectangular height function. Then there is a lattice L and an L-valued mapping Φ , such that the cuts of Φ are precisely all islands of h.

Let $h: \{1,2,3,4,5\} \times \{1,2,3,4\} \rightarrow \mathbb{N}$ be a height function.

4	9	8	7	1	5
3	8	8	7	1	4
2	7	7	7	1	5
1	2	2	2	1	6
	1	2	3	4	 5

h is a rectangular height function. Its islands are:

```
\begin{split} & I_1 = \{(1,4)\}, \\ & I_2 = \{(1,3), (1,4), (2,3), (2,4)\}, \\ & I_3 = \{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}, \\ & I_4 = \{(5,1)\}, \\ & I_5 = \{(5,1), (5,2)\}, \\ & I_6 = \{(5,4)\}, \\ & I_7 = \{(5,1), (5,2), (5,3), (5,4)\}, \\ & I_8 = \{(1,2), (1,3), (1,4), (2,2), (2,3), \\ & (2,4), (3,2), (3,3), (3,4), (1,1), (2,1), (3,1)\}, \\ & I_9 = \{1,2,3,4,5\} \times \{1,2,3,4\}. \end{split}
```

Its cut relations are:

```
h_{10} = \emptyset

h_9 = I_1 (one-element island)

h_8 = I_2 (four-element square island)

h_7 = I_3 (nine-element square island)

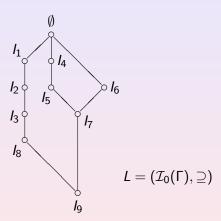
h_6 = I_3 \cup I_4 (this cut is a disjoint union of two islands)

h_5 = I_3 \cup I_5 \cup I_6 (union of three islands)

h_4 = I_3 \cup I_7 (union of two islands)

h_2 = I_7 \cup I_8 (union of two islands)

h_1 = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4\} = I_9 (the whole domain)
```



Theorem 4

For every rectangular height function

$$h^*: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \to \mathbb{N},$$

there is a rectangular height function

$$h^{**}: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N},$$

such that $\mathcal{I}_{rect}(h^*) = \mathcal{I}_{rect}(h^{**})$ and in h^{**} every island appears exactly in one cut.

If a rectangular height function h^{**} has the property that each island appears exactly in one cut, then we call it *standard rectangular height function*.

Theorem 4

For every rectangular height function

$$h^*: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N},$$

there is a rectangular height function

$$h^{**}: \{1, 2, ..., n\} \times \{1, 2, ..., m\} \rightarrow \mathbb{N},$$

such that $\mathcal{I}_{rect}(h^*) = \mathcal{I}_{rect}(h^{**})$ and in h^{**} every island appears exactly in one cut.

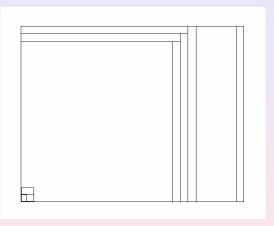
If a rectangular height function h^{**} has the property that each island appears exactly in one cut, then we call it *standard rectangular height function*.

We denote by $\Lambda_{max}(m,n)$ the maximum number of different nonempty p-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Theorem 5 $\Lambda_{max}(m,n) = m+n-1$.

We denote by $\Lambda_{max}(m,n)$ the maximum number of different nonempty p-cuts of a standard rectangular height function on the rectangular table of size $m \times n$.

Theorem 5 $\Lambda_{max}(m,n) = m+n-1$.



The maximum number of different nonempty p-cuts of a standard rectangular height function is equal to the minimum cardinality of maximal systems of islands.

Lemma 1

If $m \geq 3$ and $n \geq 3$ and a height function $h: \{1,2,...,m\} \times \{1,2,...,n\} \to \mathbb{N}$ has $f^{\operatorname{cz}}(m,n)$ many rectangular islands (that is, maximally many), then it has exactly two maximal rectangular islands.

