REFLEXIVE RELATIONS AND MAL’TSEV
CONDITIONS FOR CONGRUENCE LATTICE
IDENTITIES IN MODULAR VARIETIES

GABOR CZEDLI AND ESZTER K. HORVATH

ABSTRACT. Based on a property of tolerance relations, it was
proved in [3] that for an arbitrary lattice identity implying modu-
larity (or at least congruence modularity) there exists a Mal’tsev
condition such that the identity holds in congruence lattices of alge-
bras of a variety if and only if the variety satisfies the corresponding
Mal’tsev condition. However, the Mal’tsev condition constructed
in [3] is not the simplest known one in general. Now we extend
the result of [3] from tolerances to reflexive compatible relations.
This leads to a construction of simpler Mal’tsev conditions for lat-
tice identities implying modularity. Notice that Day terms and
Jénsson terms, as Mal’tsev conditions, are just particular cases of
the general construction.

1. INTRODUCTION

It is an old problem if all congruence lattice identities are equivalent
to Mal'tsev (=Mal’cev) conditions. In other words, we say that a lat-
tice identity A can be characterized by a Mal'tsev condition, or A has
a Mal'tsev condition, if there exists a Mal'tsev condition M such that,
for any variety V), A holds in congruence lattices of all algebras in V
if and only if M holds in V; and the problem is if all lattice identities
can be characterized this way. This problem was raised first in Gratzer
[10], where the notion of a Mal'tsev condition was defined and its im-
portance was pointed out. A strong Mal’tsev condition for varieties is a
condition of the form ”there exist terms hyg, ... , h; satisfying a set X of
identities” where k is fixed and the form of ¥ is independent of the type
of algebras considered. By a Mal’tsev condition we mean a condition of
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the form ”there exists a natural number n such that P, holds” where
the P, are strong Mal'tsev conditions and P, implies P, for every n.
The condition ” P, implies P, 1" is usually expressed by saying that a
Mal'tsev condition must be weakening in its parameter. (For a more
precise definition of Mal’tsev conditions cf. Taylor [24].) The problem
was repeatedly asked by several authors, including Taylor [24], Jénsson
[18] and Freese and McKenzie [7].

Certain lattice identities have known characterizations by Mal'tsev
conditions. The first two results of this kind are Jénsson’s characteri-
zation of (congruence) distributivity by the existence of Jénsson terms,
cf. Jonsson [17], and Day’s characterization of (congruence) modularity
by the existence of Day terms, cf. Day [4]. Since Day’s result will be
needed in the sequel, we formulate it now. For n > 2 let (D,,) denote
the strong Mal’tsev condition ”there are quaternary terms my, ... ,m,
satisfying the identities

mo(z,y, 2,u) = , m(z,y, 2,u) = u,
mi(z,y,y,x) =2 fori=0,1,...,n,
mi(z, z,y,y) = mip(z, z,y,y) fori=0,1,...,n, 1even,

mi(z,y,y,2) =mii(x,y,y,z) fori=0,1,...,n, ¢odd”.

Now Day’s celebrated result says that a variety V is congruence mod-
ular iff the Mal’tsev condition ”(3n)(D,,)” holds in V.

Jonsson terms and Day terms were soon followed by some simi-
lar characterizations for other lattice identities, given for example by
Gedeonova [9] and Mederly [20], but Nation [21] and Day [5] showed
that these Mal'tsev conditions are equivalent to the existence of Day
terms or Jonsson terms; the reader is referred to Jonsson [18] and Freese
and McKenzie [7] (Chapter XIII) for more details.

The next milestone is Chapter XIII in Freese and McKenzie’s book
[7]. Let us call a lattice identity A in n? variables a frame identity if
A implies modularity and A holds in a modular lattice iff it holds for
the elements of every (von Neumann) n-frame of the lattice. Freese
and McKenzie showed that frame identities can be characterized by
Mal’tsev conditions. Their approach is based on commutator theory.
Although that time there was a hope that their method combined with
[16] gives a Mal’tsev condition for each A that implies modularity, cf.
7] (page 155), Pélfy and Szabé [22] destroyed this expectation.

