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Abstract. The notion of an island defined on a rectangular board is an elemen-

tary combinatorial concept that occurred first in [3]. Results of [3] were starting

points for investigations exploring several variations and various aspects of this

notion.

In this paper we introduce a general framework for islands that subsumes

all earlier studied concepts of islands on finite boards, moreover we show that

the prime implicants of a Boolean function, the formal concepts of a formal

context, convex subgraphs of a simple graph, and some particular subsets of a

projective plane also fit into this framework.

We axiomatize those cases where islands have the property of being

pairwise comparable or disjoint, or they are distant, introducing the notion

of a connective island domain and of a proximity domain, respectively. In

the general case the maximal systems of islands are characterised by using

the concept of an admissible system. We also characterise all possible island

systems in the case of connective island domains and proximity domains.

1. Introduction

“ISLAND, in physical geography, a term generally definable as a piece of land
surrounded by water.” (Encyclopædia Britannica, Eleventh Edition, Volume XIV,
Cambridge University Press 1910.) Mathematical models of this definition were
introduced and studied by several authors. These investigations utilized tools from
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different areas of mathematics, e.g. combinatorics, coding theory, lattice theory, anal-
ysis, fuzzy mathematics. Our goal is to provide a general setting that unifies these
approaches. This general framework encompasses prime implicants of Boolean func-
tions and concepts of a formal context as special cases, and it has close connections
to graph theory and to proximity spaces.

The notion of an island as a mathematical concept occurred first in Czédli
[3], where a rectangular board was considered with a real number assigned to each
cell of the board, representing the height of that cell. A set S of cells forming a
rectangle is called an island, if the minimum height of S is greater then the height
of any cell around the perimeter of S, since in this case S can become a piece of
land surrounded by water after a flood producing an appropriate water level. The
motivation to investigate such islands comes from Foldes and Singhi [9], where
islands on a 1×n board (so-called full segments) played a key role in characterizing
maximal instantaneous codes.

The main result of [3] is that the maximum number of islands on an m × n

board is ⌊(mn+m+ n− 1) /2⌋. However, the size of a system of islands (i.e., the
collection of all islands appearing for given heights) that is maximal with respect to
inclusion (not with respect to cardinality) can be as low as m+ n− 1 [18]. Another
important observation of [3] is that any two islands are either comparable (i.e. one
is contained in the other) or disjoint; moreover, disjoint islands cannot be too close
to each other (i.e. they cannot have neighboring cells). It was also shown in [3] that
these properties actually characterize systems of islands. We refer to such a result
as a “dry” characterization, since it describes systems of islands in terms of intrinsic
conditions, without referring to heights and water levels.

The above-mentioned paper [3] of Gábor Czédli was a starting point for many
investigations exploring several variations and various aspects of islands. Square
islands on a rectangular board have been considered in [15, 20], and islands have
been studied also on cylindrical and toroidal boards [1], on triangular boards [14,19],
on higher dimensional rectangular boards [24] as well as in a continuous setting
[21,25]. If we allow only a given finite subset of the reals as possible heights, then
the problem of determining the maximum number of islands becomes considerably
more difficult; see, e.g. [13,17,22]. Islands also appear naturally as cuts of lattice-
valued functions [16]; furthermore, order-theoretic properties of systems of islands
proved to be of interest on their own, and they have been investigated in lattices and
partially ordered sets [4,6,12]. The notion of an island is an elementary combinatorial
concept, yet it leads immediately to open problems, therefore it is a suitable topic
to introduce students to mathematical research [23].

In this paper we introduce a general framework for islands that subsumes
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all of the earlier studied concepts of islands on finite boards. We will axiomatize
those situations where islands have the “comparable or disjoint” property mentioned
above, and we will also present dry characterizations of systems of islands.

2. Definitions and examples

Our landscape is given by a nonempty base set U , and a function h : U → R that
assigns to each point u ∈ U its height h (u). If the minimum height minh (S) :=

min {h (u) : u ∈ S} of a set S ⊆ U is greater than the height of its surroundings,
then S can become an island if the water level is just below minh (S). To make this
more precise, let us fix two families of sets C,K ⊆ P (U), where P (U) denotes the
power set of U . We do not allow islands of arbitrary “shapes”: only sets belonging
to C are considered as candidates for being islands, and the members of K describe
the “surroundings” of these sets.

Definition 2.1. An island domain is a pair (C,K), where C ⊆ K ⊆ P (U) for some
nonempty finite set U such that U ∈ C. By a height function we mean a map
h : U → R.

Throughout the paper we will always implicitly assume that (C,K) is an
island domain. We denote the cover relation of the poset (K,⊆) by ≺, and we write
K1 � K2 if K1 ≺ K2 or K1 = K2.

Definition 2.2. Let (C,K) be an island domain, let h : U → R be a height function
and let S ∈ C be a nonempty set.

(i) We say that S is a pre-island with respect to the triple (C,K, h), if every
K ∈ K with S ≺ K satisfies

minh (K) < minh (S) .

(ii) We say that S is an island with respect to the triple (C,K, h), if every K ∈ K

with S ≺ K satisfies

h (u) < minh (S) for all u ∈ K \ S.

