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Abstract

The aim of the present paper is to carry on the research of Czédli in

determining the maximum number of rectangular islands on a rectangular

grid. We estimate the maximum of the number of triangular islands on a

triangular grid.

1. Introduction

The following combinatorial problem was raised in connection with instan-

taneous (prefix-free) codes, see [5]. For every square of a rectangular grid a real

number aij is given, its height. Czédli [1] considered a rectangular lake whose bot-

tom is divided into (m + 2) × (n + 2) cells. In other words, we identify the bottom

of the lake with the table {0, 1, . . . , m + 1} × {0, 1, . . . , n + 1}. The height of the

bottom (above see level) is constant on each cell but definitely less than the height

of the lake shore. Now a rectangle R is called a rectangular island iff there is a

possible water level such that R is an island of the lake in the usual sense. There

are other examples requiring only m × n cells; for example, aij may mean a colour

on a gray-scale (before we convert the picture to black and white), transparency

(against X-rays), or melting temperature.
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Czédli [1] has determined the maximum number of rectangular islands. In his

paper, he shows that their number is ⌊(mn + m + n − 1)/2⌋. Pluhár [8] gave upper

and lower bounds in higher dimensions. In this paper, we investigate the maximum

number of triangular islands on the triangular grid (see Figure 1). Our lower bound

is obtained by a construction. The key of the proof for the upper estimate is a

brilliant observation of Czédli: in the rectangular case the number of islands can

be measured by the area of the rectangle. We will prove that the same holds for

triangular islands as well.

Czédli gave a reasonable upper bound for the number of islands using lattice

theory. His methods not only apply in our case, but give an upper bound for the

number of islands of arbitrary shape. Czédli’s bound is sharp and without his

method there is no hope to obtain a similar upper bound for the number of islands

of arbitrary shape. Not many lattice theorists contributed to pure combinatorics in

the last years. Nowadays, we are experiencing a change in this situation. Indeed,

Czédli, Maróti and Schmidt have recently produced [1], [2] and [4]. All these three

papers share the property that lattice theoretical methods and theorems are used in

the proofs, but the main results are purely combinatorial and do not even mention

lattices.

Our main reference will be Czédli [1]. The methods and lemmas estimating

the upper bound straightforwardly apply to our case. We present these statements

without their proofs in Section 3. In Section 4, we deal with triangular islands and

give a lower and upper bound for their maximal number.

2. Preliminaries

On the plane, given an equilateral triangle of side length n (n ∈ N), we divide

this triangle into small equilateral triangles of side lengths 1 as seen in Figure 1.

Figure 1

The triangles of side lengths 1 are called cells or tringular units. Denote the

set of all cells by Tn. Throughout the paper we deal with equilateral triangles
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consisting of triangular units from Tn. The set of all subsets of Tn, which consist

of triangles on the plane, is denoted by T(n). Of course, Tn ∈ T(n), but the empty

set does not belong to T(n).

Given two distinct cells, we say that the two cells are neighbouring , if the

distance of their center points is at most 2
√

3/3. In other words two cells are

neighbouring if they intersect by their sides or vertices. For any T1, T2 ∈ T(n), we

say that T1 and T2 are far from each other , if they are disjoint and no cell of T1 is

neighbouring with any cell of T2. Obviously, the role of T1 and T2 is symmetric in

the definition.

Consider a mapping A:Tn → R, t 7→ at. For any T ∈ T(n), we call T a

triangular island of A, if for each cell t̂ 6∈ T neighbouring with a cell of T , the

inequality at̂ < min{at : t ∈ T} holds. The set of triangular islands of A is denoted

by Str(A).

3. Auxiliary statements

In this chapter we list all statements from Section 2 of [1]. These statements

are valid on the triangular grid and the proofs are identical, hence we omit them.

Lemma 1. Let H be a subset of T(n). The following two conditions are

equivalent:

(i) There exists a mapping A such that H = Str(A).

(ii) Tn ∈ H, and for any T1, T2 ∈ H either T1 ⊆ T2 or T2 ⊆ T1 or T1 and T2 are

far from each other.

In the sequel, subsets H of T(n) satisfying the (equivalent) conditions of

Lemma 1 will be called systems of triangular islands.

