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Abstract. It is proved in [8] that any two CD-bases in a finite distribu-
tive lattice have the same number of elements. We investigate CD-bases
in posets, semilattices and lattices. It is shown that their CD-bases
can be characterized as maximal chains in a related poset or lattice. We
point out two known lattice classes characterized by some ”0-conditions”
whose CD-bases satisfy the mentioned property.
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Introduction

Several independence notions are already investigated in lattice theory,
see e.g. [6, 8, 9, 10]. The main result in [9] about weak independence was
successfully applied to a combinatorial problem, namely to the problem of
determining the maximum number of rectangular islands, see [5] for details.
The notion of an island appears first in [13] under the name of ”full seg-
ment”. It was observed that many subsets in island problems (see e.g. [1] or
[14]) are in fact CD-independent. Furthermore, the notion of a classification
tree can be also defined as a particular CD-independent set (see [20]).

In [8] the authors showed that the CD-bases in a finite distributive lattice
have the same number of elements, and conversely, if all finite lattices in a
lattice variety have this property, then the variety must coincide with the
variety of distributive lattices.

In this paper we define CD-independent sets in an arbitrary poset P =
(P,≤), and we show that the CD bases of any poset P can be characterized
as maximal chains in a related poset D(P ). We prove that if P is a com-
plete lattice, then D(P ) is also a lattice having a weak distributive property.
We also point out two known lattice classes where the CD-bases in finite
lattices have the mentioned property: The first class is that one of graded,
dp-distributive lattices, and the second class is obtained by generalizing the
properties of the so-called interval lattices (having their origine in graph
theory). None of these classes is a variety, however their existence can mo-
tivate the study of CD-bases in some particular lattice classes related to
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combinatorial problems. Since these classes are generalizations of distribu-
tive lattices, our results also imply that the CD-bases in a finite distributive
lattice have the same number of elements, settled originally in [8] (see e.g.
Corollary 3.6 or Corollary 3.11).

1. CD-independent subsets in posets

Let P = (P,≤) be a partially ordered set and a, b ∈ P . The elements a
and b are called disjoint and we write a ⊥ b if

either P has least element 0 ∈ P and inf{a, b} = 0,
or P is without 0 and the elements a and b have no common lowerbound.

Notice, that a ⊥ b implies x ⊥ y for all x, y ∈ P with x ≤ a and y ≤ b. (1)

A nonempty setX ⊆ P is called CD-independent if for any x, y ∈ X, x ≤ y
or y ≤ x, or x ⊥ y holds. Maximal CD-independent sets (with respect to
⊆) are called CD-bases in P. If P contains least element 0 (greatest element
1) and B is a CD-base, then obviously 0 ∈ B (1 ∈ B). A nonempty set
D of nonzero elements of P is called a disjoint set in P if x ⊥ y holds
for all x, y ∈ D, x 6= y; if P has 0-element, then {0} is considered to be
a disjoint set, too. Observe, that D is a disjoint set if and only if it is a
CD-independent antichain in P. This characterization and the fact that any
nonempty subset of a CD-independent set is also CD-independent yield:

Remark 1.1. (i) If D is a disjoint set in P , then 0 ∈ D ⇔ D = {0}.
(ii) If X is a CD-independent set in P , then any antichain A ⊆ X is a
disjoint set in P .

We recall that any antichain A = {ai | i ∈ I} of a poset P determines a
unique order-ideal I(A) of P, namely

I(A) =
⋃
i∈I

(ai] = {x ∈ P | x ≤ ai for some i ∈ I},

where (a] stands for the principal ideal of an element a ∈ P . As the order-
ideals of any poset form a (distributive) lattice with respect to ⊆, the an-
tichains of a poset can be ordered as follows: If A1, A2 are antichains in P,
then we say that A1 is dominated by A2, and we denote it by A1 6 A2 if

I(A1) ⊆ I(A2).

It is well-known that 6 is a partial order (see e.g. [4] or [11]), and it is easy
to see that A1 6 A2 is satisfied if and only if the following condition holds:

(A) For each x ∈ A1 there exists a y ∈ A2 with x ≤ y.

Let D(P ) denote the set of all disjoint sets of P. As the disjoint sets of
P are also antichains, restricting 6 to D(P ), we obtain a poset (D(P ),6).
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Clearly, if P has least element 0, then {0} is the least element of (D(P ),6).
The following facts are immediate consequeces of this definition (and (1)):

Remark 1.2. (i) I(A1) ≺ I(A2)⇔ A1 ≺ A2 for any antichains A1, A2 ⊆ P .
(ii) Let D1 and D2 be disjoint sets in P. Then D1 ⊆ D2 implies D1 6 D2.