Lemma 2

If $m \geq 3$ or $n \geq 3$, then for any odd number t = 2k + 1 with $1 \leq t \leq \max\{m-2, n-2\}$, there is a standard rectangular height function $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ having the maximum number of islands f(m,n), such that one of the side-lengths of one of the maximal islands is equal to t.

(Remark: The statement is not true for even side-lengths, one can construct counterexample easily!)

Lemma 1

If $m \geq 3$ and $n \geq 3$ and a height function $h: \{1,2,...,m\} \times \{1,2,...,n\} \to \mathbb{N}$ has $f^{\operatorname{cz}}(m,n)$ many rectangular islands (that is, maximally many), then it has exactly two maximal rectangular islands.

Lemma 2

If $m \geq 3$ or $n \geq 3$, then for any odd number t = 2k + 1 with $1 \leq t \leq \max\{m-2, n-2\}$, there is a standard rectangular height function $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ having the maximum number of islands f(m,n), such that one of the side-lengths of one of the maximal islands is equal to t.

(Remark: The statement is not true for even side-lengths, one can construct counterexample easily!)

We denote by $\Lambda_h^{cz}(m,n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$f^{cz}(m,n) = \left\lfloor \frac{mn+m+n-1}{2} \right\rfloor.$$

Theorem 6

Let $h: \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{N}$ be a standard rectangular height function having maximally many islands $f^{\operatorname{cz}}(m, n)$. Then,

$$\Lambda_{
m h}^{
m cz}(m,n) \geq \lceil log_2(m+1) \rceil + \lceil log_2(n+1) \rceil - 1.$$

Furthermore, there exists a standard rectangular height function with maximally many rectangular islands such that number of different nonempty cuts is exactly $\lceil log_2(m+1) \rceil + \lceil log_2(n+1) \rceil - 1$.

We denote by $\Lambda_h^{cz}(m,n)$ the number of different nonempty cuts of a standard rectangular height function h in the case h has maximally many islands, i.e., when the number of islands is

$$f^{cz}(m,n) = \left\lfloor \frac{mn+m+n-1}{2} \right\rfloor.$$

Theorem 6

Let $h:\{1,2,...,m\}\times\{1,2,...,n\}\to\mathbb{N}$ be a standard rectangular height function having maximally many islands $f^{\operatorname{cz}}(m,n)$. Then,

$$\Lambda_{\rm h}^{\rm cz}(\textit{m},\textit{n}) \geq \lceil \textit{log}_2(\textit{m}+1) \rceil + \lceil \textit{log}_2(\textit{n}+1) \rceil - 1.$$

Furthermore, there exists a standard rectangular height function with maximally many rectangular islands such that number of different nonempty cuts is exactly $\lceil log_2(m+1) \rceil + \lceil log_2(n+1) \rceil - 1$.

Proposition

If $m, n \ge 2$, then $\Lambda_{\rm h}^{\rm cz}(m,n) \le \left\lfloor \frac{(m+n+3)}{2} \right\rfloor$. Furthermore, for $m,n \ge 3$ this bound is sharp.

Remark

If n=1, then $\Lambda_{\rm h}^{\rm cz}(m,n) \leq m$ (similarly for m=1).

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

G. Czédli, M. Hartmann and E. T. Schmidt: CD-independent subsets in distributive lattices, Publicationes Mathematicae Debrecen, 74/1-2 (2009).

Any two CD-bases of a finite distributive lattice have the same number of elements.

CD-independent subsets in posets

Let $\mathbb{P}=(P,\leq)$ be a partially ordered set, and let $a,b\in P$. The elements a and b are called *disjoint* and we write $a\perp b$ if

either \mathbb{P} has least element $0 \in P$ and $\inf\{a,b\} = 0$, or \mathbb{P} is without 0 and the elements a and b have no common lowerbound.