The notion of a distributive lattice can be found e.g. in [6]. Let L = (L;∨,∧)

be a finite distributive lattice. Following [3], a subset H of L is called weakly

independent , if for any k ∈ N and h, h1, . . . , hk ∈ H with h ≤ h1 ∨ · · · ∨ hk, there

exists i ∈ {1, . . . , k} such that h ≤ hi. A maximal weakly independent subset is

called a weak basis of L. It is known from [3] that the set J0(L) of join-irreducible

elements and all maximal chains are weak bases of L. The main theorem of [3]

asserts that

Lemma 2. Any two weak bases of a finite distributive lattice have the same

number of elements.

The lattice of all subsets of Tn will be denoted by P(Tn) = (P(Tn);∪,∩).

Note that P(Tn) is a finite distributive lattice.

Lemma 2 gives the following for a system of subsets of a set of size n.
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Lemma 3. Let S be a set of size n and H ⊂ P(S) such that the following

property holds: for any H0, H1, . . . , Hk ∈ H, if H0 ⊆ ⋃k

i=1 Hi then there is a

j ∈ {1, . . . , k} such that H0 ⊆ Hj. Then |H| ≤ n.

This gives a straightforward upper bound for the number of triangular islands.

There are n2 unit triangles in Tn, hence we obtain the following lemma.

Lemma 4. Let H be a system of triangular islands of Tn. Then H is a

weakly independent subset of P(Tn). Consequently, |H| ≤ n2.

Note that Lemma 4 assumes nothing about the shape of the islands, they can

be arbitrary sets of weakly independent subsets of the grid that are unions of unit

triangles. This upper bound is sharp: we have n2 islands of arbitrary shape if we

assign distinct numbers to distinct triangular units. We cannot get the same upper

bound if we think of a triangular island as the set of gridpoints it contains. Indeed,

the gridpoints contained in smaller triangles can cover all gridpoints of a large one,

thus the weak independence condition does not hold any more. We shall present a

sharp upper bound for the number of triangular islands — using the geometry of

islands.

4. Estimating the number of islands

Let f(n) denote the maximum of the number of triangular islands on the

triangular grid of side length n.

Lemma 5. Let n = 2k + 2, where k ≥ 0, k ∈ Z. Then f(n) = f(2k + 2) ≥
3f(k) + f(k + 1) + 1.

Proof. Now, we start with a triangle of side length n = 2k + 2. Into this

triangle we draw three equilateral subtriangles of side lengths k to the vertices and

one equilateral subtriangle of side length k +1 into the center as shown in Figure 2.

If we add 1 to the maximum number of islands corresponding to these four triangles

(since Tn itself is also a triangular island), then this sum is clearly not greater than

the maximum of the number of triangular islands of Tn.

Lemma 6. Let n = 2k + 1, where k ≥ 1, k ∈ Z. Then f(n) = f(2k + 1) ≥
3f(k) + f(k − 1) + 1.
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Figure 2

Proof. Now, we start with a triangle of side length n = 2k + 1. Into this

triangle, we draw three subtriangles of side lengths k to the vertices and one triangle

of side length k − 1 into the center, as shown in Figure 3. If we add 1 to the

maximum number of islands corresponding to these four triangles (since Tn itself

is also a triangular island), then this sum is clearly not greater than the maximum

of the number of triangular islands of Tn.

Figure 3

There are many other natural ways to estimate f(n). For example, if we draw

a triangle of side length n − 3 into the triangle of side length n, then it is easy

to prove that f(n) ≥ f(n − 3) + n + 1. By solving this recurrence formula and

examining the small cases we get that f(n) ≥ 1
6n2 + 5

6n − 1
3 .

From Lemmas 5 and 6 it is natural to examine the following sequence. Let
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s(n) denote the sequence defined by the following relations:

s(2n + 1) = 3s(n) + s(n − 1) + 1,

s(2n + 2) = 3s(n) + s(n + 1) + 1,

s(1) = 1, s(2) = 2, s(3) = 4.

As s(i) = f(i) for i = 1, 2, 3, the sequence s(n) is a lower bound for

f(n), that is, s(n) ≤ f(n) holds. The first few values of the sequence are

1, 2, 4, 6, 8, 11, 15, 19, 23, 27, · · · . For an arbitrary sequence g(n) let ∆g denote the

sequence ∆g(n) = g(n + 1) − g(n). For ∆s(n) we have

∆s (2n + 1) = 2(s(n) − s(n − 1)) = 2∆s(n − 1),

∆s (2n + 2) = s(n + 1) − s(n − 1) = ∆s(n) + ∆s(n − 1),

∆s (1) = 1, ∆s(2) = 2, ∆s(3) = 2.

