Lattice-valued functions

Eszter K. Horváth, Szeged

Co-authors: Branimir Šešelja, Andreja Tepavčević

Novi Sad, 2017, june 15. .

Let S be a nonempty set and L a complete lattice. Every mapping $\mu: S \to L$ is called a **lattice-valued** (L-valued) function on S.

Let $p \in L$. A **cut** set of an *L*-valued function $\mu : S \to L$ (a *p*-cut) is a subset $\mu_p \subseteq S$ defined by: $x \in \mu_p$ if and only if $\mu(x) \ge p$. (1) In other words, a *p*-cut of $\mu : S \to L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$: $\mu_p = \mu^{-1}(\uparrow p)$. (2)

It is obvious that for every $p, q \in L$, $p \leq q$ implies $\mu_q \subseteq \mu_p$.

Let $p \in L$. A **cut set** of an *L*-valued function $\mu : S \to L$ (a *p*-cut) is a subset $\mu_p \subseteq S$ defined by:

$$x \in \mu_p$$
 if and only if $\mu(x) \ge p$. (1)

In other words, a *p*-cut of μ : $S \rightarrow L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$\mu_p = \mu^{-1}(\uparrow p). \tag{2}$$

It is obvious that for every $p, q \in L$, $p \leq q$ implies $\mu_q \subseteq \mu_p$.

Let $p \in L$. A **cut set** of an *L*-valued function $\mu : S \to L$ (a *p*-cut) is a subset $\mu_p \subseteq S$ defined by:

$$x \in \mu_p$$
 if and only if $\mu(x) \ge p$. (1)

In other words, a *p*-cut of $\mu : S \to L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$\mu_{\boldsymbol{p}} = \mu^{-1}(\uparrow \boldsymbol{p}). \tag{2}$$

It is obvious that for every $p, q \in L$, $p \leq q$ implies $\mu_q \subseteq \mu_p$.

Let $p \in L$. A **cut set** of an *L*-valued function $\mu : S \to L$ (a *p*-cut) is a subset $\mu_p \subseteq S$ defined by:

$$x \in \mu_p$$
 if and only if $\mu(x) \ge p$. (1)

In other words, a *p*-cut of $\mu : S \to L$ is the inverse image of the principal filter $\uparrow p$, generated by $p \in L$:

$$\mu_{\boldsymbol{p}} = \mu^{-1}(\uparrow \boldsymbol{p}). \tag{2}$$

It is obvious that for every $p, q \in L$, $p \leq q$ implies $\mu_q \subseteq \mu_p$.

If $\mu : S \to L$ is an *L*-valued function on *S*, then the collection μ_L of all cuts of μ is a closure system on *S* under the set-inclusion.

Let \mathcal{F} be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu: S \to L$, such that the collection μ_L of cuts of μ is \mathcal{F} .

A required lattice L is the collection \mathcal{F} ordered by the *reversed-inclusion*, and that $\mu: S \to L$ can be defined as follows:

 $\mu(\mathsf{x}) = \bigcap \{ f \in \mathcal{F} \mid \mathsf{x} \in f \}.$

If $\mu : S \to L$ is an *L*-valued function on *S*, then the collection μ_L of all cuts of μ is a closure system on *S* under the set-inclusion.

Let \mathcal{F} be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu: S \to L$, such that the collection μ_L of cuts of μ is \mathcal{F} .

A required lattice L is the collection \mathcal{F} ordered by the *reversed-inclusion*, and that $\mu : S \to L$ can be defined as follows:

$$\mu(x) = \bigcap \{ f \in \mathcal{F} \mid x \in f \}.$$
(3)

If $\mu : S \to L$ is an *L*-valued function on *S*, then the collection μ_L of all cuts of μ is a closure system on *S* under the set-inclusion.

Let \mathcal{F} be a closure system on a set S. Then there is a lattice L and an L-valued function $\mu: S \to L$, such that the collection μ_L of cuts of μ is \mathcal{F} .

A required lattice *L* is the collection \mathcal{F} ordered by the *reversed-inclusion*, and that $\mu : S \to L$ can be defined as follows:

$$\mu(x) = \bigcap \{ f \in \mathcal{F} \mid x \in f \}.$$
(3)

Given an *L*-valued function $\mu : S \to L$, we define the relation \approx on *L*: for $p, q \in L$ $p \approx q$ if and only if $\mu_p = \mu_q$. (4)

The relation \approx is an equivalence on L, and

 $p \approx q$ if and only if $\uparrow p \cap \mu(S) = \uparrow q \cap \mu(S)$,

where $\mu(S) = \{r \in L \mid r = \mu(x) \text{ for some } x \in S\}.$

We denote by L/pprox the collection of equivalence classes under pprox.