The system of (pre-)islands corresponding to (C,K, h) is the set

{S ∈ C \ {∅} : S is a (pre-)island w.r.t. (C,K, h)} .

By a system of (pre-)islands corresponding to (C,K) we mean a set S ⊆ C such
that there is a height function h : U → R so that the system of (pre-)islands
corresponding to (C,K, h) is S.
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Remark 2.3. Let us make some simple observations concerning the above definition.
(a) Every nonempty set S in C is in fact an island for some height function h.

(b) If S is an island with respect to (C,K, h), then S is also a pre-island with
respect to (C,K, h). The converse is not true in general; however, if for every
nonempty C ∈ C and K ∈ K with C ≺ K we have |K \ C| = 1, then the two
notions coincide.

(c) The set U is always a (pre-)island. If S is a (pre-)island that is different from
U , then we say that S is a proper (pre-)island.

(d) If S is a pre-island with respect to (C,K, h), then the inequality minh (K) <

minh (S) of (i) holds for all K ∈ K with S ⊂ K (not just for covers of S).
(e) Let C ⊆ K′ ⊆ K. It is easy to see that any S ∈ C which is a pre-island with

respect to the triple (C,K, h) is also a pre-island with respect to (C,K′, h).
(f) The numerical values of the height function h are not important; only the

partial ordering that h establishes on U is relevant. In particular, one could
assume without loss of generality that the range of h is contained in the set
{0, 1, . . . , |U | − 1}.

Many of the previously studied island concepts can be interpreted in terms of
graphs as follows.

Example 2.4. Let G = (U,E) be a connected simple graph with vertex set U and
edge set E; let K consist of the connected subsets of U , and let C ⊆ K such that
U ∈ C. In this case the second item of Remark 2.3 applies, hence pre-islands and
islands are the same. Let us assume that G is connected, and let C consist of the
connected convex sets of vertices. (A set is called convex if it contains all shortest
paths between any two of its vertices.) If G is a path, then the islands are exactly
the full segments considered in [9], and if G is a square grid (the product of two
paths), then we obtain the rectangular islands of [3]. Square islands on a rectangular
board [15,20], islands on cylindrical and toroidal boards [1], on triangular boards
[14,19] and on higher dimensional rectangular boards [24] also fit into this setting.

Surprisingly, formal concepts and prime implicants are also pre-islands in
disguise.

Example 2.5. Let A1, . . . , An be nonempty sets, and let I ⊂ A1 × · · · ×An. Let us
define

U = A1 × · · · ×An,

K = {B1 × · · · ×Bn : ∅ 6= Bi ⊆ Ai, 1 ≤ i ≤ n} ,

C = {C ∈ K : C ⊆ I} ∪ {U},
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and let h : U −→ {0, 1} be the height function given by

h (a1, . . . , an) :=

{

1, if (a1, . . . , an) ∈ I,

0, if (a1, . . . , an) ∈ U \ I,
for all (a1, . . . , an) ∈ U.

It is easy to see that the pre-islands corresponding to the triple (C,K, h) are exactly
U and the maximal elements of the poset (C \ {U} ,⊆).

Example 2.6. Let (G,M, I), I ⊆ G×M be a formal context, and let us apply the
above construction with A1 = G, A2 = M and U = A1 × A2. Then the proper
pre-islands correspond to the concepts of the context (G,M, I) with nonempty
extent and intent [10]: the island B1 ×B2 corresponds to the concept (B1, B2).

Example 2.7. Consider the case A1 = · · · = An = {0, 1} in Example 2.5. Then the
height function h is an n-ary Boolean function, and it is not hard to check that the
pre-islands corresponding to (C,K, h) are U and the prime implicants of h [2].

Remark 2.8. For any given island domain (C,K), maximal families of (pre-)islands
are realized by injective height functions. To see this, let us assume that h is a
non-injective height function, i.e. there exists a number z in the range of h such
that h−1 (z) = {s1, . . . , sm} with m ≥ 2. The following “refinement” procedure
constructs another height function g so that every (pre-)island corresponding to
(C,K, h) is also a (pre-)island with respect to (C,K, g). Let y be the largest value
of h below z (or z − 1 if z is the minimum value of the range of h), and let w be
the smallest value of h above z (or z + 1 if z is the maximum value of the range of
h). For any u ∈ U , we define g (u) by

g (u) =

{

y + i
w − y

m+ 1
, if u = si,

h (u) , if h(u) 6= z.

By repeatedly applying this procedure we obtain an injective height function without
losing any pre-islands. Note that injective height functions correspond to linear
orderings of U (cf. the last observation of Remark 2.3).

Example 2.9. Let U be a finite projective plane of order p, thus U has m := p2+p+1

points. Let C = K consist of the whole plane, the lines, the points and the empty
set. Then the greatest possible number of pre-islands is p2 + 2 = m− p+ 1. Indeed,
as explained in Remark 2.8, the largest systems of pre-islands emerge with respect
to linear orderings of U . So let us consider a linear order on U , and let 0 and 1

denote the smallest and largest elements of U , respectively. In other words, we have
h (0) < h(x) < h (1) for all x ∈ U \ {0,1}. Clearly, a line is a pre-island iff it does
not contain 0, and there are m−p−1 such lines. The only other pre-islands are the
point 1 and the entire plane, hence we obtain m− p− 1+2 = m− p+1 pre-islands.
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It has been observed in [3,14,15] that any two islands on a square or triangular
grid with respect to a given height function are either comparable or disjoint. This
property is formalized in the following definition, which was introduced in [4].

