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Abstract. For an arbitrary lattice identity implying modularity (or at least congruence
modularity) a Mal’tsev condition is given such that the identity holds in congruence lat-
tices of algebras of a variety if and only if the variety satisfies the corresponding Mal’tsev
condition.

It is an old problem if all congruence lattice identities are equivalent to Mal’tsev
(=Mal’cev) conditions. In other words, we say that a lattice identity λ can be
characterized by a Mal’tsev condition if there exists a Mal’tsev condition M such
that, for any variety V , λ holds in congruence lattices of all algebras in V if and only
if M holds in V ; and the problem is if all lattice identities can be characterized this
way. This problem was raised first in Grätzer [15], where the notion of a Mal’tsev
condition was defined. A strong Mal’tsev condition for varieties is a condition of
the form ”there exist terms h0, . . . , hk satisfying a set Σ of identities” where k is
fixed and the form of Σ is independent of the type of algebras considered. By a
Mal’tsev condition we mean a condition of the form ”there exists a natural number
n such that Pn holds” where the Pn are strong Mal’tsev conditions and Pn implies
Pn+1 for every n. The condition ”Pn implies Pn+1” is usually expressed by saying
that a Mal’tsev condition must be weakening in its parameter. (For a more precise
definition of Mal’tsev conditions cf. Taylor [23].) The problem was repeatedly asked
by several authors, including Taylor [23], Jónsson [13] and Freese and McKenzie
[11].

Certain lattice identities have known characterizations by Mal’tsev conditions.
The first two results of this kind are Jónsson’s characterization of (congruence)
distributivity by the existence of Jónsson terms, cf. Jónsson [12], and Day’s char-
acterization of (congruence) modularity by the existence of Day terms, cf. Day [8].
Since Day’s result will be needed in the sequel, we formulate it now. For n ≥ 2 let
(Dn) denote the strong Mal’tsev condition ”there are quaternary terms m0, . . . , mn
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satisfying the identities

m0(x, y, z, u) = x, mn(x, y, z, u) = u,

mi(x, y, y, x) = x for i = 0, 1, . . . , n,

mi(x, x, y, y) = mi+1(x, x, y, y) for i = 0, 1, . . . , n, i even,

mi(x, y, y, z) = mi+1(x, y, y, z) for i = 0, 1, . . . , n, i odd”.

Now Day’s celebrated result says that a variety V is congruence modular iff the
Mal’tsev condition ”(∃n)(Dn)” holds in V .

Jónsson terms and Day terms were soon followed by some similar characteriza-
tions for other lattice identities, given for example by Gedeonová [14] and Mederly
[19], but Nation [20] and Day [9] showed that these Mal’tsev conditions are equiv-
alent to the existence of Day terms or Jónsson terms; the reader is referred to
Jónsson [13] and Chapter XIII in Freese and McKenzie [11] for more details.

The next milestone is Chapter XIII in Freese and McKenzie’s book [11]. Let us
call a lattice identity λ in n2 variables a frame identity if λ implies modularity and
λ holds in a modular lattice iff it holds for the elements of every (von Neumann)
n-frame of the lattice. Freese and McKenzie showed that frame identities can be
characterized by Mal’tsev conditions. Although that time there was a hope that
their method combined with [17] gives a Mal’tsev condition for each λ that implies
modularity, cf. p. 155 in [11], Pálfy and Szabó [21] destroyed this expectation.

The goal of the present paper is to prove that each lattice identity implying
modularity is equivalent to a Mal’tsev condition. Moreover, this Mal’tsev condition
is very easy to construct. In order to formulate a slightly stronger statement, some
definitions come first.

A lattice identity λ is said to imply modularity in congruence varieties, in nota-
tion λ |=c mod, if for any variety V if all the congruence lattices Con(A), A ∈ V ,
satisfy λ then all these lattices are modular. If λ implies modularity in the usual
lattice theoretic sense then of course λ |=c mod as well. However, it was a great
surprise by Nation [20] that λ |=c mod is possible even when λ does not imply
modularity in the usual sense. Jónsson [13] gives an overview of similar results. We
mention that there is an algorithm to test if λ |=c mod, cf. [5], which is based on
Day and Freese [10].