The next step, motivated by Gumm’s Shifting Principle [11], is based
on elementary properties of tolerance relations. To formulate the result
we recall a notion from Jénsson [18]. A lattice identity A is said to imply
modularity in congruence varieties, in notation A =, modularity, if for
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any variety V if all the congruence lattices Con(A), A € V, satisfy A
then all these lattices are modular. If A implies modularity in the usual
lattice theoretic sense then of course A =, modularity as well. However,
it was a great surprise by Nation [21] that A |=. modularity is possible
even when A does not imply modularity in the usual sense. Jonsson
[18] gives an overview of similar results. We mention that there is an
algorithm to test if A |=. modularity, cf. [1], which is based on Day and
Freese [6].

Now it was proved in [3] that if A is a lattice identity such that A |=.
modularity then A can be characterized by a Mal’tsev condition. The
proof of this fact is relatively elementary and easy but the Mal'tsev
conditions are far from being optimal in most of those cases where
Mal’tsev conditions were previously known.

The purpose of this paper is to give an algorithm which associates
essentially better Mal'tsev conditions with lattice identities implying
modularity in congruence varieties. The price we pay for better Mal’tsev
conditions is that the present approach is a bit more complicated than
that in [3]. The starting point of our investigation is that not only
tolerances but also reflexive compatible relations have a nice property
in congruence modular varieties.

2. THE WILLE-PIXLEY ALGORITHM

Let {ai,...,ar} be a fixed set of variables. (Later these variables
will be substituted by reflexive compatible relations.) Let Cj denote
the set of terms in operations N (intersection) and o (composition of
relations) on the variables ai,...,a;. Given p in Cf, we define a
sequence Fy(p), Fi(p), ... of sets of formulas. Each of these formulas
will be of the form (z;,z;) € r for some r € Cy where z; and z;
belong to a new set {x; : i > 1} of variables. If r is a variable, i.e., if
r€{ai,...,a} then (z;,z;) € r will be called a final formula. Notice
that the x; will represent elements of algebras later.

Now Fy(p) is the singleton consisting of (z1,x9) € p. For j > 0, if
all formulas in F;_;(p) are final then let F;(p) = Fj_1(p). Otherwise
choose a formula (x;,z;) € 7 in Fj_;(p) which is not final', and the
definition of Fj(p) depends on the form of r. If r = r; N ry then

Fy(p) i= (Fia(p) \{(as, ) € r}) U{(ai,ae) € 7o, (2s,20) € 72}

!There can be several formulas which are not final but, up to equivalence (namely,
up to the order of terms and their variables), any choice leads to the same Mal’tsev
condition.
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If r = r{ ory then let m be the smallest positive integer such that z,,
does not occur in any formula of F;_;(p) and define

Fi(p) = (Fia®) \ {(ws:20) € 1}) U{(@i,2m) € 1, (@, 30) € 72}

Clearly, there is a smallest ¢ such that Fy(p) = F11(p) and we define
F(p) = Fi(p).

Example 1. If k = 3 and p = oy N (a2 0 (a1 Nag) 0 o), then F(p) =
{(?,xg) € o, (21,23) € o, (x3,24) € 1, (23,24) € a3, (T4,22) €
Qg .

Given an algebra A, the set Rel,(A) of all reflexive and compatible
relations on A (in other words, all subalgebras of A? including the diag-
onal subalgebra) has intersection, inverse and composition operations
as usual: for ® and ¥ in Rel,(A), (z,y) € ® oV iff there exists a z € A
with (z,2) € ® and (z,y) € ¥, and (z,y) € &1 iff (y,z) € . Now let
P, q € Cy. The inclusion formula (more precisely, the {N, o}-inclusion)
p C ¢ is said to be satisfied for congruences of A if p C ¢ holds in
Rel,(A) whenever congruences i,..., 0 € Con(A) replace the vari-
ables o, ..., ag, respectively. If this is the case for all algebras A in a
given variety ) then we say that p C ¢ holds for congruences of V. The
Mal’tsev condition U(p C ¢) we are going to define will characterize
this property of V.

Compute F(p) and F(q), and modify F(q) to obtain F(q) by re-
placing each variable z; by the variable f; in every formula belonging
to F(q). Suppose that {z1,...,z,,} and {f1,..., fs} are the sets of
variables appearing in the formulas of F'(p) and a (q), respectively, ex-
cluding the variables aq, ..., a; of Cy. Clearly, m equals two plus the
number of composition operators in p, and similarly for s.