Definition 2.10. A family H of subsets of U is CD-independent if any two members
of H are either comparable or disjoint, i.e. for all A,B ∈ H at least one of A ⊆ B,
B ⊆ A or A ∩B = ∅ holds.

Note that CD-independence is also known as laminarity [21,25]. In general, the
properties of CD-independence and being a system of pre-islands are independent
from each other, as the following example shows.

Example 2.11. Let U = {a, b, c, d, e} and K = C = {{a, b} , {a, c} , {b, d} , {c, d},
U}. Let us define a height function h on U by h (a) = h (b) = h (c) = h (d) = 1,
h (e) = 0. It is easy to verify that every element of C is a pre-island with respect to
this height function, but C is not CD-independent. On the other hand, consider the
CD-independent family H = {{a, b} , {c, d} , U}. We claim that H is not a system
of pre-islands. To see this, assume that h is a height function such that the system
of pre-islands corresponding to (C,K, h) is H. Let us write out the definition of a
pre-island for S = {a, b} and S = {c, d} with K = U :

min (h (a) , h (b)) > minh (U) ,

min (h (c) , h (d)) > minh (U) .

Taking the minimum of these two inequalities, we obtain

min (h (a) , h (b) , h (c) , h (d)) > minh (U) .

This immediately implies that min (h (a) , h (c)) > minh (U). Since the only element
of K properly containing {a, c} is U , we can conclude that {a, c} is also a pre-island
with respect to h, although {a, c} /∈ H.

As CD-independence is a natural and desirable property of islands that was
crucial in previous investigations, we will mainly focus on island domains (C,K)

whose systems of pre-islands are CD-independent. We characterize such island
domains in Theorem 4.8, and we refer to them as connective island domains (see
Definition 4.1).

The most fundamental questions concerning pre-islands are the following:
Given an island domain (C,K) and a family H ⊆ C, how can we decide if there
is a height function h such that H is the system of pre-islands corresponding to
(C,K, h)? How can we find such a height function (if there is one)? Concerning the
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first question, we give a dry characterization (i.e., a characterization that does not
involve height functions and water levels, as described in the Introduction) of systems
of pre-islands corresponding to connective island domains in Theorem 4.9, and in
Corollary 5.9 we characterize systems of islands corresponding to so-called proximity

domains (see Definition 5.7). These results generalize earlier dry characterizations
(see, e.g. [3, 14, 15]), since an island domain (C,K) corresponding to a graph (cf.
Example 2.4) is always a connective island domain and also a proximity domain.
Concerning the second question, we give a canonical construction for a height
function (Definition 3.4), and we prove in Sections 4 and 5 that this height function
works for pre-islands in connective island domains and for islands in proximity
domains.

3. Pre-islands and admissible systems

In this section we present a condition that is necessary for being a system of pre-
islands, which will play a key role in later sections. Although this necessary condition
is not sufficient in general, we will use it to obtain a characterization of maximal

systems of pre-islands.

Definition 3.1. Let H ⊆ C \ {∅} be a family of sets such that U ∈ H. We say that
H is admissible (with respect to (C,K)), if for every nonempty antichain A ⊆ H,

∃H ∈ A such that ∀K ∈ K : H ⊂ K =⇒ K *
⋃

A. (1)

Remark 3.2. Let us note that if H is admissible, then (1) holds for all nonempty
A ⊆ H (not just for antichains). Indeed, ifM denotes the set of maximal members
of A, then M is an antichain. Thus the admissibility of H implies that there is
H ∈M ⊆ A such that for all K ∈ K with H ⊂ K we have K *

⋃

M =
⋃

A.

Obviously, any subfamily of an admissible family is also admissible, provided
that it contains U . As we shall see later, in some important special cases a stronger
version of admissibility holds, where the existential quantifier is replaced by a
universal quantifier in (1): for every nonempty antichain A ⊆ H,

∀H ∈ A ∀K ∈ K : H ⊂ K =⇒ K *
⋃

A. (2)

Proposition 3.3. Every system of pre-islands is admissible.

Proof. Let h : U → R be a height function and let S be the system of pre-islands
corresponding to (C,K, h). Clearly, we have ∅ /∈ S and U ∈ S. Let us assume for
contradiction that there exists an antichain A = {Si : i ∈ I} ⊆ S such that (1)
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does not hold. Then for every i ∈ I there exists Ki ∈ K such that Si ⊂ Ki and
Ki ⊆

⋃

i∈I
Si. Since Si is a pre-island, we have

minh (Si) > minh (Ki) ≥ minh
(

⋃

i∈I

Si

)

for all i ∈ I. Taking the minimum of these inequalities we arrive at the contradiction

min {minh (Si) | i ∈ I} > minh
(

⋃

i∈I

Si

)

.