The first few values of this sequence are 1, 2, 2, 2, 3, 4, 4, 4, 4, 4, 5, 6, . . . .

For ∆∆s(n) = ∆2s(n) we have

∆2s (2n + 1) = ∆2s(n − 1),

∆2s (2n + 2) = ∆2s(n),

∆2s (1) = 1, ∆2s(2) = 0, ∆2s(3) = 0.

(1)

The first few values of the sequence ∆2s are

1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, . . . .

The following pattern of ∆2s is easy to see and prove by induction: introducing

∆2s(0) = 0, we can observe that segments of 0-s and 1-s alter in the sequence ∆2s.

The n-th segment contains 2n 0-s and 1-s, respectively. Thus ∆s can be visualized

as an alternating sequence of constant functions and arithmetic progressions. The

length of each sequences is an appropriate power of 2, and the difference of the

arithmetic progressions is 1. From here, s(n) is an alternating sequence of linear and

quadratic functions. Obviously, f(n) ≥ s(n) holds. Hence, f(n) is bounded from

below by s(n). By the above-mentioned arguments one might hope for quadratic

lower and upper bounds for s(n). After a thorough analysis of s(n) we obtain the

following inequalities:

n2 + 3n

5
≤ s(n) ≤ 3n2 + 9n + 2

14
. (2)

Moreover, the lower bound is attained at the numbers of the form n = ⌊ 10
3 2k − 4

3⌋
and the upper bound is attained at n = ⌊ 7

32k − 4
3⌋. We prove that the lower bound

and the upper bound are sharp at infinitely many places. This obviously implies

that n2+3n
5 ≤ f(n). Later we prove that f(n) ≤ 3n2+9n+2

14 . These statements

together imply that the quadratic upper bound in (2) is the best possible.
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Theorem 7. We have

s(n) ≥ n2 + 3n

5
.

Proof. We prove this statement via induction on n. When n is 1, 2 and 3,

then s(n) is at least 1, 2 and 4, respectively. This settles the small cases, n ≤ 3.

The function s(n) is integer valued, so the statement is equivalent to s(n) ≥
⌈(n2 + 3n)/5⌉. Hence, if n2+3n

5 is not an integer, then s(n) ≥ n2+3n
5 + 1

5 . For n ∈ Z,

we have n2+3n
5 ∈ Z if n ≡ 0 or n ≡ 2 mod 5. Thus for any integer n

s(n) ≥ n2 + 3n

5
+

1

5
or s(n − 1) ≥ (n − 1)2 + 3(n − 1)

5
+

1

5

(or both) holds. Using Lemmas 5, 6 and the induction hypothesis for 2n+1, 2n+2 ≥
4, we obtain the statement as follows:

s(2n + 1) ≥ 3s(n) + s(n − 1) + 1

≥ 3
n2 + 3n

5
+

(n − 1)2 + 3(n − 1)

5
+

1

5
+ 1

=
4n2 + 10n + 4

5
=

(2n + 1)2 + 3(2n + 1)

5
.

Similarly,

s(2n + 2) ≥ 3s(n) + s(n + 1) + 1

≥ 3
n2 + 3n

5
+

(n + 1)2 + 3(n + 1)

5
+

1

5
+ 1

=
4n2 + 14n + 10

5
=

(2n + 2)2 + 3(2n + 2)

5
.

As s(n) is a lower bound for f(n), we obtain the following corollary.

Corollary 8. We have

f(n) ≥ n2 + 3n

5
.

Theorem 9. If nk = ⌊ 7
32k − 4

3⌋ then

s(nk) =
3n2

k + 9nk + 2

14
.
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Proof. Let nk can be the sequence obtained by the following recurrence

formulas:
nk = 2nk−1 + 1 if k is odd,

nk = 2nk−1 + 2 if k is even.
(3)

One can easily find the following formula for nk using the standard methods for

linear recurrence formulas:

nk =
⌊7

3
2k − 4

3

⌋

.

We prove by induction that for nk = ⌊ 7
32k − 4

3⌋ we have

s(nk) =
3n2

k + 9nk + 2

14

and

s(nk ± 1) =















3(nk ± 1)2 + 9(nk ± 1) + 2

14
− 2

7
if k is even and k 6= 0 (nk even),

3(nk ± 1)2 + 9(nk ± 1) + 2

14
− 1

7
if k is odd (nk odd).