Now construct partitions O, ... ,0y of {z1,...,x,,} corresponding
to the variables ag, ..., a; of p and ¢ as follows: for each ¢, 1 < /¢ <k,
Oy is the smallest partition of {x1,... ,x,,} such that z; and z; belong
to the same block of ©, for every formula (z;,z;) € a, belonging to
F(p). If a; does not occur in p then ©y is the discrete partition {{z;} :
1 < i < m}. For any partition © of {z1,...,2,} and 1 < i < m,
let O(z;) denote x; where j is the smallest integer such that z; and x;
belongs to the same block of ©.

Example 1 (continued). If p is as before then ©1 = {{z1, 22}, {x3, 24}},
Oy = {{z1, 23}, {22, 24} } and O3 = {{x3, 24}, {21}, {22} }.

Now let U(p C q) stand for the following strong Mal’tsev condition:
"there exist m-ary terms fi, fo, ..., fs satisfying the identities

filzr,zo, .o xy) =21, fol1, 22,0, X) = 29,
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and for each formula (f;, f;) € a; in F(q) the identity

Fi(Ou(x1), ..., Oun)) = fi(Ou(x1),...,Ouzy)).”

Example 1 (continued). 1f p is as before and ¢ = (o Nag) o (a1 N a3)
then U(p C q) is the following condition: ”There are quaternary terms
f1, fa, f3 satisfying the identities

f1($1,$2,$3,$4) = T, f2(I1,$2,$3,I4) = T2,

fi(@y, @y, 23, 23) = f3(21, 21, 73, 73),

Ji(zy, 2, 1, 02) = f3(71, T2, 71, 72)

fa(x1, w1, 23, 23) = fo(21, 21, 73, 73),

f3(x1, 02, 23, 23) = fa(21, T2, T3, 73).”
Theorem 1. (Wille [25] and Pizley [23]) Given an {N,o}-inclusion
p C q and a variety V, p C q holds for congruences of V if and only if
V satisfies the strong Mal’tsev condition U(p C q).

Now let p be a lattice term on the variables a, ... ,ax, and let &£ > 2
be an integer. We define a term p®*) in C} via induction as follows. If
p = o, a variable, then let p®) = p. If p = rAs then let p®) =
r® N s®) . Finally, if p = rV s then let p®) = r®) o s*+) o k) o 5k o ...
(with k factors on the right).

Theorem 2. (Wille [25] and Pixley [23]) Suppose p is an {N,o}-term
and q s a lattice term on the variables aq, ... , ar. Then for any variety
V, the inclusion p C q holds for congruences of V if and only if V

satisfies the Mal’tsev condition “there exist an integer k > 2 such that
U(p C q™) holds™.

Notice that (k) (U(p € ¢™)) is indeed a Mal'tsev condition, for
U(p C ¢™) implies U(p C q**+Y) for any & > 2.

3. REFLEXIVE RELATIONS IN CONGRUENCE
MODULAR VARIETIES

Given an algebra A and ® € Rel,(A), the least congruence of A
containing ® will be denoted by con(®). Similarly, ®* will stand for
the least transitive relation containing . It is easy to see that

o* = U (Podo---) (k factors) belongs to Rel,(A) (1)
keN
and

con(®) = (@o @) = [ J((@o® o (Pod o 1) (2

keEN
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If T € Rel,(A) happens to be symmetric, which means ' = T, in
other words, if I' belongs to Tol(A), the set of tolerance relations of the
algebra A, then the formula simplifies:

con(I") =T = U (Tol'o---) (k factors.) (3)

There are straightforward but useful connections among V, taken in

the congruence lattice Con(A) of A, o and con( ), namely, for any
®, U € Rel,(A) we have

con(® o W) = con(® oW o ®~ ') = con(P) V con(¥). (4)

Unfortunately, there is no similar result for intersection. For example,
even when Con(A) is a three element chain, a € Con(A) and I' €
Tol(A), con(anT’) may be different from con(a)Ncon(T), cf. [2]. Hence
the following theorem is a little bit surprising.