The converse of Proposition 3.3 is not true in general: it is straightforward to
verify that the family H considered in Example 2.11 is admissible, but, as we have
seen, it is not a system of pre-islands. However, we will prove in Proposition 3.6
that for every admissible family H, there exists a height function such that the
corresponding system of pre-islands contains H. First we give the construction of
this height function, and we illustrate it with some examples.

Definition 3.4. Let H ⊆ C be an admissible family of sets. We define subfamilies
H(i) ⊆ H (i = 0, 1, 2, . . .) recursively as follows.

Let H(0) = {U}. For i > 0, if H 6= H(0) ∪ · · · ∪ H(i−1), then let H(i) consist of
all those sets H ∈ H \ (H(0) ∪ · · · ∪ H(i−1)) that have the following property:

∀K ∈ K : H ⊂ K =⇒ K *
⋃

(

H \ (H(0) ∪ · · · ∪ H(i−1))
)

. (3)

Since H is finite and admissible, after finitely many steps we obtain a partition
H = H(0)∪· · ·∪H(r) (cf. Remark 3.2). The canonical height function corresponding

to H is the function hH : U → N defined by

hH (x) := max
{

i ∈ {1, . . . , r} : x ∈
⋃

H(i)
}

for all x ∈ U. (4)

Observe that every H(i) consists of some of the maximal members of H \
(H(0) ∪ · · · ∪H(i−1)) = H(i) ∪ · · · ∪H(r). However, if H satisfies (2) for all antichains
A ⊆ H, then the word “some” can be replaced by “all ” in the previous sentence,
and in this case hH can be computed just from H itself, without making reference
to K. To illustrate this, let us consider a CD-independent family H. Clearly, for
every u ∈ U , the set of members of H containing u is a finite chain. The standard

height function of H assigns to each element u the length of this chain, i.e. one less
than the number of members of H that contain u. (Note that the definition of a
standard height function in [17] differs slightly from ours.) It is easy to see that if
H satisfies (2), then the canonical height function of h coincides with the standard
height function. However, in general the two functions might be different.
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(a) Standard height function (b) Canonical height function

Figure 1. A CD-independent family with two different height functions

Figure 1 represents the standard and the canonical height functions for the
same CD-independent family, with greater heights indicated by darker colors. We
can see from Figure 1b that only two of the four maximal members of H \ {U}
belong to H(1), thus (2) fails here. (In order to make the picture comprehensible,
only members of C are shown, althoughK is also needed to determine hH (Figure 1b).
On the other hand, the standard height function (Figure 1a) can be read directly
from the figure.)

The next example shows that there exist CD-independent systems of pre-
islands for which the standard height function is not the right choice. However,
in Section 5 we will see that for a wide class of island domains, including those
corresponding to graphs (cf. Example 2.4), the standard height function is always
appropriate.

Example 3.5. Let U = {a, b, c, d}, C = {A,B,U} and K = {A,B,U,K}, where
A = {a}, B = {b, c} and K = {a, c}. Then the family H = {A,B,U} is admissible;
the corresponding partition is H(0) = {U}, H(1) = {B}, H(2) = {A}, and the
canonical height function is given by hH (a) = 2, hH (b) = hH (c) = 1, hH (d) = 0.
It is straightforward to verify that H is the system of pre-islands corresponding to
(C,K, hH). However, the standard height function assigns the value 1 to a, and thus
A is not a pre-island with respect to the standard height function of H.

Proposition 3.6. If H ⊆ C is an admissible family of sets and hH is the correspond-

ing canonical height function, then every member of H is a pre-island with respect

to (C,K, hH).
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Proof. Let H ⊆ C be admissible, and let us take the partition H = H(0)∪ · · ·∪H(r)

given in Definition 3.4. For each H ∈ H, there is a unique i ∈ {1, . . . , r} such
that H ∈ H(i), and we have minhH (H) ≥ i by (4). Using this observation it is
straightforward to verify that H is indeed a pre-island with respect to (C,K, hH).

As an immediate consequence of Propositions 3.3 and 3.6 we have the following
corollary.

Corollary 3.7. A subfamily of C is a maximal system of pre-islands if and only if

it is a maximal admissible family.

We have seen in Example 2.11 that it is possible that a subset of a system of
pre-islands is not a system of pre-islands. The notion of admissibility allows us to
describe those situations where this cannot happen.

Proposition 3.8. The following two conditions are equivalent for any island domain

(C,K):

(i) Any subset of a system of pre-islands corresponding to (C,K) that contains U

is also a system of pre-islands.

(ii) The systems of pre-islands corresponding to (C,K) are exactly the admissible

families.

Proof. The implication (ii)=⇒(i) follows from the simple observation that any
subset of an admissible family containing U is also admissible. Assume now that (i)
holds. In view of Proposition 3.3, it suffices to prove that every admissible family is
a system of pre-islands. Let H be an admissible family, then Proposition 3.6 yields
a system of pre-islands containing H. Using (i) we can conclude that H is a system
of pre-islands.

4. CD-independence and connective island domains

As we have seen in Example 2.11, a system of pre-islands is not necessarily CD-
independent. In this section we present a condition that characterizes those island
domains (C,K) whose systems of pre-islands are CD-independent, and we will prove
that admissibility is necessary and sufficient for being a systems of pre-islands in
this case.