Given an *L*-valued function $\mu : S \to L$, we define the relation \approx on *L*: for $p, q \in L$

$$p \approx q$$
 if and only if $\mu_p = \mu_q$. (4)

The relation \approx is an equivalence on *L*, and

ppprox q if and only if $\uparrow p\cap \mu(S)=\uparrow q\cap \mu(S),$

(5)

5 / 22

where $\mu(S) = \{r \in L \mid r = \mu(x) \text{ for some } x \in S\}.$

We denote by L/pprox the collection of equivalence classes under pprox .

Given an *L*-valued function $\mu : S \to L$, we define the relation \approx on *L*: for $p, q \in L$

$$p \approx q$$
 if and only if $\mu_p = \mu_q$. (4)

The relation \approx is an equivalence on *L*, and

p pprox q if and only if $\uparrow p \cap \mu(S) = \uparrow q \cap \mu(S)$,

where $\mu(S) = \{r \in L \mid r = \mu(x) \text{ for some } x \in S\}.$

We denote by L/\approx the collection of equivalence classes under \approx .

(5)

Let (μ_L, \leq) be the poset with $\mu_L = {\mu_p \mid p \in L}$ (the collection of cuts of μ) and the order \leq being the inverse of the set-inclusion: for $\mu_p, \mu_q \in \mu_L$,

 $\mu_{p} \leq \mu_{q}$ if and only if $\mu_{q} \subseteq \mu_{p}$.

 (μ_L, \leq) is a complete lattice and for every collection $\{\mu_p \mid p \in L_1\}$, $L_1 \subseteq L$ of cuts of μ , we have

$$\bigcap \{ \mu_{\rho} \mid \rho \in L_1 \} = \mu_{\vee(\rho|\rho \in L_1)}.$$
(6)

Let (μ_L, \leq) be the poset with $\mu_L = {\mu_p \mid p \in L}$ (the collection of cuts of μ) and the order \leq being the inverse of the set-inclusion: for $\mu_p, \mu_q \in \mu_L$,

 $\mu_{p} \leq \mu_{q}$ if and only if $\mu_{q} \subseteq \mu_{p}$.

 (μ_L, \leq) is a complete lattice and for every collection $\{\mu_p \mid p \in L_1\}$, $L_1 \subseteq L$ of cuts of μ , we have

$$\bigcap \{ \mu_{\boldsymbol{p}} \mid \boldsymbol{p} \in L_1 \} = \mu_{\vee(\boldsymbol{p} \mid \boldsymbol{p} \in L_1)}.$$
(6)

Each \approx -class contains its supremum:

$$\bigvee [p]_{\approx} \in [p]_{\approx}.$$

The mapping $p\mapsto igvee[p]_pprox$ is a closure operator on L

The quotient L/\approx can be ordered by the relation $\leq_{L/\approx}$ defined as follows:

 $[p]_{pprox} \leq_{L/pprox} [q]_{pprox}$ if and only if $\uparrow q \cap \mu(S) \subseteq \uparrow p \cap \mu(S)$.

The order $\leq_{L/\approx}$ of classes in L/\approx corresponds to the order of suprema of classes in L (we denote the order in L by \leq_L):

Each \approx -class contains its supremum:

$$\bigvee [p]_{\approx} \in [p]_{\approx}.$$

The mapping $p \mapsto \bigvee [p]_{\approx}$ is a closure operator on *L*.

The quotient L/pprox can be ordered by the relation $\leq_{L/pprox}$ defined as follows:

 $[p]_{pprox} \leq_{L/pprox} [q]_{pprox}$ if and only if $\uparrow q \cap \mu(S) \subseteq \uparrow p \cap \mu(S)$.

The order $\leq_{L/\approx}$ of classes in L/\approx corresponds to the order of suprema of classes in L (we denote the order in L by \leq_L):

Each \approx -class contains its supremum:

$$\bigvee [p]_{\approx} \in [p]_{\approx}.$$

The mapping $p \mapsto \bigvee [p]_{\approx}$ is a closure operator on *L*.

The quotient L/\approx can be ordered by the relation $\leq_{L/\approx}$ defined as follows:

$$[p]_{pprox} \leq_{L/pprox} [q]_{pprox}$$
 if and only if $\uparrow q \cap \mu(S) \subseteq \uparrow p \cap \mu(S)$.

The order $\leq_{L/\approx}$ of classes in L/\approx corresponds to the order of suprema of classes in L (we denote the order in L by \leq_L):

(i) $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\bigvee [p]_{\approx} \leq_L \bigvee [q]_{\approx}$. (ii) The mapping $[p]_{\approx} \mapsto \bigvee [p]_{\approx}$ is an injection of L/\approx into L.

The sub-poset $(\bigvee [p]_{\approx}, \leq_L)$ of L is isomorphic to the lattice $(L/\approx, \leq_{L/\approx})$ under $\bigvee [p]_{\approx} \mapsto [p]_{\approx}$.