Furthermore, if D1 6 D2, then
for all (x1, x2) ∈ D1 ×D2, x1 ≤ x2 or x1 ⊥ x2. (2)

(iii) Observe, that the poset (P,≤) can be order-embedded into (D(P ),6):
Indeed, for any x ∈ P the set {x} itself is a disjoint set, and clearly,

x ≤ y ⇔ (x] ⊆ (y]⇔ {x} 6 {y}
hold for any x, y ∈ P .

Now define a relation ρ ⊆ P × P as follows: For any x, y ∈ P
(x, y) ∈ ρ⇔ x ≤ y or y ≤ x or x ⊥ y.

Then ρ is reflexive and symmetric by its definition, i.e. it is a tolerance
relation on P . A block of a tolerance relation τ ⊆ A×A is a subset B ⊆ A
maximal with respect to the property B × B ⊆ τ (see e.g. [2]). It is easy
to see that the CD-bases of P are exactly the tolerance blocks of ρ. As any
tolerance relation has at least one tolerance block, and its blocks form a
covering of the underlying set, we obtain:

Proposition 1.3. Any poset P = (P,≤) hast at least one CD-base, and the
set P is covered by the CD-bases of P.

Proposition 1.4. If B is a CD-base and D ⊆ B is a disjoint set in the
poset (P,≤), then I(D) ∩B is also a CD-base in the subposet (I(D),≤).

Proof. As I(D) ∩ B remains CD-independent in (I(D),≤), it is enough
to show that for any x ∈ I(D) \ B the set (I(D) ∩ B) ∪ {x} is not CD-
independent. Indeed, as B is a CD-base, B ∪ {x} is not CD-independent,
and hence there exists a b ∈ B such that b and x are not comparable and
have a common lowerbound u 6= 0. Then u ≤ x ≤ a for some a ∈ D, and
u ∈ I(D). Since 0 < u ≤ a, b and a, b ∈ B, a and b must be comparable.
Hence b ≤ a, otherwise a ≤ b would imply x ≤ b, a contradiction. Thus we
get b ∈ I(D) ∩B, and hence (B ∩ I(D)) ∪ {x} is not CD-independent. �

Given a set X, let |X| denote its cardinality. The connection between CD-
bases of a poset P and the poset (D(P ),6) is shown by the next theorem:

Theorem 1.5. Let B be a CD-base of a finite poset (P,≤), and let
|B| = n. Then there exists a maximal chain {Di}1≤i≤n in D(P ), such that

B =
n⋃
i=1
Di. Moreover, for any maximal chain {Di}1≤i≤m in D(P ) the set

D =
m⋃
i=1
Di is a CD-base in (P,≤) with |D| = m.

First we prove two lemmas:
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Lemma 1.6. If D1 ≺ D2 in D(P ), then D2 = {a}∪
{
y ∈ D1 \{0} | y ⊥ a

}
for some minimal element a of the set

S =
{
s ∈ P \ (D1 ∪ {0}) | y ⊥ s or y < s for all y ∈ D1

}
.

Moreover, D1 ≺ {a}∪
{
y ∈ D1 \{0} | y ⊥ a

}
holds for any minimal element

a of the set S.

Proof. Define Ts = {s} ∪
{
y ∈ D1 \ {0} | y ⊥ s

}
for each s ∈ S. Then Ts is

a disjoint set, Ts 6= D1, and y ∈ Ts or y < s holds for all y ∈ D1. Hence, in
view of (A), we obtain

D1 < Ts for all s ∈ S. (3)
Further, let D1 < D2. Then D2 6= {0}, and hence 0 /∈ D2, by Remark