Definition 4.1. An island domain (C,K) is a connective island domain if

∀A,B ∈ C : (A ∩B 6= ∅ and B * A) =⇒ ∃K ∈ K : A ⊂ K ⊆ A ∪B. (5)
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Figure 2. Illustration to the definition of an island domain

Remark 4.2. Observe that if A ⊂ B, then (5) is satisfied with K = B. Thus it
suffices to require (5) for sets A,B that are not comparable or disjoint. In this case,
by switching the role of A and B, we obtain that there is also a set K ′ ∈ K such
that B ⊂ K ′ ⊆ A ∪B (see Figure 2).

Remark 4.3. The terminology is motivated by the intuition that the set K in
Definition 4.1 somehow connects A and B. Let us note that if (C,K) corresponds to
a graph, as in Example 2.4, then (C,K) is a connective island domain. Furthermore,
it is not difficult to prove that if (C,K) is a connective island domain with C = K,
then (5) is equivalent to the fact that the union of two overlapping members of K
belongs to K (see (9) in Section 5), which is an important property of connected
sets.

We will prove that pre-islands corresponding to connective island domains are
not only CD-independent, but they also satisfy the following stronger independence
condition, usually called CDW-independence, which was introduced in [6].

Definition 4.4. A family H ⊆ P (U) is weakly independent (see [5]) if

H ⊆
⋃

i∈I

Hi =⇒ ∃i ∈ I : H ⊆ Hi (6)

holds for all H ∈ H, Hi ∈ H (i ∈ I). If H is both CD-independent and weakly
independent, then we say that H is CDW-independent.

Remark 4.5. Let H ⊆ P (U) be a CD-independent family, and let H ∈ H. Let
M1, . . . ,Mm be those elements of H that are properly contained in H and are
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maximal with respect to this property. Then M1, . . . ,Mm are pairwise disjoint, and
M1 ∪ · · · ∪Mm ⊆ H. Weak independence of H is equivalent to the fact that this
latter containment is strict for every H ∈ H. In particular, in the definition of weak
independence it suffices to require (6) for pairwise disjoint sets Hi.

Lemma 4.6. If (C,K) is a connective island domain, then every admissible subfamily

of C is CDW-independent.

Proof. Let (C,K) be a connective island domain, and let H ⊆ C be an admissible
family.

If A,B ∈ H are neither comparable nor disjoint, then (5) and Remark 4.2
show that A := {A,B} is an antichain for which (1) does not hold (see Figure 2).
Thus H is CD-independent.

To prove that H is also CDW-independent, we apply Remark 4.5. Let us
assume for contradiction that M1 ∪ · · · ∪ Mm = H for pairwise disjoint sets
M1, . . . ,Mm ∈ H (m ≥ 2) and H ∈ H. Since Mi ⊂ H ∈ K and H ⊆M1 ∪ · · · ∪Mm

for i = 1, . . . ,m, we see that (1) fails for the antichain A := {M1, . . . ,Mm}, contra-
dicting the admissibility of H.

As the next example shows, a CDW-independent family in a connective island
domain is not necessarily admissible.

Example 4.7. Let us consider the same sets U , A, B and K as in Example 3.5,
and let C = {A,B,U} and K = {A,B,U,K,L}, where L = {a, b, c}. Then (C,K)

is a connective island domain and {A,B,U} is CDW-independent, but it is not
admissible (hence not a system of pre-islands).

Theorem 4.8. The following three conditions are equivalent for any island domain

(C,K):

(i) (C,K) is a connective island domain.

(ii) Every system of pre-islands corresponding to (C,K) is CD-independent.

(iii) Every system of pre-islands corresponding to (C,K) is CDW-independent.

Proof. It is obvious that (iii)=⇒(ii).
To prove that (ii)=⇒(i), let us assume that (C,K) is not a connective island

domain. Then there exist A,B ∈ C that are not comparable or disjoint such that
there is no K ∈ K with A ⊂ K ⊆ A ∪B. We define a height function h : U → N as
follows:

h (x) :=







2, if x ∈ B,
1, if x ∈ A \B,
0, if x /∈ A ∪B.
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We claim that both A and B are pre-islands with respect to (C,K, h). This is clear
for B, as minh (K) ≤ 1 for any proper superset K of B. On the other hand, our
assumption implies that for any K ⊃ A we have K * A ∪ B, hence minh (K) =

0 < minh (A) = 1, thus A is indeed a pre-island. Since A and B are not CD, the
system of pre-islands corresponding to (C,K, h) is not CD-independent.

Finally, for the implication (i)=⇒(iii), assume that (C,K) is a connective island
domain and S is a system of pre-islands corresponding to (C,K). By Proposition 3.3,
S is admissible, and then Lemma 4.6 shows that S is CDW-independent.

Our final goal in this section is to prove that if (C,K) is a connective island
domain, then the systems of pre-islands are exactly the admissible subfamilies of C.
Recall that this is not true in general if (C,K) is not a connective island domain (see
Example 2.11), but the two notions coincide for maximal families (Corollary 3.7).