Let $\mu : S \to L$ be an L-valued function on S. The lattice (μ_L, \leq) of cuts of μ is isomorphic with the lattice $(L/\approx, \leq_{L/\approx})$ of \approx -classes in L under the mapping $\mu_p \mapsto [p]_{\approx}$.

(i) $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\bigvee [p]_{\approx} \leq_{L} \bigvee [q]_{\approx}$. (ii) The mapping $[p]_{\approx} \mapsto \bigvee [p]_{\approx}$ is an injection of L/\approx into

The sub-poset $(\bigvee [p]_{\approx}, \leq_L)$ of L is isomorphic to the lattice $(L/\approx, \leq_{L/\approx})$ under $\bigvee [p]_{\approx} \mapsto [p]_{\approx}$.

Let $\mu : S \to L$ be an L-valued function on S. The lattice (μ_L, \leq) of cuts of μ is isomorphic with the lattice $(L/\approx, \leq_{L/\approx})$ of \approx -classes in L under the mapping $\mu_p \mapsto [p]_{\approx}$.

(i) $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\bigvee [p]_{\approx} \leq_L \bigvee [q]_{\approx}$. (ii) The mapping $[p]_{\approx} \mapsto \bigvee [p]_{\approx}$ is an injection of L/\approx into L.

The sub-poset $(\bigvee [p]_{\approx}, \leq_L)$ of L is isomorphic to the lattice $(L/\approx, \leq_{L/\approx})$ under $\bigvee [p]_{\approx} \mapsto [p]_{\approx}$.

Let $\mu : S \to L$ be an L-valued function on S. The lattice (μ_L, \leq) of cuts of μ is isomorphic with the lattice $(L/\approx, \leq_{L/\approx})$ of \approx -classes in L under the mapping $\mu_p \mapsto [p]_{\approx}$.

(i) $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\bigvee [p]_{\approx} \leq_L \bigvee [q]_{\approx}$. (ii) The mapping $[p]_{\approx} \mapsto \bigvee [p]_{\approx}$ is an injection of L/\approx into L.

The sub-poset $(\bigvee[p]_{\approx}, \leq_L)$ of *L* is isomorphic to the lattice $(L/\approx, \leq_{L/\approx})$ under $\bigvee[p]_{\approx} \mapsto [p]_{\approx}$.

Let $\mu : S \to L$ be an L-valued function on S. The lattice (μ_L, \leq) of cuts of μ is isomorphic with the lattice $(L/\approx, \leq_{L/\approx})$ of \approx -classes in L under the mapping $\mu_p \mapsto [p]_{\approx}$.

(i) $[p]_{\approx} \leq_{L/\approx} [q]_{\approx}$ if and only if $\bigvee [p]_{\approx} \leq_L \bigvee [q]_{\approx}$. (ii) The mapping $[p]_{\approx} \mapsto \bigvee [p]_{\approx}$ is an injection of L/\approx into L.

The sub-poset $(\bigvee [p]_{\approx}, \leq_L)$ of *L* is isomorphic to the lattice $(L/\approx, \leq_{L/\approx})$ under $\bigvee [p]_{\approx} \mapsto [p]_{\approx}$.

Let $\mu : S \to L$ be an L-valued function on S. The lattice (μ_L, \leq) of cuts of μ is isomorphic with the lattice $(L/\approx, \leq_{L/\approx})$ of \approx -classes in L under the mapping $\mu_p \mapsto [p]_{\approx}$.

We take the lattice (\mathcal{F}, \leq) , where $\mathcal{F} = \mu_L \subseteq \mathcal{P}(S)$ is the collection of cuts of μ , and the order \leq is the dual of the set inclusion.

$$\widehat{\mu}(x) := \bigcap \{ \mu_p \in \mu_L \mid x \in \mu_p \}.$$
(8)

Properties: $\hat{\mu}$ has the same cuts as μ . $\hat{\mu}$ has one-element classes of the equivalence relation \approx Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\hat{\mu}$.

$$\widehat{\mu}(\mathbf{x}) := \bigcap \{ \mu_{p} \in \mu_{L} \mid \mathbf{x} \in \mu_{p} \}.$$
(8)

Properties: $\hat{\mu}$ has the same cuts as μ . $\hat{\mu}$ has one-element classes of the equivalence relation \approx . Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\hat{\mu}$.

$$\widehat{\mu}(\mathbf{x}) := \bigcap \{ \mu_{p} \in \mu_{L} \mid \mathbf{x} \in \mu_{p} \}.$$
(8)

Properties:

 $\widehat{\mu}$ has the same cuts as μ .

 $\widehat{\mu}$ has one-element classes of the equivalence relation pprox . Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\widehat{\mu}$.

$$\widehat{\mu}(\mathbf{x}) := \bigcap \{ \mu_{p} \in \mu_{L} \mid \mathbf{x} \in \mu_{p} \}.$$
(8)

Properties:

$\widehat{\mu}$ has the same cuts as μ .