Given a lattice term p and k ≥ 2, we define p(k) via induction as follows. If p

is a variable then let p(k) = p. If p = r ∧ s then let p(k) = r(k) ∩ s(k). Finally, if
p = r∨s then let p(k) = r(k) ◦s(k) ◦r(k) ◦s(k) ◦ . . . with k factors on the right. When
congruences or, more generally, reflexive compatible relations are substituted for
the variables of p(k) then the operations ∩ and ◦ will be interpreted as intersection
and relational product, respectively. Now and in the sequel by a lattice identity λ

we mean an inequality p ≤ q where p and q are lattice terms. This does not hurt
generality, for each p ≤ q is equivalent to an appropriate identity r = s modulo
lattice theory and vice versa. If λ : p ≤ q is a lattice identity and m, n ≥ 2 then we
can consider the inclusion p(m) ⊆ q(n). If A is an algebra then p(m) and q(n) do not
give congruences in general when their variables are substituted by congruences of
A. However, it makes sense to say that p(m) ⊆ q(n) holds or fails for congruences
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of A. Now Wille [24] and Pixley [22] give an easy algorithm to construct a strong
Mal’tsev condition M(p(m) ⊆ q(n)) such that, for any variety V , p(m) ⊆ q(n) holds
for congruences of all algebras in V if and only if M(p(m) ⊆ q(n)) holds in V . (Notice
that the construction of M(p(m) ⊆ q(n)) is outlined in Freese and McKenzie [11],
and, with the notation U(Gm(p) ≤ Gn(q)), it is detailed in [4].) Wille and Pixley
showed also that p(m) ⊆ q holds for congruences of algebras in V if and only if V
satisfies the Mal’tsev condition ”there is an n such that M(p(m) ⊆ q(n)) holds”;
this will be needed in our proof. Now we can formulate the main result.

Theorem 1. Let λ : p ≤ q be a lattice identity such that λ |=c modularity. Then
for any variety V the following two conditions are equivalent.

(a) For all A ∈ V, λ holds in the congruence lattice of A.
(b) V satisfies the Mal’tsev condition ”there is an n ≥ 2 such that M(p(3) ⊆ q(n))

and (Dn) hold”.

This paper will not detail the construction of M(p(3) ⊆ q(n)), but we mention
that if we consider λ : x∧(y∨(x∧z)) ≤ (x∧y)∨(x∧z), the modular law, then Day’s
characterization of congruence modularity becomes a particular case of Theorem 1.

Before proving Theorem 1 we give some definitions and remarks. Reflexive sym-
metric compatible relations of an algebra are called tolerances , cf. Chajda [1] for
an overview. The set of tolerances of A will be denoted by TolA. The transitive
closure of a tolerance Φ ∈ Tol A will be denoted by

Φ∗ =

∞⋃

n=1

(Φ ◦ Φ ◦ Φ ◦ . . .) (n factors).

Note that Φ∗ always belongs to ConA, the congruence lattice of A, and

α ∨ β = (α ∪ β)∗ (1)

holds for any α, β ∈ Con A. Our interest in tolerances started with generalizing the
Shifting Principle from Gumm [16] for congruence distributive varieties, cf. [2] and
[3]. It appeared soon that formulas give stronger generalizations than diagrams
both for the congruence distributive and for the congruence modular case, and we
proved in [6] that if V is a congruence modular variety, A ∈ V and Γ, Φ, Ψ ∈ TolA
then

Γ ∩ (Φ ∪ (Γ ∩ Ψ))∗ ⊆ ((Γ ∩ Φ) ∪ (Γ ∩ Ψ))∗. (2)

Notice that formally, according to (1), (2) is a variant of the modular law. Substi-
tuting 0 for Ψ in (2) we obtained, cf. Proposition 1 in [6], that

Γ ∩ Φ∗ ⊆ (Γ ∩ Φ)∗. (3)

Notice that it is essential to consider varieties here, for [6] presents a single algebra
with modular congruence lattice, a tolerance Φ and a congruence Γ of this algebra
such that Γ∩Φ∗ ⊆ (Γ∩Φ)∗ fails. As the next step towards Theorem 1, Radeleczki
[7] and later, independently, Kearnes [18] noticed that (3) trivially implies a more
useful statement: if A belongs to a congruence modular variety and Γ, Φ ∈ TolA
then

Γ∗ ∩ Φ∗ = (Γ ∩ Φ)∗. (4)
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Indeed, applying (3) for Γ∗ and Φ, and then for Φ and Γ we obtain the nontrivial
inclusion part of (4). To make the present paper self-contained, we will give a direct
proof of (3), which is of course a special (and therefore a bit shorter) case of the
proof of (2).