Theorem 4.9. If (C,K) is a connective island domain, then a subfamily of C is a

system of pre-islands if and only if it is admissible.

Proof. We have already seen in Proposition 3.3 that every system of pre-islands
is admissible. Let us now assume that (C,K) is a connective island domain and let
H ⊆ C be admissible. From Lemma 4.6 it follows thatH is CDW-independent. Let S
be the system of pre-islands corresponding to (C,K, hH), where hH is the canonical
height function of H (see Definition 3.4). Then S is also CDW-independent by
Theorem 4.8. From Proposition 3.6 it follows that H ⊆ S, and we are going to prove
that we actually have H = S.

Suppose for contradiction that there exists S ∈ S such that S /∈ H. Since H is
CD-independent and finite, the members ofH that contain S form a nonempty finite
chain. Denoting the least element of this chain by H, we have S ⊂ H, as S /∈ H. Let
M1, . . . ,Mm denote those elements of H that are properly contained in H and are
maximal with respect to this property (if there are such sets). Clearly, M1, . . . ,Mm

are pairwise disjoint, and M1 ∪ · · · ∪Mm ⊂ H, since H is CDW-independent (see
Remark 4.5).

We claim that S * M1 ∪ · · · ∪ Mm. Assuming on the contrary that S ⊆

M1∪ · · · ∪Mm, the CDW-independence of S implies that there is an i ∈ {1, . . . ,m}

such that S ⊆Mi. However, this contradicts the minimality of H. Any two elements
of H \ (M1 ∪ · · · ∪Mm) are contained in exactly the same members of H, therefore
hH is constant, say constant c, on this set (see Figure 3; cf. also Figure 1b). On
the other hand, if x ∈ M1 ∪ · · · ∪ Mm, then clearly we have hH (x) ≥ c, hence
minhH (H) = c. Since S is not covered by the sets Mi, it contains a point u from
H \ (M1 ∪ · · · ∪Mm), therefore minhH (S) = h (u) = c. Thus we have S ⊂ H ∈ K
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Figure 3. Illustration to the proof of Theorem 4.9

and minhH (S) = minhH (H), contradicting that S is a pre-island with respect to
(C,K, hH).

The maximum number of (pre-)islands certainly depends on the structure of
the island domain (C,K). Härtel [11] proved that the maximum number of rect-
angular islands on a 1 × n board is n, and Czédli [3] generalized this result by
showing that the maximum number of rectangular islands on an n ×m board is
⌊(mn+m+ n− 1) /2⌋. Although these are the only cases where the exact value is
known, there are estimates in several other cases [1, 14,15,20,24]. In full generality,
we have the following upper bound.

Theorem 4.10. If (C,K) is a connective island domain and S is a system of pre-

islands corresponding to (C,K), then |S| ≤ |U |.

Proof. Let (C,K) be a connective island domain and let S ⊆ C \ {∅} be a system
of pre-islands corresponding to (C,K). By Theorem 4.8, S is CDW-independent,
and hence S ∪ {∅} is also CDW-independent. From the results of [6] it follows that
every maximal CDW-independent subset of P (U) has |U |+ 1 elements. Thus we
have |S|+ 1 ≤ |U |+ 1.

Observe that the above-mentioned result of Härtel shows that the bound
obtained in Theorem 4.10 is sharp.

5. Islands and proximity domains

In this section we investigate islands, and we give a characterization of systems of
islands corresponding to island domains (C,K) satisfying certain natural conditions.
We define a binary relation δ ⊆ C × C that expresses the fact that a set B ∈ C is in
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some sense close to a set A ∈ C:

AδB ⇔ ∃K ∈ K : A � K and K ∩B 6= ∅. (7)

Remark 5.1. Let us note that the relation δ is not always symmetric. As an example,
consider a directed graph, and let C = K consist of U and of those sets S of vertices
that have a source. (By a source of a set S we mean a vertex s ∈ S from which all
other vertices of S can be reached by a directed path that lies entirely in S.) It is
easy to verify that in the graph a→ b→ c← d← e we have AδB but not BδA for
the sets A = {a, b} and B = {c, d}.

Definition 5.2. We say that A,B ∈ C are distant if neither AδB nor BδA holds.
Obviously, in this case A and B are also incomparable (in fact, disjoint), whenever
A,B 6= ∅. A nonempty family H ⊆ C will be called a distant family, if any two
incomparable members of H are distant.

Remark 5.3. It is not difficult to verify that relation δ satisfies the following prop-
erties for all A,B,C ∈ C whenever B ∪ C ∈ C:

AδB ⇒ B 6= ∅,

A ∩B 6= ∅ ⇒ AδB,

Aδ(B ∪ C)⇔ (AδB or AδC).

Lemma 5.4. If H ⊆ C is a distant family, then H is CDW-independent. Moreover,

if U ∈ H, then H is admissible.

Proof. Let H ⊆ C be a distant family, then H is clearly CD-independent; moreover,
it is easy to show using Remark 4.5 that H is CDW-independent.