 $\widehat{\mu}$ has one-element classes of the equivalence relation pprox . Every $f\in \mathcal{F}$ is equal to the corresponding cut of $\widehat{\mu}.$

$$\widehat{\mu}(\mathbf{x}) := \bigcap \{ \mu_{p} \in \mu_{L} \mid \mathbf{x} \in \mu_{p} \}.$$
(8)

Properties:

 $\widehat{\mu}$ has the same cuts as μ .

 $\widehat{\mu}$ has one-element classes of the equivalence relation pprox .

Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\widehat{\mu}$.

$$\widehat{\mu}(\mathbf{x}) := \bigcap \{ \mu_{p} \in \mu_{L} \mid \mathbf{x} \in \mu_{p} \}.$$
(8)

Properties:

 $\widehat{\mu}$ has the same cuts as μ .

 $\widehat{\mu}$ has one-element classes of the equivalence relation pprox .

Every $f \in \mathcal{F}$ is equal to the corresponding cut of $\hat{\mu}$.

Canonical representation of $\mu: S \rightarrow L$

By the definition, every element of the codomain lattice of $\hat{\mu}$ is a cut of μ . Therefore, if $f \in \mathcal{F}$, then $f = \mu_p$ for some $p \in L$, and for the cut $\hat{\mu}_f$ of $\hat{\mu}$, by the definition of a cut and by (8), we have

$$\widehat{\mu}_f = \{x \in S \mid \widehat{\mu}(x) \ge f\} = \{x \in S \mid \widehat{\mu}(x) \subseteq \mu_p\} \\ = \{x \in S \mid \bigcap \{\mu_q \mid x \in \mu_q\} \subseteq \mu_p\} = \mu_p = f.$$

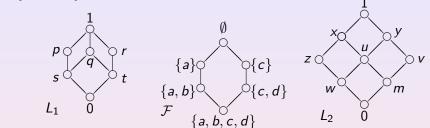
Therefore, the collection of cuts of $\widehat{\mu}$ is

$$\widehat{\mu}_{\mathcal{F}} = \{ \mathbf{Y} \subseteq \mathbf{S} \mid \mathbf{Y} = \widehat{\mu}_{\mu_{p}}, \text{ for some } \mu_{p} \in \mu_{L} \}.$$

The lattices of cuts of a lattice-valued function μ and of its canonical representation $\hat{\mu}$ coincide.

Example

 $S = \{a, b, c, d\}$



$$\mu = \begin{pmatrix} a & b & c & d \\ p & s & r & t \end{pmatrix} \qquad \qquad \nu = \begin{pmatrix} a & b & c & d \\ z & w & m & v \end{pmatrix}$$
$$\widehat{\mu} = \widehat{\nu} = \begin{pmatrix} a & b & c & d \\ \{a\} & \{a,b\} & \{c\} & \{c,d\} \end{pmatrix}$$

Lattice-valued Boolean functions

A Boolean function is a mapping $f : \{0,1\}^n \to \{0,1\}$, $n \in \mathbb{N}$.

A lattice-valued Boolean function is a mapping

$f: \{0,1\}^n \to L,$

where L is a complete lattice.

We also deal with **lattice-valued** *n*-variable functions on a finite domain $\{0, 1, \ldots, k-1\}$:

$$f: \{0, 1, \ldots, k-1\}^n \to L,$$

where L is a complete lattice.

We use also *p*-**cuts** of lattice-valued functions as characteristic functions: for $f : \{0, 1, ..., k-1\}^n \to L$ and $p \in L$, we have

$$f_p: \{0, 1, \dots, k-1\}^n \to \{0, 1\},$$

such that $f_p(x_1, ..., x_n) = 1$ if and only if $f(x_1, ..., x_n) \ge p$. Clearly, a cut of a lattice-valued Boolean function is (as a characteristic function) a Boolean function.

Lattice-valued Boolean functions

A Boolean function is a mapping $f : \{0,1\}^n \to \{0,1\}, n \in \mathbb{N}$. A lattice-valued Boolean function is a mapping

 $f:\{0,1\}^n\to L,$

where L is a complete lattice.

We also deal with **lattice-valued** *n*-variable functions on a finite domain $\{0, 1, \ldots, k-1\}$:

 $f: \{0, 1, \ldots, k-1\}^n \to L,$

where L is a complete lattice.

We use also *p*-**cuts** of lattice-valued functions as characteristic functions: for $f : \{0, 1, ..., k-1\}^n \to L$ and $p \in L$, we have

$$f_{p}: \{0, 1, \dots, k-1\}^{n} \to \{0, 1\},$$

A Boolean function is a mapping $f : \{0,1\}^n \to \{0,1\}, n \in \mathbb{N}$. A lattice-valued Boolean function is a mapping

$$f:\{0,1\}^n\to L,$$

where L is a complete lattice.

