CONGRUENCE DISTRIBUTIVITY AND
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ABSTRACT. We prove that the distributive resp. modular law holds
in congruence distributive resp. congruence modular varieties even
for tolerance relations.

Dedicated to Béla Csakany on his seventieth birthday

Let dist(z,y, z) resp. mod(z,y, z) denote the distributive law
eNyVz) < (zAy)V(zAz)
resp. the modular law
eANyV(xAz)) < (xAy)V(TAz).

For an algebra A, the set of tolerances and the lattice of congruences
of A will be denoted by Tol A and Con A, respectively. We say that
dist(tol,tol,tol) holds in A if T A(®V W) C (['A®) V(I' A V) is valid for
any ', ®, U € Tol A, where the meet resp. the join is the intersection
resp. the transitive closure of the union. I.e., denoting the transitive
closure by *, &V ¥ = (U U ¥)* = U* Vv d* (the second join is from
Con A) for any tolerances ® and U in the present paper throughout.
The meaning of mod(tol,tol,tol) is analogous.

Theorem 1. IfV is a congruence distributive resp. congruence mod-
ular variety then dist(tol,tol,tol) resp. mod(tol,tol,tol) holds in all alge-
bras of V.

Proof. Suppose V is congruence distributive. Then we have Jonsson
terms, cf. Jonsson [5], i.e. ternary V-terms to,...,t, for some even
n € Ng = {0,1,2,...} such that V satisfies the identities to(z,y, 2) =
z, ty(z,y,2) = 2z, ti(z,x,y) = tiy(z,x,y) for i even, t;(x,y,y) =
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tiv1(x,y,y) for i odd, and t;(x,y,x) = x for all i. Now let A € V,
[ e, ¥ e TolA and (a,b) € ' A(®V ). Then there is an even k and
there are elements ¢y = a,cy,... ,¢x_1,¢, = b such that (¢, ¢q) € ®
for i even, (¢;,civ1) € ¥ for ¢ odd and (a,b) = (cop, cx) € I'. Since
ti(a,u,b) = t;(t;(a,v,a),u,t;(b,v,b)) ' t;(t;(a,v,b),u,t;(a,v,b)) =
ti(av v, b)7
for all 7 and any u,v € A we have
(t;(a,u,b),t;(a,v,b)) €T. (1)
Now we define a sequence from a to b as follows:
a=to(a,co,b) =t1(a,co,b) D ti(a,c1,b) ¥ t1(a,ce,b) Pti(a,cs,b)
v . ..o tl(CL, Ck—1, b) v tl(a, Ck, b) = tl(a, b, b) = tQ(CL, b, b) =
ta(a, cg, b) Wita(a,cp1,b) P ta(a,cp2,0) VU ... Pty(a,co,b) =
ta(a, a,b) = ts(a,a,b) ¢ t3(a,ci,b) Vis(a,co,b) P ... U
ts(a,c,b) = ty(a, cg, b) ¥ ty(a,cp_1,0) ® ...
tn1(a,cx1,0) ¥ t, 1(a,ck,b) =t, 1(a,b,b) =t,(a,b,b) =b.
It follows from (1) that any two consecutive members of this series are
in(CN®)u('Ny) C(I'AP) v(I'NWP). Thus (a,b) € (I'AP)V(I'NT),
whence dist(tol,tol,tol) holds in V.

Now let V be congruence modular. Then we have Day terms, i.e.
quaternary V-terms mg, mq, ..., my for some 0 < k € Nq such that V
satisfies the identities

mo(x,y,u,v) =7, mk(x,y,u,v) =Yy
mi(xv Y, T, y) - mH—l(‘r: Y, T, y) for even,
mi(z,y, 2z, 2) = mip1(z,y, 2, 2) for i odd, and
m;(x,z,y,y) = x for all 7,

cf. Day [3]. First we show that, for any A € V and I', &, ¥ € Tol A,

IN(@o(CNW)od)C (DN VTNV, 2)
Let (a,b) € TN (P o (I'N¥)od). Then there are ¢,d € A with
(a,c),(d,b) € ®, (c,d) € I' N and, of course, (a,b) € I'. Consider
the elements d; = m;(a,b,c,d) for i = 0,1,... k, ¢, = m;(a,b,c,c) =
mit1(a, b, c,c) for i odd, and e; = m;(a,b,a,b) = m;1(a,b,a,b) for i
even. Then dy = a, di, = b, and (d;, €;), (e;,d;+1) € I' N for i odd.

For i even we have (d;, ;) (€;,d;11) € P,

d; = mi(a,b, c,d) = m;(m;(a,b,c,d), m;(a,b,c,d),a,a) T

m;(m;(a,a,c,c),m;(b,b,d,d),a,b) =m;(a,b,a,b) = e,
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i.e., (d“ ei) el'Nno. Slmllarly, (67;, di+1) el'nao.

Now (a,b) € ([ A®) V(' A W) follows from transitivity and from the
fact that all the (d;,e;) and (e;,d;+1) belong to (I' A®) V(I' A W). This
shows (2).

Now define &g = & and ¢, = P, 0 (['NV) o P, for n > 1. Notice
that all the ®,, belong to Tol A. We claim that, for all n € Ny,

rne, C(Ind)v(rnw). (3)

This is evident for n = 0. Assuming (3) for an arbitrary n and applying
(2) we obtain [N®,4; = TN (0 (TNW)od,) C (TNd,)V(TNT) C
ne)v(nu)v(Nne)=(C'Nnd®)Vv(CNY),ie. (3) holds for n+ 1.
Thus (3) holds for all n and we obtain T A(®V(I'AV)) =T N J{P, :
ne€ Ny} =U{NP, :n e Ny} C(I'NP)V(INWY). This proves
Theorem 1. O

Corollary 1. (Gumm [4]) IfV is a congruence modular variety then
it satisfies Gumm’s Shifting Principle, i.e., for any A € V, a,y €
Con A and ® € Tol A if (z,y), (u,v) € a, (z,u), (y,v) € ®, (u,v) € v
and aN® C v then (z,y) € 7.

Proof. (z,y) €anN(®V(aAy)) C(an®)V(aAy) SyVvy=7v. O

Notice that Theorem 1 also implies the Triangular Principle and the
Trapezoid Principle for congruence distributive varieties, cf. [1] and

2].

Now we give an example. Consider the monounary algebra B =
({0,1,2},—) where =0 = 0, —1 = 2 and —2 = 1. Then « with the
associated partition {{0}, {1,2}} is the only nontrivial congruence of
B, so Con B is distributive. Notice that

® = {(0,1),(1,0),(0,2),(2,0), (0,0), (1, 1), (2,2)}

is a tolerance and a N ®* Z (a N P)*. Hence the following statement
indicates that Theorem 1 cannot be extended for single algebras.

Proposition 1. If mod(tol,tol,tol) or dist(tol,tol,tol) holds in an alge-
bra A then T N ®* C(I'N®)* for any T', P € Tol A.

Proof. Apply mod(T', ®,0) or dist(I", ®, 0). O
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