Next let us assume that U ∈ H; we shall prove that H is admissible. Let
A ⊆ H be an antichain and let H ∈ A. If K ∈ K contains H properly, then there
is a cover K1 ∈ K of H such that H ≺ K1 ⊆ K. Since all members of A \ {H} are
distant from H, none of them can intersect K1, and therefore we have K1 *

⋃

A,
and hence K *

⋃

A.

Remark 5.5. Note that we have proved that H satisfies (2) for every antichain
A ⊆ H. Thus hH is the standard height function of H.

Theorem 5.6. Let (C,K) be a connective island domain and let H ⊆ C \ {∅} with

U ∈ H. If H is a distant family, then H is a system of islands; moreover, H is the

system of islands corresponding to its standard height function.
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Proof. Let H ⊆ C \ {∅} be a distant family such that U ∈ H. Applying Lemma 5.4
we obtain that H is admissible, hence H is the system of pre-islands corresponding
to (C,K, hH) by Theorem 4.9. Moreover, hH is the standard height function of H
by Remark 5.5.

To finish the proof, we will prove that each H ∈ H is actually an island with
respect to (C,K, hH). Suppose that K ∈ K is a cover of H. The distantness of H
implies that the only members of H that intersect K \H are the ones that properly
contain H. Since hH is the standard height function, hH (u) < minhH (H) follows
for all u ∈ K \H.

Definition 5.7. The island domain (C,K) is called a proximity domain, if it is a
connective island domain and the relation δ is symmetric for nonempty sets, that is

∀A,B ∈ C \ {∅} : AδB ⇔ BδA. (8)

If a relation δ defined on P (U) satisfies the three properties of Remark 5.3
and δ is symmetric for nonempty sets, then (U, δ) is called a proximity space. The
notion apparently goes back to Frigyes Riesz [26], however this axiomatization is
due to Vadim A. Efremovich (see [7]).

Proposition 5.8. If (C,K) is a proximity domain, then any system of islands cor-

responding to (C,K) is a distant system.

Proof. Let (C,K) be a proximity domain, and let S be the system of islands corre-
sponding to (C,K, h) for some height function h. Since (C,K) is a connective island
domain, S is CD-independent according to Theorem 4.8. Therefore, if A,B ∈ S

are incomparable, then we have A ∩ B = ∅. Assume for contradiction that AδB,
i.e. that there is a set K ∈ K such that A ≺ K and B ∩ K 6= ∅. Since A and B

are disjoint, there exists an element b ∈ (B ∩K) \A. Similarly, as we have BδA by
(8), there exists an element a ∈ (A ∩K ′) \ B for some K ′ ∈ K with B ≺ K ′. By
making use of the fact that both A and B are islands with respect to (C,K, h), we
obtain the following contradicting inequalities:

h(b) < minh(A) ≤ h(a),

h(a) < minh(B) ≤ h(b).

From Theorem 5.6 and Proposition 5.8 we obtain immediately the following
characterization of systems of islands for proximity domains.

Corollary 5.9. If (C,K) is a proximity domain, and H ⊆ C \ {∅} with U ∈ H, then

H is a system of islands if and only if H is a distant family. Moreover, in this case

H is the system of islands corresponding to its standard height function.
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Finally, let us consider the following condition on (C,K), which is stronger
than that of being a connective island domain:

∀K1,K2 ∈ K : K1 ∩K2 6= ∅ =⇒ K1 ∪K2 ∈ K. (9)

Observe that if we have a graph structure on U , and (C,K) is a corresponding island
domain (cf. Example 2.4), then (9) holds.

Theorem 5.10. Suppose that (C,K) satisfies condition (9), and assume that for

all C ∈ C, K ∈ K with C ≺ K we have |K \ C| = 1. Then (C,K) is a proximity

domain, and pre-islands and islands corresponding to (C,K) coincide. Therefore, if

H ⊆ C \ {∅} and U ∈ H, then H is a system of (pre-)islands if and only if H is a

distant family. Moreover, in this case H is the system of (pre-)islands corresponding

to its standard height function.

Proof. Let A,B ∈ C \ {∅} be such that AδB, i.e. K ∩B 6= ∅ for some K ∈ K with
A � K. If A ∩ B 6= ∅, then clearly BδA holds. Suppose now that A ∩ B = ∅. By
our assumption, K = A ∪ {b} for some b ∈ B. From (9) it follows that K ∪B ∈ K.
Since B ⊂ A ∪ B = K ∪ B ∈ K, there exists a cover K ′ ∈ K of B such that
B ≺ K ′ ⊆ A ∪ B. Clearly, we have K ′ ∩ A 6= ∅, hence BδA, and this proves that
the relation δ is symmetric. Condition (9) is stronger than (5), therefore (C,K) is a
proximity domain.

From our assumptions it is trivial that every pre-island with respect to (C,K)

is also an island. The last two statements follow then from Corollary 5.9.

Corollary 5.11. Let G be a graph with vertex set U ; let (C,K) be an island domain

corresponding to G (cf. Example 2.4), and let H ⊆ C \ {∅} with U ∈ H. Then H is

a system of (pre-)islands if and only if H is distant; moreover, in this case H is the

system of (pre-)islands corresponding to its standard height function.

