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Abstract. For an integer n ≥ 1, an n-ary lattice-valued Boolean function is a

map from the n-th direct power of the 2-element Boolean lattice to a bounded

lattice. In terms of closure systems and cuts, we characterize lattice-valued

Boolean functions that can be given by linear combinations of elements of the

co-domain lattice.

1. Introduction

1.1. Target

A lattice-valued function is a map µ : {0, 1}n → L where L is a bounded lattice
and n ∈ {1, 2, 3, . . . }. We always assume that 0 and 1 in the domain {0, 1} of µ
belong to L as its least and greatest elements, respectively. Throughout the paper,
the Boolean lattice {0, 1}n will be denoted by Bn. To emphasize that (1.1) below
is analogous to a linear combination, we often write uv or u · v instead of u ∧ v for
elements of L. We say that µ can be given by a linear combination (in L) if there
are w1, . . . , wn ∈ L such that, for all x = 〈x1, . . . , xn〉 ∈ Bn,

µ(x) =

n∨

i=1

wixi, that is, µ(x) =

n∨

i=1

(wi ∧ xi). (1.1)

Our goal is to characterize lattice-valued functions that can be given as in (1.1) by
means of the following concepts. For p ∈ L, the set

µp := {x ∈ Bn : µ(x) ≥ p} (1.2)
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is called a cut of µ. As usual, a closure system F over Bn is a ∩-subsemilattice of
the powerset lattice P (Bn) = 〈P (Bn);∪,∩〉 such that Bn ∈ F . By finiteness, F is
necessarily a complete ∩-semilattice. (The reader should not confuse F with the
more abstract concept of closure systems as {∧, 1}-subsemilattices of 〈Bn;∨,∧〉,
which do not occur in the paper.) A closure system F determines a closure operator

in the standard way. In this paper, we only need the closures of singleton sets and
we write x rather then {x}. That is,

for x ∈ Bn, we have x :=
⋂

{f ∈ F : x ∈ f}. (1.3)

If µ : Bn → L is such that µ(0) = 0 and, for all x, y ∈ Bn, µ(x ∨ y) = µ(x) ∨ µ(y),
then µ is a {∨, 0}-homomorphism. As a first characterization of our functions, it
will be quite easy to prove the following statement.

Proposition 1.1. A lattice-valued function Bn → L can be given by a linear combi-

nation in L iff it is a {∨, 0}-homomorphism.

Our main result below characterizes the same functions by cuts. If ∅ 6= X ⊆ Bn

is such that (∀x ∈ X)(∀y ∈ Bn)(x ≤ y ⇒ y ∈ X), then X is an up-set of Bn. For
example, every cut µp in (1.2) of an isotone (x ≤ y ⇒ µ(x) ≤ µ(y)) lattice-valued
function µ is an up-set.

Theorem 1.2. Let F be a closure system over Bn that consists of some up-sets of

Bn. Then, adopting (1.3), the following three conditions are equivalent.

(i) For all x, y ∈ Bn, x ⊆ y ⇒ x ∨ y = x.

(ii) For all x, y ∈ Bn, x ∨ y = x ∩ y.

(iii) There exist a bounded lattice L and a lattice-valued function µ : Bn → L given

by a linear combination such that F is the family of cuts of µ.

By Proposition 1.1, we can also say “{∨, 0}-homomorphism” in (iii) instead of
“given by a linear combination”.

1.2. Outline

We prove Proposition 1.1 and Theorem 1.2 in Section 2. Prior to this, we give some
motivation.

1.3. Motivation

In the particular case |L| = 2, our function µ is simply a Boolean function. If
µ belongs to the scope of Theorem 1.2, then it is isotone since it is a {∨, 0}-
homomorphism. Isotone Boolean functions are often applied in electrical engineering,
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computer science and related fields. There are papers dealing with the number
of these functions (Dedekind’s problem, see e.g., [15]), or with conjunctive and
disjunctive normal forms (e.g., [9], and others). Many fundamental properties of
isotone and other Boolean functions can be found in the classical books Crama
and Hammer [4] and Rudeanu [18]. For some recent results see, e.g., [2, 8, 14]. A
threshold function is a Boolean function given by a linear combination like (1.1) but
using 〈

∑
,R〉 instead of 〈

∨
, L〉 in the sense that the preimage µ−1(1) of 1 is a cut

of the linear combination. As commented in [4], threshold functions can deal with
questions investigated in electrical engineering, artificial intelligence, game theory
and other areas. In [17], modeling neurons and political decisions are also mentioned
as applications of classical threshold functions. Further results concerning threshold
functions and related algebraic structures (groups, rings and others) can also be
found in [1,10,11]. The linear combination in the sense of (1.1) was introduced in
[13], where we proved that a Boolean function µ : Bn → B1 is isotone iff B1 = {0, 1}

has a {0, 1}-extension to a lattice L (equivalently, to the free bounded distributive
lattice on n generators) such that µ−1(1) is a cut of µ. Note that in this case and,
more generally, for a distributive L, we know from Goodstein [7], see also Couceiro
and Waldhauser [3], that µ extends to a lattice polynomial Ln → L.