We also deal with **lattice-valued** *n*-variable functions on a finite domain $\{0, 1, \ldots, k-1\}$:

$$f: \{0,1,\ldots,k-1\}^n \to L,$$

where L is a complete lattice.

We use also p-cuts of lattice-valued functions as characteristic functions: for $f : \{0, 1, \dots, k-1\}^n \to L$ and $p \in L$, we have

$$f_{p}: \{0, 1, \dots, k-1\}^{n} \to \{0, 1\},$$

A Boolean function is a mapping $f : \{0,1\}^n \to \{0,1\}, n \in \mathbb{N}$. A lattice-valued Boolean function is a mapping

$$f:\{0,1\}^n\to L,$$

where L is a complete lattice.

We also deal with **lattice-valued** *n*-variable functions on a finite domain $\{0, 1, \ldots, k-1\}$:

$$f:\{0,1,\ldots,k-1\}^n\to L,$$

where L is a complete lattice.

We use also *p*-**cuts** of lattice-valued functions as characteristic functions: for $f : \{0, 1, ..., k-1\}^n \to L$ and $p \in L$, we have

$$f_p: \{0, 1, \dots, k-1\}^n \to \{0, 1\},$$

A Boolean function is a mapping $f : \{0,1\}^n \to \{0,1\}, n \in \mathbb{N}$. A lattice-valued Boolean function is a mapping

$$f:\{0,1\}^n\to L,$$

where L is a complete lattice.

We also deal with **lattice-valued** *n*-variable functions on a finite domain $\{0, 1, \ldots, k-1\}$:

$$f:\{0,1,\ldots,k-1\}^n\to L,$$

where L is a complete lattice.

We use also *p*-**cuts** of lattice-valued functions as characteristic functions: for $f : \{0, 1, \dots, k-1\}^n \to L$ and $p \in L$, we have

$$f_p: \{0, 1, \dots, k-1\}^n \to \{0, 1\},$$

As usual, by S_n we denote the symmetric group of all permutations over an *n*-element set. If *f* is an *n*-variable function on a finite domain *X* and $\sigma \in S_n$, then *f* is **invariant** under σ , symbolically $\sigma \vdash f$, if for all $(x_1, \ldots, x_n) \in X^n$

$$f(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

If f is invariant under all permutations in $G \leq S_n$ and not invariant under any permutation from $S_n \setminus G$, then G is called **the invariance group** of f, and it is denoted by G(f).

As usual, by S_n we denote the symmetric group of all permutations over an *n*-element set. If *f* is an *n*-variable function on a finite domain *X* and $\sigma \in S_n$, then *f* is **invariant** under σ , symbolically $\sigma \vdash f$, if for all $(x_1, \ldots, x_n) \in X^n$

$$f(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

If f is invariant under all permutations in $G \leq S_n$ and not invariant under any permutation from $S_n \setminus G$, then G is called **the invariance** group of f, and it is denoted by G(f).

If G is the invariance group of a function $f : \{0, 1, ..., k-1\}^n \to \mathbb{N}$, then it is called (k, ∞) -representable.

 $G \leq S_n$ is called *m*-representable if it is the invariance group of a function $f : \{0, 1\}^n \rightarrow \{1, \dots, m\}$;

it is called *representable* if it is *m*-representable for some $m \in \mathbb{N}$.

By the above, representability is equivalent with

 $(2,\infty)$ -representability.

If G is the invariance group of a function $f : \{0, 1, ..., k-1\}^n \to \mathbb{N}$, then it is called (k, ∞) -representable.

 $G \leq S_n$ is called *m*-representable if it is the invariance group of a function $f : \{0, 1\}^n \rightarrow \{1, \dots, m\}$;

it is called *representable* if it is *m*-representable for some $m \in \mathbb{N}$. By the above, representability is equivalent with $(2, \infty)$ -representability.

If G is the invariance group of a function $f : \{0, 1, ..., k-1\}^n \to \mathbb{N}$, then it is called (k, ∞) -representable.

 $G \leq S_n$ is called *m*-representable if it is the invariance group of a function $f : \{0, 1\}^n \rightarrow \{1, \dots, m\}$;

it is called *representable* if it is *m*-representable for some $m \in \mathbb{N}$. By the above, representability is equivalent with $(2, \infty)$ -representability.

If G is the invariance group of a function $f : \{0, 1, ..., k-1\}^n \to \mathbb{N}$, then it is called (k, ∞) -representable.

 $G \leq S_n$ is called *m*-representable if it is the invariance group of a function $f : \{0, 1\}^n \rightarrow \{1, \dots, m\}$;

it is called *representable* if it is *m*-representable for some $m \in \mathbb{N}$.

By the above, representability is equivalent with $(2,\infty)$ -representability.

If G is the invariance group of a function $f : \{0, 1, ..., k-1\}^n \to \mathbb{N}$, then it is called (k, ∞) -representable.