Proof. In order to prove Theorem 1 first we prove (3). Let V be a congruence
modular variety with Day-terms m0, . . . , mn. Let Γ and Φ be tolerances of an
algebra A in V . First we show that

Γ ∩ (Φ ◦ Φ) ⊆ (Γ ∩ Φ)∗. (5)

Suppose (a, b) ∈ Γ ∩ (Φ ◦Φ). Then there is an element c ∈ A with (a, c), (c, b) ∈ Φ,
and of course, (a, b) ∈ Γ. Now we define further elements. Let di = mi(a, c, c, b) for
i = 0, . . . , n and let ei = mi(a, a, b, b) for i even, i = 0, . . . , n. Notice that di = di+1

for i odd. Let j denote an arbitrary even index. Then (dj , ej) ∈ Φ is clear. Since

dj = mj(mj(a, c, c, b), a, a, mj(a, c, c, b)) Γ mj(mj(a, c, c, a), a, b, mj(b, c, c, b))

= mj(a, a, b, b) = ej ,

we obtain (dj , ej) ∈ Γ ∩ Φ. Since ej = mj(a, a, b, b) = mj+1(a, a, b, b), we conclude
(dj+1, ej) ∈ Γ ∩ Φ exactly the same way. Since any two neighbouring members of
the sequence

a = d0, e0, d1 = d2, e2, d3 = d4, e4, d5 = d6, . . . , dn = b

are in the relation Γ ∩ Φ, we infer (a, b) ∈ (Γ ∩ Φ)∗. This proves (5).
Now let Φ0 = Φ and Φn+1 = Φn ◦Φn, these are tolerances again. We claim that,

for all n,

Γ ∩ Φn ⊆ (Γ ∩ Φ)∗. (6)

This is evident for n = 0. If (6) holds for some n then, applying (5) for Γ and Φn

and using the induction hypothesis, we have

Γ ∩ Φn+1 = Γ ∩ (Φn ◦ Φn) ⊆ (Γ ∩ Φn)∗ ⊆ ((Γ ∩ Φ)∗)∗ = (Γ ∩ Φ)∗.

Hence (6) holds for all n. Therefore we obtain

Γ ∩ Φ∗ = Γ ∩

∞⋃

n=0

Φn =

∞⋃

n=0

(Γ ∩ Φn) ⊆

∞⋃

n=0

(Γ ∩ Φ)∗ = (Γ ∩ Φ)∗

This proves (3) for any tolerances Γ and Φ.
Applying (3) first for Γ∗ and Φ and then for Φ and Γ we obtain

Γ∗ ∩ Φ∗ ⊆ (Γ∗ ∩ Φ)∗ = (Φ ∩ Γ∗)∗ ⊆ ((Φ ∩ Γ)∗)∗ = (Γ ∩ Φ)∗,

i.e., Γ∗ ∩ Φ∗ ⊆ (Γ ∩ Φ)∗. Since forming transitive closure is a monotone operation,
the reverse inclusion is evident. This proves (4).

For tolerances Φ and Ψ it is easy to see that Φ ◦ Ψ ◦ Φ is again a tolerance. It
follows from reflexivity that

(Φ ◦ Ψ ◦ Φ)∗ = Φ∗ ∨ Ψ∗, (7)
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where the join is taken in Con A. An easy induction shows that if r = r(x1, . . . , xk)
is a lattice term and Φ1, . . . , Φk are tolerances or, as a particular case, congruences of
an algebra A then r(3)(Φ1, . . . , Φk) is a tolerance again. Now let V be a variety and

assume (a). Let p and q be, say, k-ary lattice terms. Since an easy induction shows
that, for any A ∈ V and any congruences α1, . . . , αk of A we have p(3)(α1, . . . , αk) ⊆
p(α1, . . . , αk), we conclude that p(3) ⊆ q holds for congruences of any A ∈ V . Hence
the afore-mentioned result of Wille and Pixley yields that M(p(3) ⊆ q(n1)) holds in
V for some n1. Since λ |=c mod, there is an n2 such that Dn2

holds in V . Now let
n be the maximum of n1 and n2. Since Mal’tsev conditions are weakening in their
parameter, we obtain that V satisfies (b).

Now, to show the reverse implication, assume that (b) holds. By Day’s result,
V is congruence modular, whence (4) holds as well. The afore-mentioned result
of Wille and Pixley gives that p(3) ⊆ q holds for congruences in V . So for any
congruences α1, . . . , αk of A ∈ V , we have p(3)(α1, . . . , αk) ⊆ q(α1, . . . , αk). Hence

p3(α1, . . . , αk)∗ ⊆ q(α1, . . . , αk)∗. (8)

Since q(α1, . . . , αk) is a congruence, it equals its transitive closure. On the other
hand, a trivial induction based on (4) and (7) gives that

p3(α1, . . . , αk)∗ = p(α∗

1, . . . , α
∗

k) = p(α1, . . . , αk).

This way (8) turns into

p(α1, . . . , αk) ⊆ q(α1, . . . , αk),

proving that λ holds in Con(A) for all A ∈ V . Thus (a) holds. �
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