A nonempty set $X \subseteq P$ is called *CD-independent* if for any $x, y \in X$, $x \le y$ or $y \le x$, or $x \perp y$ holds. Maximal CD-independent sets (with respect to \subseteq) are called *CD-bases* in \mathbb{P} .

Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a *set of pairwise disjoint element* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D, x \neq y$; if \mathbb{P} has 0-element, then $\{0\}$ is considered to be a set of pairwise disjont elements, too.

Remark

• D is a set of pairwise disjoint elements if and only if it is a CD-independent antichain in \mathbb{P} .

Sets of pairwise disjoint elements

Definition

A nonempty set D of nonzero elements of P is called a *set of pairwise disjoint element* in \mathbb{P} if $x \perp y$ holds for all $x, y \in D$, $x \neq y$; if \mathbb{P} has 0-element, then $\{0\}$ is considered to be a set of pairwise disjont elements, too.

Remark

• D is a set of pairwise disjoint elements if and only if it is a CD-independent antichain in \mathbb{P} .

•

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{x \in P \mid x \le a_i, \text{ for some } i \in I\},$$

where (a) stands for the principal ideal of an element $a \in P$.

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

$$I(A_1) \subseteq I(A_2)$$
.

Remarks

- $\bullet \leqslant \text{is a partial order}$
- $A_1 \leq A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{x \in P \mid x \le a_i, \text{ for some } i \in I\},$$

where (a) stands for the principal ideal of an element $a \in P$.

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

$$I(A_1) \subseteq I(A_2)$$
.

Remarks

- ≤ is a partial order
- $A_1 \leqslant A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \leq y$.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{x \in P \mid x \le a_i, \text{ for some } i \in I\},$$

where (a) stands for the principal ideal of an element $a \in P$.

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

$$I(A_1) \subseteq I(A_2)$$
.

Remarks

- $\bullet \leqslant \text{is a partial order}$
- $A_1 \leqslant A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \le y$.

Any antichain $A = \{a_i \mid i \in I\}$ of a poset \mathbb{P} determines a unique order-ideal I(A) of \mathbb{P} :

$$I(A) = \bigcup_{i \in I} (a_i] = \{x \in P \mid x \le a_i, \text{ for some } i \in I\},$$

where (a) stands for the principal ideal of an element $a \in P$.

Definition

If A_1, A_2 are antichains in \mathbb{P} , then we say that A_1 is dominated by A_2 , and we denote it by $A_1 \leq A_2$ if

$$I(A_1) \subseteq I(A_2)$$
.

Remarks

- $\bullet \leqslant \text{is a partial order}$
- $A_1 \leqslant A_2$ is satisfied if and only if

for each $x \in A_1$ there exists an $y \in A_2$, with $x \le y$. (A)

$\mathcal{D}(\mathbb{P})$

Let $\mathcal{D}(\mathbb{P})$ denote the set of all sets of pairwise disjont elements of \mathbb{P} . As sets of pairwise disjont elements of \mathbb{P} are also antichains, restricting \leq to $\mathcal{D}(\mathbb{P})$, we obtain a poset $(\mathcal{D}(\mathbb{P}), \leq)$.

The connection between CD-bases of a poset $\mathbb P$ and the poset $(\mathcal D(\mathbb P),\leqslant)$ is shown by the next theorem:

Theorem

Let B be a CD-base of a finite poset (P, \leq) , and let |B| = n.

Then there exists a maximal chain $\{D_i\}_{1 \le i \le n}$ in $\mathcal{D}(P)$ such that $B = \bigcup_{i=1}^{n} D_i$.

Moreover, for any maximal chain $\{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^m D_i$ is a CD-base in (P, \le) with |D| = m.

Theorem

Let B be a CD-base of a finite poset (P, \leq) , and let |B| = n.

Then there exists a maximal chain $\{D_i\}_{1 \le i \le n}$ in $\mathcal{D}(P)$ such that $B = \bigcup_{i=1}^{n} D_i$.

