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Dresden, January 23.
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Threshold functions

A classical threshold function is a Boolean function f : {0, 1}n → {0, 1}
such that there exist real numbers w1, . . . ,wn, t, fulfilling

f (x1, . . . , xn) = 1 if and only if
n∑

i=1

wi · xi ≥ t,

where wi is called weight of xi , for i = 1, 2, . . . , n and t is a constant
called the threshold value.

modeling neurons

political decisions

electrical engineering

artifical intelligence

game theory
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Threshold functions

– combinatorics (their number!!!)

– computer science

IN ALGEBRA

tolerance relation (B. Bodi)

fundamental ideal of a groupring (B. Bodi)

generalized clones (constraints) (S. Foldes, L. Hellerstein, M. Couceiro)
no superposition, not clone

invariance group

coalition lattice (conjecture)
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Monotonicity and thresholdness

It is easy to see that threshold functions with positive weights and a
threshold value are isotone.

However, an isotone Boolean function is not necessarily threshold, e.g.
f = x · y ∨ w · z is isotone, but not a threshold function.
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Threshold functions

f = x · y ∨ w · z is isotone, but not a threshold function because its
invariance group is
D8 =
{(), (1324), (12)(34), (1423), (12), (34), (12)(34), (13)(24), (14), (23)}

Theorem (1994.)
For every n-ary threshold function f there exists a partition Cf of the
set of variables X such that the invariance group G of f consists of
exactly those permuations of SX which preserve each block of Cf .

I.e. the invariance groups of threshold functions are of the following
form: direct product of symmetric groups.
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Lattice-induced threshold functions

Let L be a complete lattice in which the bottom and the top are (also)
denoted by 0 and 1 respectively; however, it is clear from the context
whether 0 (1) is a component in some (x1, . . . , xn) ∈ {0, 1}n, or it is from
L.

For x ∈ {0, 1}, and w ∈ L, we define a mapping L× {0, 1} into L denoted
by ”·”, as follows:

w · x :=

{
w , if x = 1
0, if x = 0.

(1)

A function f : {0, 1}n → {0, 1} is a lattice-induced threshold function,
if there is a complete lattice L and w1, . . . ,wn, t ∈ L, such that

f (x1, . . . , xn) = 1 if and only if
n∨

i=1

(wi · xi ) ≥ t. (2)
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Lattice-induced threshold functions

Proposition
Every lattice-induced threshold function is isotone.

Theorem
Every isotone Boolean function is a lattice-induced threshold function.

Remark
The corresponding lattice in each case can be the free distributive
lattice with n generators.
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Lattice-valued Boolean functions, cuts

A function f : {0, 1}n → L, where L is a complete lattice, is called a
lattice valued (L-valued) Boolean function.

For f : {0, 1}n → L and p ∈ L, a cut set (cut) fp is a subset of {0, 1}n:

fp = {x ∈ {0, 1}n | f (x) ≥ p}.

In other words, a p-cut of µ : B → L is the inverse image of the principal
filter ↑p, generated by p ∈ L:

µp = µ−1(↑p). (3)

It is obvious that for p, q ∈ L,

from p ≤ q it follows that µq ⊆ µp.

Eszter K. Horváth, Szeged Co-authors: Branimir Šešelja, Andreja Tepavčević ()Lattice-induced threshold functions and Boolean functionsDresden, January 23. 8 / 28



Lattice-valued up-sets

An L-valued Boolean function µ : B → L is called a lattice valued
(L-valued) up-set, if from x ≤ y it follows that µ(x) ≤ µ(y).

Lemma
Let B be a Boolean lattice and µ : B → L an L-valued Boolean
function. Then µ is an L-valued up-set on B if and only if all the cuts
of µ are up-sets (order-filters, semi-filters) on B.
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Representation of lattice-valued up-sets by cuts

Let B = ({0, 1}n,≤), n ∈ N, LD a free distributive lattice with n
generators w1, . . . ,wn and β : B → LD , an LD-valued function on B
defined in the following way: for x = (x1, . . . , xn) ∈ B

β(x) =
n∨

i=1

(wi · xi ), (4)

where the function ” · ” is defined by (1). By the definition, β is uniquely
(up to a permutation of generators wi ) determined by a finite Boolean
lattice B = ({0, 1}n,≤), i.e., by a positive integer n.
Observations
The LD-valued function β defined by (4) is an LD-valued up-set on B.
Every cut of β is an up-set of a finite Boolean lattice B = ({0, 1}n,≤),
n ∈ N.
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Representation of lattice-valued up-sets by cuts

Theorem
Every up-set of a finite Boolean lattice B = ({0, 1}n,≤), n ∈ N, is a cut
of β.