1.1(i). Since, in virtue of (2), for any y ∈ D1 and s ∈ D2, y ⊥ s, or y < s,
or y = s holds, we have D2 \ D1 ⊆ S. Clearly, D2 \ D1 6= ∅, otherwise by
Remark 1.2(ii) D2 ⊆ D1 would imply D2 6 D1, a contradiction. Select an
element a ∈ D2 \ D1. Then a ∈ S, and in virtue of (3), Ta = {a} ∪ {y ∈
D1 \ {0} | y ⊥ a} satisfies D1 < Ta. Observe that Ta ≤ D2 by (A) since
a ≤ a ∈ D2 and for each y ∈ D1 there is a y′ ∈ D2 with y ≤ y′. So, D1 < D2

and a ∈ D2 \D1 imply that D1 < Ta ≤ D2.
Assume now D1 ≺ D2. Notice at this point that if b is also in D2 \D1,

then Tb = D2 = Ta, and {b} = Tb \D1 = Ta \D1 = {a}. Thus
if D1 ≺ D2, then |D2 \D1| = 1. (4)

Then also D2 = Ta =
{
a} ∪ {y ∈ D1 \ {0} | y ⊥ a

}
, as it was desired.

Suppose that s < a for some s ∈ S. As Ts \ {s} ⊆ D1 < Ta, for each
y ∈ Ts \ {s} there is a t ∈ Ta with y ≤ t according to (A). Since s < a
and s /∈ Ta, by (3) and (A) we get D1 < Ts < Ta = D2, a contradiction to
D1 ≺ D2. Thus a is a minimal element in S.

If a ∈ S is minimal, then Ta is a disjoint set, and D1 < Ta by (3). In order
to prove D1 ≺ Ta, assume that D1 < D2 6 Ta for some D2 ∈ D(P ). Then,
in view of the first part of our proof, 0 /∈ D2, ∅ 6= D2 \D1 ⊆ S, and for any
b ∈ D2 \D1, Tb is a disjoint set satisfying D1 < Tb 6 D2 6 Ta. Clearly, we
have b ≤ t for some t ∈ Ta = {a} ∪

{
y ∈ D1 \ {0} | y ⊥ a

}
according to (A).

If t ∈ D1, then b ∈ S and t ≮ b imply t ⊥ b, hence we get 0 = inf{b, t} = b,
a contradiction to 0 /∈ S. Thus t = a and b ≤ a. As a is minimal element of
S, we get b = a, Tb = Ta, and hence D2 = Ta. This proves D1 ≺ Ta. �

Now let max(X) stand for the set of maximal elements of the set X ⊆ P .

Lemma 1.7. Assume that B is a CD-base with at least two elements in
a finite poset P = (P,≤), M = max(B), and m ∈ M . Then M and
N := max(B \ {m}) are disjoint sets. Moreover M is a maximal element in
D(P ), and N ≺M holds in D(P ).

Proof. Since M and N are antichains in a CD-independent set, they are
disjoint sets. Suppose M 6 D for some D ∈ D(P ). In virtue of (2), for all
m ∈ M and d ∈ D we have m ≤ d or m ⊥ d. Then by (1), b ≤ d or b ⊥ d
holds for all b ∈ B and d ∈ D. This means that B ∪D is a CD-independent
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set. Since B is a CD-base, we deduce D ⊆ B. Then for each d ∈ D there is
an m ∈M with d ≤ m. In view of (A), this implies D 6M in D(P ). Thus
we get M = D, proving that M is maximal in D(P ).

In order to prove N ≺ M in D(P ), consider the subposet (B,≤). For
any antichain A ⊆ B, denote by IB(A) the order-ideal determined by A in
(B,≤). Clearly, IB(M) = B. Since IB(N) = B \ {m} = IB(M) \ {m},
we obtain IB(N) ≺ IB(M), and hence N ≺ M holds in D(B) according to
Remark 1.2(i).

Now, in virtue of (2), N < M yields y < m or y ⊥ m for each y ∈ N ,
since m ∈M \N . Moreover, m 6= 0 because m /∈ IB(N). The last two facts
imply that m belongs to the set
S =

{
s ∈ P \ (N ∪ {0}) | y ⊥ s or y < s for all y ∈ N

}
.

We claim that m is a minimal element in S. Indeed, let s ≤ m for some
s ∈ S. Since for any b ∈ B \ {m}, b ≤ y for some y ∈ N , by (1) we have
b ⊥ s or b < s for all b ∈ B \ {m}. Then B ∪ {s} is a CD-independent set.
As B is a CD-base, we get s ∈ B. Now s ∈ B \ {m} would imply s ⊥ s
or s < s, a contradiction. Thus s = m, proving our claim. Then, in view
of Lemma 1.6, Tm = {m} ∪

{
y ∈ N \ {0} | y ⊥ m

}
is a disjoint set and

N ≺ Tm in D(P ). Hence, by showing Tm = M our proof is completed. As
Tm ⊆ B, any t ∈ Tm is less than or equal to some element of max(B) = M .
Thus N < Tm 6 M holds in D(B) by (A). Hence N ≺M in D(B) implies
Tm = M . �

Proof of Theorem 1.5. Any poset (P,≤) without least element becames a
poset with 0 by adding a new element 0 to P . In this way both the number
of the elements in the CD-bases of P and the length of the maximal chains
in D(P ) are increased by one. Therefore, without loss of generality we may
assume that P contains 0 and |P | ≥ 2.