 $G \leq S_n$ is called *m*-representable if it is the invariance group of a function $f : \{0, 1\}^n \rightarrow \{1, \dots, m\}$;

it is called *representable* if it is *m*-representable for some $m \in \mathbb{N}$. By the above, representability is equivalent with $(2, \infty)$ -representability.

In particular, a (2, L)-representable group is the invariance group of a lattice-valued Boolean function $f : \{0,1\}^n \to L$.

The notion of (2, L)-representability is more general than (2, 2)-representability. An example is the Klein 4-group: $\{id, (12)(34), (13)(24), (14)(23)\}$, which is (2, L) representable (for L being a three element chain), but not (2, 2)-representable.

One can easily check that a permutation group $G \subseteq S_n$ is *L*-representable if and only if it is Galois closed over **2**.

In particular, a (2, L)-representable group is the invariance group of a lattice-valued Boolean function $f : \{0,1\}^n \to L$.

The notion of (2, L)-representability is more general than (2, 2)-representability. An example is the Klein 4-group: $\{id, (12)(34), (13)(24), (14)(23)\}$, which is (2, L) representable (for L being a three element chain), but not (2, 2)-representable.

One can easily check that a permutation group $G \subseteq S_n$ is *L*-representable if and only if it is Galois closed over **2**.

In particular, a (2, L)-representable group is the invariance group of a lattice-valued Boolean function $f : \{0,1\}^n \to L$.

The notion of (2, L)-representability is more general than (2, 2)-representability. An example is the Klein 4-group: $\{id, (12)(34), (13)(24), (14)(23)\}$, which is (2, L) representable (for L being a three element chain), but not (2, 2)-representable.

One can easily check that a permutation group $G \subseteq S_n$ is *L*-representable if and only if it is Galois closed over **2**.

In particular, a (2, L)-representable group is the invariance group of a lattice-valued Boolean function $f : \{0,1\}^n \to L$.

The notion of (2, L)-representability is more general than (2, 2)-representability. An example is the Klein 4-group: $\{id, (12)(34), (13)(24), (14)(23)\}$, which is (2, L) representable (for L being a three element chain), but not (2, 2)-representable.

One can easily check that a permutation group $G \subseteq S_n$ is *L*-representable if and only if it is Galois closed over **2**.

In particular, a (2, L)-representable group is the invariance group of a lattice-valued Boolean function $f : \{0,1\}^n \to L$.

The notion of (2, L)-representability is more general than (2, 2)-representability. An example is the Klein 4-group: $\{id, (12)(34), (13)(24), (14)(23)\}$, which is (2, L) representable (for L being a three element chain), but not (2, 2)-representable.

One can easily check that a permutation group $G \subseteq S_n$ is *L*-representable if and only if it is Galois closed over **2**.

Let $O_k^{(n)} = \{f \mid f : \mathbf{k}^n \to \mathbf{k}\}$ denote the set of all *n*-ary operations on \mathbf{k} , and for $F \subseteq O_k^{(n)}$ and $G \subseteq S_n$ let

$$F^{\vdash} := \{ \sigma \in S_n \mid \forall f \in F : \sigma \vdash f \}, \qquad \overline{F}^{(k)} := (F^{\vdash})^{\vdash}, G^{\vdash} := \{ f \in O_k^{(n)} \mid \forall \sigma \in G : \sigma \vdash f \}, \quad \overline{G}^{(k)} := (G^{\vdash})^{\vdash}.$$

The assignment $G \mapsto \overline{G}^{(k)}$ is a closure operator on S_n , and it is easy to see that $\overline{G}^{(k)}$ is a subgroup of S_n for every subset $G \subseteq S_n$ (even if G is not a group). For $G \leq S_n$, we call $\overline{G}^{(k)}$ the Galois closure of G over \mathbf{k} , and we say that G is Galois closed over \mathbf{k} if $\overline{G}^{(k)} = G$.

Let $O_k^{(n)} = \{f \mid f : \mathbf{k}^n \to \mathbf{k}\}$ denote the set of all *n*-ary operations on \mathbf{k} , and for $F \subseteq O_k^{(n)}$ and $G \subseteq S_n$ let

$$F^{\vdash} := \{ \sigma \in S_n \mid \forall f \in F : \sigma \vdash f \}, \qquad \overline{F}^{(k)} := (F^{\vdash})^{\vdash}, G^{\vdash} := \{ f \in O_k^{(n)} \mid \forall \sigma \in G : \sigma \vdash f \}, \quad \overline{G}^{(k)} := (G^{\vdash})^{\vdash}.$$

The assignment $G \mapsto \overline{G}^{(k)}$ is a closure operator on S_n , and it is easy to see that $\overline{G}^{(k)}$ is a subgroup of S_n for every subset $G \subseteq S_n$ (even if G is not a group). For $G \leq S_n$, we call $\overline{G}^{(k)}$ the Galois closure of G over \mathbf{k} , and we say that G is Galois closed over \mathbf{k} if $\overline{G}^{(k)} = G$.