Moreover, for any maximal chain $\{D_i\}_{1 \le i \le m}$ in $\mathcal{D}(P)$ the set $D = \bigcup_{i=1}^m D_i$ is a CD-base in (P, \le) with |D| = m.

Graded posets

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P,\leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of ${\mathbb P}$ have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded

A set of pairwise disjoint elements D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a set of pairwise disjoint elements.

(iii) $\mathcal{DC}(P)$ is graded.

Graded posets

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P,\leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of ${\mathbb P}$ have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A set of pairwise disjoint elements D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a set of pairwise disjoint elements.

(iii) $\mathcal{DC}(P)$ is graded.

Graded posets

The poset \mathbb{P} is called *graded*, if all its maximal chains have the same cardinality.

Let $\mathbb{P}=(P,\leq)$ be a finite poset with 0. Then the following conditions are equivalent:

(i) The CD-bases of ${\mathbb P}$ have the same number of elements,

(ii) $\mathcal{D}(P)$ is graded.

A set of pairwise disjoint elements D of a poset (P, \leq) is called *complete*, if there is no $p \in P \setminus D$ such that $D \cup \{p\}$ is also a set of pairwise disjoint elements.

(iii) $\mathcal{DC}(P)$ is graded.

If \mathbb{P} is a finite bounded poset

If all the principal ideals (a) of \mathbb{P} are weakly 0-modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P} .

If \mathbb{P} has weakly 0-modular principal ideals and $\mathcal{D}(P)$ is graded, then \mathbb{P} is also graded, and any CD-base of \mathbb{P} contains |A(P)| + I(P) elements.

If \mathbb{P} is a finite bounded poset

If all the principal ideals (a) of \mathbb{P} are weakly 0-modular, then $A(P) \cup C$ is a CD-base for every maximal chain C in \mathbb{P} .

If $\mathbb P$ has weakly 0-modular principal ideals and $\mathcal D(P)$ is graded, then $\mathbb P$ is also graded, and any CD-base of $\mathbb P$ contains |A(P)|+I(P) elements.

Weakly 0-modular lattices

A poset with least element 0 and greatest element 1 is called bounded.

A lattice L with 0 is called 0-modular if for any $a, b, c \in L$

$$a \le b \text{ and } b \land c = 0 \text{ imply } b \land (a \lor c) = a$$
 (M₀)

Equivalently, L has no pentagon sublattice N_5 that contains $0 = 0_L$.

If (M_0) is satisfied under the assumptions that a is an atom and $c \prec b \lor c$, then L is called weakly 0 -modular.

The lattice *L* is *lower-semimodular* if for any $a, b, c \in L$, $b \prec c$ implies $a \wedge b \leq a \wedge c$.

It is easy to see that any lower-semimodular lattice and any 0-modular lattice is weakly 0-modular.

We say that a poset \mathbb{P} with 0 is weakly 0-modular if the above weak form of (M_0) holds whenever $\sup\{a,c\}$ and $\sup\{b,c\}$ exist in \mathbb{P} .

Lemma

Let \mathbb{P} be a poset with 0 and D_k , $k \in K$ ($K \neq \emptyset$) disjoint sets in \mathbb{P} . If the meet $\bigwedge_{k \in K} a^{(k)}$ of any system of elements $a^{(k)} \in D_k$, $k \in K$ exist in \mathbb{P} , then $\bigwedge_{k \in K} D_k$ also exists in $\mathcal{D}(P)$.

A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a *distributive* pair, if $(c \wedge a) \vee (c \wedge b)$ exists in \mathbb{P} for any $c \in P$, and $c \wedge (a \vee b) = (c \wedge a) \vee (c \wedge b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

- (i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.
- (ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a dp-distributive complete lattice.

A pair $a, b \in P$ with least upperbound $a \vee b$ in \mathbb{P} is called a *distributive* pair, if $(c \wedge a) \vee (c \wedge b)$ exists in \mathbb{P} for any $c \in P$, and $c \wedge (a \vee b) = (c \wedge a) \vee (c \wedge b)$.