Corollary
The collection of cuts of every L-valued up-set on B (for any L) is
contained in the collection of cuts of β.
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Linear combinations

Let B = ({0, 1}n,≤) be a Boolean lattice, L a complete lattice,
x = (x1, . . . , xn) ∈ B and w1, . . . ,wn ∈ L. Further, let the binary function
”·” which maps L× {0, 1} into L be defined by (1). Then we call the term

n∨
i=1

(wi · xi ), (5)

a linear combination of elements w1, . . . ,wn from L.

Observe also that in the case of formula (4), the corresponding LD-valued
function is β and the following is obviously true: the closure system
consisting of all up-sets on B is the collection of cuts of β.
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Generalization

What about taking an arbitrary lattice L instead of LD?
Or, starting with a closure system F consisting of some up-sets on
B = ({0, 1}n,≤), and we try to find a lattice L and w1, . . . ,wn ∈ L, such
that the family of cuts of the function

n∨
i=1

(wi · xi ), (6)

over this lattice (a linear combination of elements from L) coincides with
F .

The answer to the above problem is not generally positive, as shown by
the following example.
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Example

Let B = ({0, 1}2,≤) be the four element Boolean lattice and

F = {{(1, 1)}, {(1, 1), (1, 0)}, {(1, 1), (1, 0), (0, 1)}, {(1, 1), (1, 0), (0, 1), (0, 0)}}

a closure system consisting of some up-sets on B.
We show that there is no lattice L, hence neither there is an L-valued
function ν : B → L, such that there are w1,w2 ∈ L fulfilling that for all
x1, x2 ∈ {0, 1}

ν(x1, x2) = (w1 · x1) ∨ (w2 · x2)

and that the collections of cuts of ν is F .
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Example

Indeed, suppose that there is a lattice L and elements w1,w2 ∈ L, such
that ν(x1, x2) = (w1 · x1) ∨ (w2 · x2), for all x1, x2 ∈ {0, 1}.
Then, ν(0, 0) = 0 ∈ L1, ν(0, 1) = w2, ν(1, 0) = w1 and ν(1, 1) = w1 ∨ w2.
Now, since the cuts of ν are supposed to be elements from F , and cuts
are up-sets in B, we have that νw1∨w2 = {(1, 1)}, and w1 ∨ w2 would be
the top element of the lattice L: otherwise the empty set would be a cut
of this lattice valued function.

Lemma Let µ : B → L be a lattice valued up-set, such that its
collection of cuts is F . If ↑a ∈ F and µ(a) = p, then µp = ↑a.

Now νw1 = {(1, 1), (1, 0)}, νw2 = {(1, 1), (1, 0), (0, 1)} and
ν0 = {(1, 1), (1, 0), (0, 1), (0, 0)}. Since (1, 0) ∈ νw2 , we have that
ν(1, 0) ≥ w2, i.e., w1 ≥ w2. Hence, w1 ∨ w2 = w1, which contradicts the
assumption that νw1∨w2 6= νw1 .
Hence, the up-sets from the collection F cannot be represented as cuts
of an L-valued function in the form (6). �
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First problem

Find necessary and sufficient conditions under which a lattice valued
up-set µ : B → L on a finite Boolean lattice B = ({0, 1}n,≤) can be
represented by the linear combination

µ(x) =
n∨

i=1

(wi · xi )

over L (x = (x1, . . . , xn) ∈ {0, 1}n,w1, . . . ,wn ∈ L.
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Definition

Starting with finite lattices M and L with the bottom elements 0M and 0L
respectively, we say that a mapping µ : M → L is a 0–∨–homomorphism,
if for all x , y ∈ M

µ(x ∨ y) = µ(x) ∨ µ(y) and

µ(0M) = 0L.

In particular, if µ maps a Boolean lattice B = {0, 1}n into L, the condition
that µ is a 0–∨–homomorphism from B to L is equivalent with the
following two conditions (observe that B is finite): for every collection A
of some atoms in B

(i) µ(
∨

A) =
∨
µ(A) and (ii) µ(0, . . . , 0) = 0. (7)
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Characterization

Let B = ({0, 1}n,≤) be a finite Boolean lattice and L an arbitrary
complete lattice. Then an L-valued Boolean function µ : {0, 1}n → L can
be represented in the form

µ(x) =
n∨

i=1

(wi · xi )

for some elements w1, . . . ,wn ∈ L if and only if µ as a mapping from B to
L is a 0–∨–homomorphism.
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Next problem

Next we analyze the same problem (representability by linear
combination), for families of cuts.