A group $G \leq S_n$ is Galois closed over **k** if and only if G is (k, ∞) -representable.

For every $G \leq S_n$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in k^n} (S_n)_a \cdot G.$$

For arbitrary $k, n \ge 2$, characterize those subgroups of S_n that are Galois closed over **k**.

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max(2^d, d^2 + d)$ and $G \le S_n$. Then G is not Galois closed over k if and only if $G = A_B \times L$ or $G <_{sd} S_B \times L$, where $B \subseteq \mathbf{n}$ is such that $D := \mathbf{n} \setminus B$ has less than d elements, and L is an arbitrary permutation group on D.

A group $G \leq S_n$ is Galois closed over **k** if and only if G is (k, ∞) -representable.

For every $G \leq S_n$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} (S_n)_a \cdot G.$$

For arbitrary $k, n \ge 2$, characterize those subgroups of S_n that are Galois closed over \mathbf{k} .

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max(2^d, d^2 + d)$ and $G \le S_n$. Then G is not Galois closed over k if and only if $G = A_B \times L$ or $G <_{sd} S_B \times L$, where $B \subseteq \mathbf{n}$ is such that $D := \mathbf{n} \setminus B$ has less than d elements, and L is an arbitrary permutation group on D.

A group $G \leq S_n$ is Galois closed over **k** if and only if G is (k, ∞) -representable.

For every $G \leq S_n$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} (S_n)_a \cdot G.$$

For arbitrary $k, n \ge 2$, characterize those subgroups of S_n that are Galois closed over **k**.

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max(2^d, d^2 + d)$ and $G \le S_n$. Then G is not Galois closed over k if and only if $G = A_B \times L$ or $G <_{sd} S_B \times L$, where $B \subseteq \mathbf{n}$ is such that $D := \mathbf{n} \setminus B$ has less than d elements, and L is an arbitrary permutation group on D.

A group $G \leq S_n$ is Galois closed over **k** if and only if G is (k, ∞) -representable.

For every $G \leq S_n$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in \mathbf{k}^n} (S_n)_a \cdot G.$$

For arbitrary $k, n \ge 2$, characterize those subgroups of S_n that are Galois closed over **k**.

Theorem (H., Makay, Pöschel, Waldhauser) Let $n > \max(2^d, d^2 + d)$ and $G \le S_n$. Then G is not Galois closed over **k** if and only if $G = A_B \times L$ or $G <_{sd} S_B \times L$, where $B \subseteq \mathbf{n}$ is such that $D := \mathbf{n} \setminus B$ has less than d elements, and L is an arbitrary permutation group on D.

 $(\sigma \circ \mu \circ \psi)_{p} = \sigma \circ \mu \circ \psi_{p}.$

Corollary Let *L* be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \rightarrow L$. Then the following holds.

(i) $\mu_p = \mu \circ (\mathcal{I}_L)_p$, where \mathcal{I}_L is the identity mapping $\mathcal{I}_L : L \to L$. (ii) $(\sigma \circ \mu)_p = \sigma \circ \mu_p$, for $\sigma : A \to A$. (iii) $(\sigma \circ \mu)_p = \mu \circ \mu_p$, for $\sigma : A \to A$.

 $(\sigma \circ \mu \circ \psi)_{p} = \sigma \circ \mu \circ \psi_{p}.$

Corollary Let *L* be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \rightarrow L$. Then the following holds.

(i) $\mu_{p} = \mu \circ (\mathcal{I}_{L})_{p}$, where \mathcal{I}_{L} is the identity mapping $\mathcal{I}_{\mathcal{L}} : L \to L$. (ii) $(\sigma \circ \mu)_{p} = \sigma \circ \mu_{p}$, for $\sigma : A \to A$. (iii) $(\mu \circ \psi)_{p} = \mu \circ \psi_{p}$, where ψ is a map $\psi : L \to L$.

 $(\sigma \circ \mu \circ \psi)_{p} = \sigma \circ \mu \circ \psi_{p}.$

Corollary Let *L* be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \rightarrow L$. Then the following holds.

(i) $\mu_{p} = \mu \circ (\mathcal{I}_{L})_{p}$, where \mathcal{I}_{L} is the identity mapping $\mathcal{I}_{\mathcal{L}} : L \to L$. (ii) $(\sigma \circ \mu)_{p} = \sigma \circ \mu_{p}$, for $\sigma : A \to A$. (iii) $(\mu \circ \psi)_{p} = \mu \circ \psi_{p}$, where ψ is a map $\psi : L \to L$.

 $(\sigma \circ \mu \circ \psi)_{p} = \sigma \circ \mu \circ \psi_{p}.$

Corollary Let *L* be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \rightarrow L$. Then the following holds.