We say that (P, \wedge) is *dp-distributive*, if any $a, b \in P$ with $a \wedge b = 0$ is a distributive pair.

Theorem

- (i) If $\mathbb{P} = (P, \wedge)$ is a semilattice with 0, then $\mathcal{D}(P)$ is a dp-distributive semilattice; if $D_1 \cup D_2$ is a CD-independent set for some $D_1, D_2 \in \mathcal{D}(P)$, then D_1, D_2 is a distributive pair in $\mathcal{D}(P)$.
- (ii) If \mathbb{P} is a complete lattice, then $\mathcal{D}(P)$ is a dp-distributive complete lattice.

Let (P, \leq) be a poset and $A \subseteq P$. (A, \leq) is called a *sublattice* of (P, \leq) , if (A, \leq) is a lattice such that for any $a, b \in A$ the infimum and the supremum of $\{a, b\}$ is the same in the subposet (A, \leq) and in (P, \leq) . If the relation $x \prec y$ in (A, \leq) for some $x, y \in A$ implies $x \prec y$ in the poset (P, \leq) , then we say that (A, \leq) is a *cover-preserving subposet* of (P, \leq) .

Theorem

Let $\mathbb{P} = (P, \leq)$ be a poset with 0 and B a CD-base of it. Then $(\mathcal{D}(B), \leqslant)$ is a distributive cover-preserving sublattice of the poset $(\mathcal{D}(P), \leqslant)$. If \mathbb{P} is a \land -semilattice, then for any $D \in \mathcal{D}(P)$ and $D_1, D_2 \in \mathcal{D}(B)$ we have $(D_1 \lor D_2) \land D = (D_1 \land D) \lor (D_2 \land D)$ in $(\mathcal{D}(P), \leqslant)$.

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d\in L$ with $d\prec 1$, or D consist of two different elements $d_1,d_2\in L$ and $d_1\vee d_2=1$.

Theorem

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

(i) L is graded, and I(z) + I(b) = I(z ∨ b) holds for all z, b ∈ L will a ∧ b = 0.
(ii) L is 0 modulor, and the GD lases of L have the same number.

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d\in L$ with $d\prec 1$, or D consist of two different elements $d_1,d_2\in L$ and $d_1\vee d_2=1$.

Theorem

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.
- (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D=\{d\}$, for some $d\in L$ with $d\prec 1$, or D consist of two different elements $d_1,d_2\in L$ and $d_1\vee d_2=1$.

Theorem

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.
- (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Lemma

Let L be a finite weakly 0-distributive lattice and D a dual atom in $\mathcal{D}(L)$. Then either $D = \{d\}$, for some $d \in L$ with $d \prec 1$, or D consist of two different elements $d_1, d_2 \in L$ and $d_1 \lor d_2 = 1$.

Theorem

Let L be a finite, weakly 0-distributive lattice. Then the following are equivalent:

- (i) L is graded, and $I(a) + I(b) = I(a \lor b)$ holds for all $a, b \in L$ with $a \land b = 0$.
- (ii) L is 0-modular, and the CD-bases of L have the same number of elements.

Interval system

An *interval system* (V, \mathcal{I}) is an algebraic closure system satisfying the axioms:

- (I₀) $\{x\} \in \mathcal{I}$ for all $x \in V$, and $\emptyset \in \mathcal{I}$;
- (I₁) $A, B \in \mathcal{I}$ and $A \cap B \neq \emptyset$ imply $A \cup B \in \mathcal{I}$;
- (I₂) For any $A, B \in \mathcal{I}$ the relations $A \cap B \neq \emptyset$, $A \nsubseteq B$ and $B \nsubseteq A$ imply $A \setminus B \in \mathcal{I}$ (and $B \setminus A \in \mathcal{I}$).

Thank you for your attention!

Thank you for your attention!