Theorem 3. Let A be an algebra in a congruence modular variety, let
[' € Tol(A) and &,V € Rel,(A). Then

con(I'N®) = con(I') Ncon(P), and
con((® o ® 1) NW) = con(® N (¥oW)) = con(®) N con(V).

Proof. Since A belongs to a congruence modular variety, we have Day

terms, i.e., quaternary terms my, ... ,m, satisfying the identities given
in the introduction. We can assume that n is even. First we show that
I'N(®od® ) Ccon(l'Nn®). (5)

Suppose (a,b) € TN(®od™!), then there exists an element ¢ € A with
(a,c),(b,c) € ¢ and, of course, (a,b), (b,a) € I'. We define elements
d; = m;(a,c,c,b) and e; = m;(a,a,b,b), 0 < i < n. Then (e;,d;) € ®
for all 7. Using the trick
e; = m;(a,a,b,b) = m;(m;(a,c, c a),a,b,mib,c,c,b)) T
m;(m;(a,c, ¢, b),a,a,m;(a,c,c b)) =m;a,ccb) =d;,
we obtain (e;, d;) € T for all i. Hence (e;,d;) € TN® and (e;, d;), (d;, e;) €
con(I' N ®). On the other hand, e; = e;41 for i even and d; = d;; for
7 odd. Hence all the pairs

(a,€0) = (do, €0) = (a,€1), (e1,d1) = (e1,dz), (d2, €2) = (da, €3),
(e3,d3) = (e3,dy), (dy,e4) = (dy,e5), (e5,d5) = (e5,dg), ... ,
(dn—2,€n—2) = (dn-2,€n-1), (€n-1,dn-1) = (en-1,ds) = (€n-1,0)

belongs to con(I' N ®). So (a,b) € con(I' N @) by transitivity. This
proves (5).
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Now we define ®; = ® o ' and ®;; = ¢, 0 CIJJ.’l for 7 > 1. We
claim that, for all j > 1,

I'n®; Ccon(I'NP). (6)

For j = 1 this is just (5). If (6) holds for some j then, by (5) for ®;
instead of ® and (6) for this j, we obtain

rn (I)j+1 =I'N (CD] e} (I)]_l) g COD(F N (I)]) g
con(con(I'N ®)) = con(I' N P),

proving (6) for j + 1. Thus (6) holds for all j. Clearly, (I>j_1 = ®; for
j > 1. Hence ®; = ;0P 0---0 Py, with 2771 factors on the right, for
all j > 1, and we obtain from (2) that con(®) = (J;5, ®;. Hence we
conclude from (6) that

F'Necon(®)=TnN U P; = U(F N®;) C con(I' N P),

Jj=21 Jj=21
i.e.,
' Nncon(®) C con(l'N D). (7)
Now, using (7) first for con(®) and I' and then for I' and ®, we obtain

con(I") N con(®) = con(P) N con(I') C con(con(P) NI') =
con(I' N con(P)) C con(con(I' N P)) = con(I' N P).

The converse inclusion comes from the fact that con is a monotone
operator. This proves the first formula of Theorem 3. Since W o U1 ¢
Tol(A) and con(¥) = con(¥ o U~!), and similarly for ® instead of ¥,
the rest of Theorem 3 follows evidently. 0J

4. HOW TO GET RID OF JOINS?

In order to make use of Theorem 2 for a lattice identity p < ¢, we
have to get rid of joins in p. This can be done in various ways, and this
freedom is built in the following definition.

Let Cy be the set of {N,o}-terms on the variables ay,...,ay, as
before. For p € Cy we define p~! € C} via induction as follows. (The
idea is that ay, ... ,ax will be substituted by symmetric relations.) If
p is a variable then p~!' = p. If p = rNs then p~!' = r~'nNst. If
p=rosthen p!=s1tor !t This way p ! is defined and belongs to
Cy, for each p € C;,.

Now, for any lattice term p on the variables aq,...,a, we define
a subset R(p) of Cj. The idea is that (4) and Theorem 3 should be
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applicable for members of R(p). If p is a variable then R(p) = {p}. If
p=rAs then

R(p) = R(rAs)={fN3:7€ R(r), §€ R(s) and 7' = F}U
{FNs:7€ R(r), §€ R(s) and 5" = §}U
{Ffn (505 : 7€ R(r), 5€ R(s)}U
{(FoF)YN5:7€ R(r), 5§€ R(s)}.