(i) $\mu_p = \mu \circ (\mathcal{I}_L)_p$, where \mathcal{I}_L is the identity mapping $\mathcal{I}_L : L \to L$. (ii) $(\sigma \circ \mu)_p = \sigma \circ \mu_p$, for $\sigma : A \to A$. (iii) $(\mu \circ \psi)_p = \mu \circ \psi_p$, where ψ is a map $\psi : L \to L$.

 $(\sigma \circ \mu \circ \psi)_{p} = \sigma \circ \mu \circ \psi_{p}.$

Corollary Let *L* be a complete lattice, let $A \neq \emptyset$ and let $\mu : A \rightarrow L$. Then the following holds.

(i) $\mu_{p} = \mu \circ (\mathcal{I}_{L})_{p}$, where \mathcal{I}_{L} is the identity mapping $\mathcal{I}_{\mathcal{L}} : L \to L$. (ii) $(\sigma \circ \mu)_{p} = \sigma \circ \mu_{p}$, for $\sigma : A \to A$. (iii) $(\mu \circ \psi)_{p} = \mu \circ \psi_{p}$, where ψ is a map $\psi : L \to L$. **Proposition** Let $f : \{0, \ldots, k-1\}^n \to L$ and $\sigma \in S_n$. Then

 $\sigma \vdash f$ if and only if for every $p \in L$, $\sigma \vdash f_p$.

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

If $f_1 : \{0, \ldots, k-1\}^n \to L_1$ and $f_2 : \{0, \ldots, k-1\}^n \to L_2$ are two *n*-variable lattice-valued functions on the same domain, then $\hat{f}_1 = \hat{f}_2$ implies $G(f_1) = G(f_2)$.

Proposition Let $f : \{0, \ldots, k-1\}^n \to L$ and $\sigma \in S_n$. Then

 $\sigma \vdash f$ if and only if for every $p \in L$, $\sigma \vdash f_p$.

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

If $f_1 : \{0, \ldots, k-1\}^n \to L_1$ and $f_2 : \{0, \ldots, k-1\}^n \to L_2$ are two *n*-variable lattice-valued functions on the same domain, then $\hat{f}_1 = \hat{f}_2$ implies $G(f_1) = G(f_2)$.

Proposition Let $f : \{0, \ldots, k-1\}^n \to L$ and $\sigma \in S_n$. Then

 $\sigma \vdash f$ if and only if for every $p \in L$, $\sigma \vdash f_p$.

The invariance group of a lattice-valued function f depends only on the canonical representation of f.

If $f_1 : \{0, \ldots, k-1\}^n \to L_1$ and $f_2 : \{0, \ldots, k-1\}^n \to L_2$ are two *n*-variable lattice-valued functions on the same domain, then $\hat{f}_1 = \hat{f}_2$ implies $G(f_1) = G(f_2)$.

For every $n \in \mathbb{N}$, there is a lattice *L* and a lattice valued Boolean function $F : \{0,1\}^n \to L$ satisfying the following: If $G \leq S_n$ and G = G(f) for a Boolean function *f*, then $G = G(F_p)$, for a cut F_p of *F*.

Every subgroups of S_n is an invariance group of a function $\{0, \ldots, k-1\}^n \rightarrow \{0, \ldots, k-1\}$ if and only if $k \ge n$.

If $k \ge n$, then for every subgroup G of S_n there exists a function $f : \{0, \ldots, k-1\}^n \to \{0, 1\}$ such that the invariance group of f is exactly G.

For $k, n \in \mathbb{N}$ and $k \ge n$, there is a lattice L and a lattice valued function $F : \{0, \ldots, k-1\}^n \to L$ such that the following holds: If $G \le S_n$, then $G = G(F_p)$ for a cut F_p of of F.

Every subgroups of S_n is an invariance group of a function $\{0, \ldots, k-1\}^n \rightarrow \{0, \ldots, k-1\}$ if and only if $k \ge n$.

If $k \ge n$, then for every subgroup G of S_n there exists a function $f : \{0, \ldots, k-1\}^n \to \{0, 1\}$ such that the invariance group of f is exactly G.

For $k, n \in \mathbb{N}$ and $k \ge n$, there is a lattice L and a lattice valued function $F : \{0, \ldots, k-1\}^n \to L$ such that the following holds: If $G \le S_n$, then $G = G(F_p)$ for a cut F_p of of F.

Every subgroups of S_n is an invariance group of a function $\{0, \ldots, k-1\}^n \rightarrow \{0, \ldots, k-1\}$ if and only if $k \ge n$.

If $k \ge n$, then for every subgroup G of S_n there exists a function $f : \{0, \ldots, k-1\}^n \to \{0, 1\}$ such that the invariance group of f is exactly G.

For $k, n \in \mathbb{N}$ and $k \ge n$, there is a lattice L and a lattice valued function $F : \{0, \ldots, k-1\}^n \to L$ such that the following holds: If $G \le S_n$, then $G = G(F_p)$ for a cut F_p of of F.

Thank you for your attention!