To prove the first part of Theorem 1.5, assume that B is a CD-base in P.
Then clearly 0 ∈ B and |B| ≥ 2. Let D1 = max(B). Take any m1 ∈ D1 and
form D2 = max(B \ {m1}). Then, in view of Lemma 1.7, D1, D2 ∈ D(P ),
D1 � D2, and D1 is a maximal element in D(P ). Further, suppose that we
already have a sequence (Di,mi), 1 ≤ i ≤ k (k ≥ 2) such that mi ∈ Di,
D1 � ... � Dk in D(P ) and

Dk = max(B \ {m1, ...,mk−1}).
We show that for all i ∈ {1, ..., k − 1} and d ∈ Dk we have d � mi. (5)

This is clear for i = 1 since m1 ∈ max(B) and d ∈ B, d 6= m1. If 2 ≤ i ≤
k− 1, then mi ∈ max(B \ {m1, ...,mi−1}), and since d ∈ B \ {m1, ...,mi−1},
d ≥ mi would imply mi = d ∈ B \ {m1, ...,mi, ...,mk−1}, a contradiction.

Further, if |B \ {m1, ...,mk−1}| ≥ 2, then form the next set Dk+1 :=
max(B \ {m1, ...,mk−1,mk}) and let mk+1 ∈ Dk+1. Since Dk+1 is an an-
tichain in the CD-base B, it is a disjoint set, and clearly Dk+1 6= Dk.

In order to prove Dk � Dk+1, consider the subposet (I(Dk),≤). By
Proposition 1.4, Bk := B∩I(Dk) is a CD-base in (I(Dk),≤). We claim that
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Bk = B \ {m1, ...,mk−1}.
Indeed, Dk = max(B \ {m1, ...,mk−1}) implies B \ {m1, ...,mk−1} ⊆ B ∩
I(Dk) = Bk. On the other hand, (5) implies {m1, ...,mk−1} ∩ I(Dk) = ∅,
whence we get Bk ⊆ B \ {m1, ...,mk−1}, proving our claim. Hence Dk =
max(Bk), and Dk+1 = max (B \ {m1, ...,mk−1,mk}) = max(Bk \ {mk}).

Now, by applying Lemma 1.7, we obtain that Dk+1 ≺ Dk holds in
D(I(Dk)). Finally, observe that any S ∈ D(P ) with S 6 Dk is also a
disjoint set in (I(Dk),≤) according to (A). Moreover, since Dk+1 ≺ Dk

holds in D(I(Dk)), Dk+1 6 S 6 Dk implies either S = Dk or S = Dk+1.
This means that Dk+1 ≺ Dk holds in D(P ), too.

Thus we conclude by induction that the chain D1 � ... � Dk � ... can
be continued as long as the condition |B \ {m1, ...,mk−1}| ≥ 2 is still valid.
Since P is finite, the process stops after finite - let say n − 1 steps, when
|B \ {m1, ...,mn−1}| = 1, and the last set is Dn = B \ {m1, ...,mn−1}.
As 0 ∈ B, and since 0 /∈ max(X) whenever |X| ≥ 2, we get {0} = B \
{m1, ...,mn−1} = Dn. As D1 is a maximal element and Dn = {0} is the
least element in D(P ), D1 � ... � Dn is a maximal chain in D(P ). Since
B = {m1, ...,mn−1, 0}, we obtain |B| = n.

To prove the second part of Theorem 1.5, assume that the disjoint sets
D1, ..., Dm form a maximal chain C:

D1 ≺ ... ≺ Dm

in D(P ). Then D1 = {0}. Let D =
m⋃
i=1
Di. First, we prove that the set D

is CD-independent. Indeed, take any x, y ∈ D, i.e. x ∈ Di and y ∈ Dj for
some 1 ≤ i ≤ j ≤ m. Then x ≤ z for some z ∈ Dj by (A). Assume that
x and y are not comparable. Then z 6= y, and z ⊥ y implies x ⊥ y by (1).
This means that D is CD-independent.