If p=1rVs then

R(p)=R(rVvVs)={rfos:7€ R(r) and § € R(s)}U
{fodoFf':7€ R(r)and § € R(s)}U
{§o0Fo5':7 € R(r)and 5 € R(s)}.

Notice that if R(r)UR(s) contains a symmetric term then so do G(r A s)
and G(rVs). Since variables are symmetric, we conclude that R(p)
contains a symmetric term for any lattice term p. We will prefer the
shortest members of R(p). Somehow the whole question is about sym-
metry, for symmetric subterms allow shorter formulas, but longer for-
mulas are needed to produce symmetric subterms. Notice also that
p® € R(p) holds for any lattice term p.

5. MAIN THEOREM

In this section we formulate and prove our main result, while the
last section will be devoted for examples and comparison with previous
results.

Theorem 4. Let A : p < q be a lattice identity such that \ =, mod-
ularity, and let p € R(p). Then for any variety V the following two
conditions are equivalent.

(a) For all A € V, X holds in the congruence lattice of A.

(b) V satisfies the Mal'tsev condition “there is an n > 2 such that
U(p C q™) and D,, hold”.

Proof. Suppose (a). A straightforward induction on the length of p
shows that for any A € V and any a, ... ,a; € Con(A), p(aq, ... ,ax) C
p(ai,...,ar). Hence the inclusion p C ¢ holds for congruences of V
and Theorem 2 gives an integer n; > 2 such that U(p C ¢™) holds in
V. Since A =, modularity, V satisfies D,,, for some ny, > 2 by Day’s
result. Therefore (b) holds with n = max{n;,ns}.

Suppose (b). By Day’s result, V is congruence modular. It fol-
lows from Theorem 2 that the inclusion p C ¢ holds for congruences
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of V. This means that for any A € V and ay,...,ar € Con(A),
plag ... ,ar) Cglag...,ax), in short p(a@) C g(d). Hence

con(p(a)) < con(q(d)).

q(a), it suffices to show that, for any lattice term p

—

Since con(g(d)) =
and any p € R(p),

con(p(a)) = p(a). (8)
We verify (8) via induction on the length of p. If p is a variable then
(8) is trivial.

If p = r A s then there are several cases. If, say, 7 € R(r) is symmetric
and p = 7 N § then using Theorem 3, the induction hypothesis for r
and s, and the easy fact that symmetric terms in C), give symmetric
relations in Rel;(A) when congruences are substituted for variables we
conclude

(@)) = con(#(&)) N con(3(a)) =

indeed. When p = (707 1)N35 and in other cases of p = r A s Theorem 3
applies similarly.

If p=1rVsthen (4) and the induction hypothesis applies easily; for
example, if p = 7o § o7 ! then

con(p(@)) = con(7(@) 0 §(&) o #(a@)™") = con(F(&)) V con(3(d)) =
r(ad)Vr(d) = p(d).
This proves (8) and the Theorem. O

6. APPLICATIONS AND COMMENTS

Corollary 1. (Jonsson [17]) A variety V is congruence distributive if
and only if there is an n > 2 and there are ternary V-terms to, ... ,t,
satisfying the identities to(z,y,z) = z, t,(z,y,2) = 2z, ti(z,y,z) = x
fori=0,1,... ,n, ti(z,z,z) = tip1(x,z,2) fori =0,1,... , n—1, 1
even, and t;(z,z,2) =t 1(x,2,2) fori=0,1,... ,n—1, i odd.