The statement above holds for k = 0, 1, 2. Now, let us assume that the

statement holds for i ≤ k and we prove it for k + 1. We prove the statement for k

even, the odd case can be handled similarly.

s(nk+1) = s(2nk + 1) = 3s(nk) + s(nk − 1) + 1

= 3
3n2

k + 9nk + 2

14
+

3(nk − 1)2 + 9(nk − 1) + 2

14
− 2

7
+ 1

=
3n2

k+1 + 9nk+1 + 2

14
,

s(nk+1 + 1) = s(2nk + 2) = 3s(nk) + s(nk + 1) + 1

= 3
3n2

k + 9nk + 2

14
+

3(nk + 1)2 + 9(nk + 1) + 2

14
− 2

7
+ 1

=
3(2nk + 2)2 + 9(2nk + 2) + 2

14
− 1

7

=
3(nk+1 + 1)2 + 9(nk+1 + 1) + 2

14
− 1

7
,

s(nk+1 − 1) = s(2nk) = 3s(nk − 1) + s(nk) + 1

= 3
3(nk − 1)2 + 9(nk − 1) + 2

14
+

3n2
k + 9nk + 2

14
− 2

7
+ 1

=
3(2nk)2 + 9(2nk) + 2

14
− 1

7

=
3(nk+1 − 1)2 + 9(nk+1 − 1) + 2

14
− 1

7
.

Now we have arrived at the proof of our upper bound. This proof is due to

the referee of the paper and it is an essential simplification of our original proof.
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Theorem 10. We have

f(n) ≤ 3

14
(n + 1)(n + 2) − 2

7
.

Proof. Let Gn be the set of grid points in Figure 1 or the set of the vertices

of the triangles in Tn (obviously |Gn| = (n + 1)(n + 2)/2). We measure the size of

a triangle T by counting the grid points covered by T. Actually, we define µ(T) as

twice the number of the covered gridpoints, i.e. µ(T) = (l +1)(l +2), where l is the

side length of T.

Let H be an arbitrary system of islands and max(H) is the set of maximal

islands in H − Tn, max(H) = {R1, . . . , Rt}. By Lemma 1 the islands in max(H)

are disjoint (far from each other) and any island is in a member of max(H). So we

count the islands in our system as 1 +
∑

Ri∈max H
f(Ri). To prove the theorem we

need to show that for any triangle T we have f(T ) ≤ 3µ(T )/14 − 2/7.

We use induction on n. The case n ≤ 3 can be easily checked. If H = {Tn},

the claim is obvious. Otherwise, we count the islands as we did above and apply

the induction hypothesis:

f(H) = 1 +
∑

Ri∈max H

f(Ri)

≤ 1 +
∑

Ri∈max H

( 3

14
µ(Ri) − 2

7

)

=
3

14

∑

Ri∈max H

µ(Ri) +
(

1 − |max(H)| · 2

7

)

.

The first term can be bounded above by µ(Tn) = (n + 1)(n + 2), the second term

can bounded above by −1/7 assuming that |max(H)| ≥ 4. In this case we obtain

(by an elementary number theoretical case analysis)

f(H) ≤
⌊ 3

14
(n + 1)(n + 2) − 1

7

⌋

≤ 3

14
(n + 1)(n + 2) − 2

7
.

In the case of |max(H)| ≤ 3 one can easily prove
∑

Ri∈max H
µ(Ri) ≤ µ(Tn) to get

the desired bound.

Corollary 11. For the maximum number f(n) of triangular islands on the

triangular grid of side length n, we have

n2 + 3n

5
≤ f(n) ≤ 3n2 + 9n + 2

14
.

The upper bound is the best possible quadratic upper bound.
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Proof. From Corollary 8 and Theorem 10 we have the claimed lower and

upper bound for f(n). Furthermore, as Theorem 9 and Theorem 10 show s(n) ≤
f(n) ≤ 3n2+9n+2

14 and s(n) = 3n2+9n+2
14 at infinitely many places, we get that f(n) =

3n2+9n+2
14 infinitely many times.

One might be interested in the exact value of f(n). We presented this value

only for a few cases, when f(n) attains its maximum. Both the construction in

Lemmas 5, 6 and the proof of Theorem 10 suggest that f(n) = s(n).

Problem 12. Is it true that f(n) = s(n) for every n?
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[7] G. HÄRTEL, An unpublished result on one-dimensional full segments, mentioned by
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