6. Concluding remarks and an alternative framework

We introduced the notion of a (pre-)island corresponding to an island domain (C,K),
where U ∈ C ⊆ K ⊆ P (U) for a nonempty finite set U . We described island domains
(C,K) having CD-independent systems of pre-islands, and we characterized systems
of (pre-)islands for such island domains. In the general case, when no assumption
is made on (C,K), we gave a necessary condition for a family of sets to be a system
of pre-islands, and it remains an open problem to find an appropriate necessary
and sufficient condition. Nevertheless, we obtained a complete characterization of
maximal systems of pre-islands in this general case. Determining the size of these
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maximal systems of pre-islands for specific island domains (C,K) has been, and
continues to be, a topic of active research.

Before concluding the paper, let us propose another possible approach to define
islands. Let U be a nonempty finite set and let C ⊆ P (U) with U ∈ C, as before.
We describe the “surroundings” of members of C by means of a relation η ⊆ U × C,
where uηC means that the point u ∈ U is close to the set C ∈ C. We require η to
satisfy the following very natural axiom:

∀u ∈ U ∀C ∈ C : u ∈ C =⇒ uηC. (10)

Examples of such “point-to-set” proximity relations include closure systems (in
particular, topological spaces) with uηC if and only if u belongs to the closure of C,
and graphs with uηC if and only if u belongs to the neighborhood of C. We shall
call a pair (C, η) satisfying (10) an island domain.

For any C ∈ C, the set ∂C := {u ∈ U : uηC and u /∈ C} is the set of points
that surround C (note that this is not the usual notion of boundary for topological
spaces). Therefore, we define islands corresponding to (C, η) as follows: If h : U → R
is a height function and S ∈ C, then we say that S is an island with respect to

(C, η, h), if h (u) < minh (S) holds for all u ∈ ∂S. This definition is similar in spirit
to the definition of an island corresponding to an island domain (C,K); in fact, it
is a generalization of it. To see this, let us consider a pair (C,K), and let us define
η ⊆ U × C as follows:

uηC ⇐⇒ ∃K ∈ K : C � K and u ∈ K.

It is easy to verify that the islands corresponding to (C, η) are exactly the islands
corresponding to (C,K).

Let us now briefly sketch how to adapt the definitions of admissibility, connec-
tive island domain and distantness to this setting. We shall say that H ⊆ C \ {∅} is
admissible, if U ∈ H, and for every antichain A ⊆ H we have

∃H ∈ A such that ∀u ∈ U : u ∈ ∂H =⇒ u /∈
⋃

A.

We call the pair (C, η) a connective island domain if

∀A,B ∈ C : (A ∩B 6= ∅ and B * A) =⇒ ∃u ∈ B \A : uηA.

To define distantness, we extend η to a “set-to-set” proximity relation δ ⊆ C × C:
for A,B ∈ C, let AδB if and only if there exists a point u ∈ B with uηA. Using this
relation δ, we can define distant families just as in Definition 5.2.
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Most of the results of this paper remain valid with these new definitions, and
the proofs require only minor and quite straightforward modifications. The only
exceptions are Lemma 5.4, where we need the extra assumption that (C, η) is a
connective island domain, and Theorem 5.10, which cannot be interpreted in this
framework, as it refers to K. The following theorem summarizes the main results.

Theorem 6.1. Let U be a nonempty finite set, let C ⊆ P (U) with U ∈ C, and let

η ⊆ U × C satisfy (10).

(i) A family H ⊆ C \ {∅} is contained in a system of islands if and only if H is

admissible.

(ii) A family H ⊆ C \ {∅} is a maximal system of islands if and only if H is a

maximal admissible family.

(iii) The pair (C, η) is a connective island domain if and only if all systems of

islands are CD-independent (equivalently, CDW-independent).

(iv) If (C, η) is a connective island domain, then a family H ⊆ C \ {∅} is a system

of islands if and only if H is admissible.

(v) If (C, η) is a connective island domain and the corresponding relation δ is

symmetric, then a family H ⊆ C \ {∅} is a system of islands if and only if

H is distant and U ∈ H. Moreover, in this case H is the system of islands

corresponding to its standard height function.

Corollary 6.2. Let G = (U,E) be a connected simple graph, let C ⊆ P (U) be a

family of connected subsets with U ∈ C, and let us define η ⊆ U × C by

uηC ⇐⇒ u ∈ C or ∃v ∈ C : uv ∈ E.

Then the following three conditions are equivalent for any H ⊆ C \ {∅} with U ∈ H:

(i) H is a system of islands corresponding to (C, η).

(ii) H is an admissibly family.

(iii) H is a distant family.

If these conditions hold, then H is the system of islands corresponding to its standard

height function.

Proof. The fact that C contains only connected sets ensures that (C, η) is a con-
nective island domain, and it is trivial that δ is symmetric, hence we can apply
Theorem 6.1.

Let us note that in Corollary 6.2 distantness of two sets A,B ∈ C means that
there is no edge with one endpoint in A and the other endpoint in B. Applying
this corollary to a square grid (on a rectangular, cylindrical or toroidal board) or
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to a triangular grid, and letting C consist of all rectangles, squares or triangles, we
obtain the earlier dry characterizations of islands as special cases.
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