2. Proving our results

Proof of Proposition 1.1. To prove the “only if” part, assume that µ : Bn → L

is given by (1.1). Evidently, µ(0) = 0. For x, y ∈ Bn and i ∈ {1, . . . , n}, observe
that {wi, xi, yi} is a distributive sublattice of L since it is a subset of the chain
{0, wi, 1}. Hence µ(x∨y) =

∨
i wi(xi∨yi) =

∨
i(wixi∨wiyi) =

∨
i wixi∨

∨
i wiyi =

µ(x) ∨ µ(y), as required. Conversely, to prove the “if” part, assume that µ is a
{∨, 0}- homomorphism. Let e(i) = 〈0, . . . , 0, 1, 0, . . . , 0〉 ∈ Bn where 1 stands in
the i-th place. Define wi := µ(e(i)). Observe that µ(e(i) · 1) = wi = wi · 1 and
µ(e(i) · 0) = 0 = wi · 0, that is, µ(e(i) ·xi) = wi ·xi. Therefore, for x ∈ Bn, we obtain
µ(x) = µ(

∨
i e

(i)xi) =
∨

i µ(e
(i)xi) =

∨
i wi · xi; proving (1.1) and the “if” part.

Proof of Theorem 1.2. To prove (i) ⇒ (ii), assume that (i) holds for F . Let x, y ∈

Bn. Since the closure induced by F is clearly

order-reversing in the sense that x ≤ y ⇒ x ⊇ y, (2.1)

x ∨ y ⊆ x and x ∨ y ⊆ y. Hence, x ∨ y ⊆ x ∩ y. To show the converse inclusion, let
z ∈ x ∩ y. By well-known properties of closure operators, z ⊆ x and z ⊆ y. Since
we have assumed (i), z = z ∨ x and z = z ∨ y. Using (i) again for the inclusion
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z ∨ x ⊆ z ∨ y, which is actually an equality, and applying (2.1) thereafter, we obtain
z ∈ z = z ∨ x = z ∨ x ∨ z ∨ y ⊆ x ∨ y. Hence, x ∨ y = x ∩ y and (ii) holds.

To prove (ii) ⇒ (iii), assume that F satisfies (ii). Since F is a finite ∩-closed
family of subsets of Bn and Bn ∈ F , 〈F ;⊆〉 is a lattice. Let L be the dual 〈F ;⊇〉

of this lattice and define µ : Bn → L by x 7→ x, where x is given by (1.3). We claim
that the cuts of µ are exactly the members of F . First, let f ∈ F . Then

f = {x ∈ Bn : x ∈ f} = {x ∈ Bn : x ⊆ f} = {x ∈ Bn : µ(x) ≥ f} = µf (2.2)

is a cut of µ; see (1.2). Second, every cut of µ is of the form µf for some f ∈ F ,
and (2.2) gives that µf = f , which is in F . This proves that F is the family of cuts
of µ. Since F consists of up-sets of Bn, the only member of F containing 0 is Bn.
Hence µ(0) = 0 = Bn = 0L. Finally, since ∩ is the meet in 〈F ,⊆〉, it is the join in
L. Thus, (ii) yields that µ is a {∨, 0}-homomorphism. By Proposition 1.1, µ can be
given by a linear combination. Therefore, (iii) holds for F .

Before the last part of the proof, we show that whenever F is the collection
of cuts of an isotone lattice-valued function µ : Bn → L and x ∈ Bn, then

F is a closure system and x = {z ∈ Bn : µ(z) ≥ µ(x)} = µµ(x), (2.3)

where x is understood as in (1.3). Note that Bn = {x ∈ Bn : µ(x) ≥ 0} = µ0 ∈ F .
For any two members of F , say, µp, µq ∈ F , we have µp ∩ µq = {x ∈ Bn : x ≥

p and x ≥ q} = {x ∈ Bn : x ≥ p ∨ q} = µp∨q ∈ F . Hence, F is a closure system
over Bn. Next, let x ∈ Bn, and denote µ(x) by q; we have to show that x equals
{z ∈ Bn : µ(z) ≥ q}, which is µq. Since x ∈ µq ∈ F is clear, we have to verify that
for all p ∈ L, x ∈ µp ⇒ µq ⊆ µp. So consider an element p ∈ L such that x ∈ µp,
that is, µ(x) ≥ p. For any z ∈ µq, we have µ(z) ≥ q = µ(x), and µ(z) ≥ p follows by
transitivity. That is, z ∈ µp, implying the required inclusion µq ⊆ µp. Consequently,
(2.3) holds.

Now, we are in the position to prove (iii) ⇒ ((i)). Assume (iii). Since µ is
a {∨, 0}-homomorphism by Proposition 1.1, the standard trick x ≤ y ⇒ µ(y) =

µ(x ∨ y) = µ(x) ∨ µ(y) ⇒ µ(x) ≤ µ(y) shows that µ is isotone; this allows us to
use (2.3). Let x, y ∈ Bn be such that x ⊆ y. Since we have x ∨ y ⊆ x by (2.1), it
suffices to deal with the converse inclusion. So let z ∈ x. By (2.3), µ(z) ≥ µ(x).
We also have µ(z) ≥ µ(y) by the same reason and since z ∈ x ⊆ y. Hence, µ(z) ≥
µ(x) ∨ µ(y) = µ(x ∨ y) and (2.3) give z ∈ x ∨ y. Thus, (i) holds for F .
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