Proof. The distributive law is a3 A(aa Vas) < (a3 Aag) V(ag Aas).
Take p = oy N (a2 0 a3) € R(ay A(ag V as)), apply Theorem 3 and in-
terchange the last two variables in all terms. This way we obtain that
the conjunction of the existence of Jonsson terms and the existence of
Day terms characterizes distributivity. However, if we have Jénsson
terms, then we automatically have Day terms; indeed, Jonsson terms
trivially give Gumm terms, cf. Theorem 7.4 in Gumm [11], therefore V
is congruence modular, so we have Day terms. O
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Let us say that a Mal'tsev condition U(p C q) is m-ary if the term
symbols in it are m-ary. An easy induction shows that m equals two
plus the number of composition operators o in p. For example, D,
is a 4-ary Mal'tsev condition. It is reasonable to say that Mal'tsev
conditions with smaller arities are simpler. Now we compare the output
of our algorithm with some classical results. Consider the following
lattice terms:

D1 25/\\7%‘, G = \7(5/\\”/%)
i=0 0 i=0

j=
i#j

p2=(aVB)AaVB), q@=aV((aVB)AaVs)ABLVE)),
ps =aA((@AB)V(aAB)V(BiAB)), ¢3=(aApbi)V(aApB),
Py = (a \/(ﬁ/\y)) /\(7 \/(a/\ﬁ)),

2= (aA(yV@A®)) V(1A V(BAY)).

and the lattice identities A; : p; < ¢;, @ = 1,2,3,4. Mal’tsev condi-
tions for \;, i = 1,2, 3 resp. for i = 4 were given by Mederly [20] resp.
Gedeonova [9]. Notice that Mederly and Gedeonova use equality rather
than inequality in these identities, but this does not make any differ-
ence modulo lattice theory. Notice also that A; is the n-distributive
law introduced by Huhn [14], Ay is called /-modularity introduced by
McKenzie [19], A3 is the dual of Ay, and A4, called p-modularity, is
taken from Gedeonova [9]. The following statement is straightforward.

FEzample 2. (a) Since p§2) € R(p1), there is an (n + 2)-ary Mal'tsev
condition characterizing n-distributivity; Mederly [20] also gave an (n+
2)-ary one.

(b) Since (a0 fy0a)N (ao fy) € R(p2), there is a 5-ary Mal'tsev
condition characterizing /-modularity; Mederly [20] gave a 6-ary one.

(¢) Since aN ((aNpBi)o(anBz)o(BiNB2)) € R(ps), there is a 4-ary
Mal’tsev condition characterizing dual ¢-modularity; Mederly [20] gave
a 7-ary one.

(d) Since (an(Bo7)) N (yo(anpB)oy) € R(ps), there is a 5-ary
Mal’tsev condition characterizing p-modularity; Gedeonova [9] gave a
6-ary one.

Let us emphasize that the above example is only to illustrate Theo-
rem 4 and a much stronger statement is known. Namely, Nation [21]
proved that a variety V is congruence n-distributive if and only if it is
congruence distributive, Day [5], and Freese and Nation [8] showed that
any of Ay, Az and A4 is equivalent to modularity in |=. sense. Hence,
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thinking of Jénsson terms and Gumm terms, we can easily see that each
of A1,..., 4 can be characterized by a ternary Mal'tsev condition.

For frame identities Theorem 4 does not give the best known result
either. Let

ps = ((@AB)V(YAD)) A((any) V(BAD)).

FExample 3. Let g5 be any lattice term on the variables o, 3,~,d. Then
ps < @5 can be characterized by a 4-ary Mal’tsev condition while the
best Mal'tsev condition deduced from Theorem 4 is 5-ary.

Proof. 1t is proved in Herrmann and Huhn [12] that ps < ¢5 is a so-
called diamond identity. Combining Herrmann and Huhn [13], Lemma
1.7, and Huhn [15] we obtain that Huhn diamonds and von Neumann
frames are equivalent in modular lattices. Hence, as one would expect,
the method of Freese and McKenzie [7], Chapter XIII, works for p5 <
g5 and we obtain that ps; < g5 holds for congruences of a variety if
and only if p?) C @5 holds, whence Theorem 2 gives a 4-ary Mal'tsev
condition. O

One may ask if con(® N V) = con(P) N con(V¥) hold for arbitrary
¢, U € Rel,(A) in a congruence modular variety since this improvement
of Theorem 3 would lead to much better Mal’tsev conditions of the form
U (p(2) C ¢). Unfortunately this is not the case. Indeed, if ® denotes
the usual order of a lattice L and ¥ = ®~! then 0 = con(® N W) #
con(®) N con(¥) = 1, though lattices form a congruence modular (in
fact, a congruence distributive) variety.
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