If F is a closure system consisting of some up-sets on B = ({0, 1}n,≤),
then for x ∈ P, we define

x =
⋂
{f ∈ F | x ∈ f }. (8)

Proposition Let F be a closure system of some up-sets on B. If F is a
family of cuts of an L-valued up-set µ on B represented by a linear
combination over L, then the following holds: for all x , y ∈ B

from x ⊆ y it follows that x ∨ y = x . (9)
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Proof of this Proposition

Lemma
Let F be a closure system consisting of some up-sets on a poset (P,≤).
For x ∈ P, denote

x =
⋂
{f ∈ F | x ∈ f }. (10)

Then, for all x , y , z ∈ P, the following is true:
a) x ≤ y implies y ⊆ x .
b) x ∈ x .
c) ↑x ⊆ x .
d) If z ∈ x then z ⊆ x .
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Proof of this Proposition

We introduce the mapping µ̂ : B → µL by the construction by

µ̂(x) :=
⋂
{µp ∈ µL | x ∈ µp}. (11)

We say that the lattice valued function µ̂ is the canonical representation
of µ.

Proposition
If µ : B → L is an L-valued function on B and µ(a) = µ(b) ∨ µ(c) for
some a, b, c ∈ B, then also for the canonical representation µ̂ of µ,
µ̂(a) = µ̂(b) ∨ µ̂(c) analogously holds.
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Remark

The opposite implication to the one in this Proposition does not hold in
general. Indeed, let B = {a, b, c , d}, and let L be the lattice given in
Figure 1.
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Remark

We define an L-valued function µ : B → L as follows:

µ =

(
a b c d
1 p q s

)
.

The cuts of µ are:
µL = {µ1 = µr = {a}, µp = {a, b}, µq = {a, c}, µs = {a, b, c , d}}.
The lattice (µL,⊇) is depicted in Figure 2. The canonical representation
of this lattice valued function is µ̂ : B → µL and it is given by

µ̂ =

(
a b c d
{a} {a, b} {a, c} {a, b, c , d}

)
.

Now, observe that µ̂(a) = µ̂(b) ∨ µ̂(c). However, it is not true that
µ(a) = µ(b) ∨ µ(c). �
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Example

Let B = ({0, 1}2,≤) be the four element Boolean lattice and

F = {{(1, 1)}, {(1, 1), (1, 0)}, {(1, 1), (1, 0), (0, 1)}, {(1, 1), (1, 0), (0, 1), (0, 0)}}

a closure system consisting of some up-sets on B.

We already proved that this family is not the collection of cuts for a lattice
valued function representable by a linear combination. If we define a
mapping from B to F by

x =
⋂
{f ∈ F | x ∈ f }, (12)

then the condition from Proposition that
for all x , y ∈ B

from x ⊆ y it follows that x ∨ y = x . (13)

is not satisfied.
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Theorem

Let F be a closure system of some up-sets on a Boolean algebra B and for
x ∈ B, define x by (12):

x =
⋂
{f ∈ F | x ∈ f }.

The following conditions are equivalent:

(i) for all x , y ∈ B

from x ⊆ y it follows that x ∨ y = x .

(ii) for all x , y ∈ B, x ∨ y = x ∩ y .

(iii) There is a lattice L such that F is a family of cuts of an L-valued
up-set on B which can be represented as a linear combination over L.
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Last problem

Given a lattice valued up-set µ : B → L on a finite Boolean lattice
B = {0, 1}n, find a lattice L1 and a lattice valued function ν : B → L1
defined by the formula

ν(x) =
n∨

i=1

(wi · xi )

where w1, . . . ,wn ∈ L1, such that the collections of cuts of µ and ν
coincide.
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Last problem solution

Corollary
For a lattice valued up-set µ : B → L on a finite Boolean lattice
B = {0, 1}n, there is a lattice L1 and a lattice valued function
ν : B → L1 defined by the formula

ν(x) =
n∨

i=1

(wi · xi )

such that the collections of cuts of µ and ν coincide if and only if
x ∨ y = x ∩ y for x , y ∈ B, where the operator ¯ is defined by cuts of µ:
define x by (12):

x =
⋂
{f ∈ F | x ∈ f }.
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Lattice-induced threshold functions and Boolean functions
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