Now, assume that D is not a CD-base. Then there is an x ∈ P \D such
that D ∪ {x} is CD-independent. Next, consider the set

E = {Di ∈ C | x � d for all d ∈ Di}.
Clearly, D1 = {0} ∈ E since x � 0. Let Di ∈ E . Then d ⊥ x or d < x holds
for each d ∈ Di because D ∪ {x} is CD-independent. Thus Ti := {x} ∪ {d ∈
Di | d ≮ x} is a disjoint set, and d < x or d ∈ Ti holds for all d ∈ Di. Hence

Di < Ti, (6)

in view of (A) and x /∈ Di. Observe that Dm /∈ E since Dm < Tm is not
possible because C is a maximal chain. Thus, there exists a k ≤ m− 1 such
that Dk ∈ E but Dk+1 /∈ E . This means that x � d for all d ∈ Dk, and x ≤ z
holds for some z ∈ Dk+1. Then Tk = {x}∪{d ∈ Dk | d ≮ x} ∈ D(P ) satisfies
Dk < Tk in virtue of (6). Since Tk \ {x} ⊆ Dk < Dk+1 and x ≤ z, for each
t ∈ Tk there is a v ∈ Dk+1 with t ≤ v. In view of (A) we get Dk < Tk < Dk+1

because x /∈ Dk+1 ⊆ D. Since this fact contradicts Dk ≺ Dk+1, we conclude
that D is a CD-base.



CD-INDEPENDENT SUBSETS 7

Further, in view of (4), it follows that any set Di \ Di−1, 2 ≤ i ≤ m
contains exactly one element, let say, ai. Observe also that

D =
m⋃
i=1
Di = D1 ∪

m⋃
i=2

(Di \Di−1).

Since D1 = {0} and Di \Di−1 = {ai}, we get D = {0, a2, ..., am}. We prove
that all the elements 0, a2, ..., am are different: Clearly, 0 /∈ {a2, ..., am}.
Take any i, j ∈ {2, ...,m}, i < j. Then Di 6 Dj−1 ≺ Dj . As ai ∈ Di, there
is a b ∈ Dj−1 with 0 < ai ≤ b by (A). As aj ∈ Dj \Dj−1, b < aj or b ⊥ aj
holds by (2). Since both facts imply ai 6= aj , we conclude that D contains
m different elements. �

The length l(P ) of a poset P is defined as the supremum of |C| − 1 where
C is a chain in P. The poset P is called graded if all its maximal chains have
the same cardinality. In this case, l(P ) = |Cm| − 1 for any maximal chain
Cm in P. It is known that any principal ideal (principal filter) of a finite
graded poset is also graded. The next assertion is a direct consequence of
Theorem 1.5.

Corollary 1.8. Let P = (P,≤) be a finite poset. Then the CD-bases of P
have the same number of elements if and only if the poset D(P ) is graded.

Corollary 1.9. Let P =(P,≤) be a finite poset.
(i) Let B ⊆ P be a CD-base of P. Let (B,≤) be the poset under the
restricted ordering. Then any maximal chain C = {Di}1≤i≤m in D(B) is
also a maximal chain in D(P ).
(ii) If D is a disjoint set in P and the CD-bases of P have the same number
of elements, then the CD-bases of the subposet (I(D),≤) also have the same
number of elements.

Proof. (i). Since all Di (1 ≤ i ≤ n) are antichains with Di ⊆ B, they
are disjoint sets in (P,≤), too. Thus C is a chain in D(P ), and hence it
is contained in a maximal chain M of D(P ). In view of Theorem 1.5,

B′ =
⋃
{D | D ∈ M} is a CD-base in D(P ), and we have B′ ⊇

n⋃
i=1
Di = B.

As B is also a CD-base, we get B′ = B and this implies D ⊆ B for all
D ∈M. Hence M is a chain in D(B), and since C is maximal in D(B), we
obtain C =M. Therefore, C is a maximal chain in D(P ).
(ii). We claim that D(I(D)) coincides with the principal ideal generated by
D in D(P ). Indeed, any S ∈ D(I(D)) is also a disjoint set in P, and satisfies
S 6 D in D(P ) by (A). Conversely, if S 6 D holds in D(P ), then (A)
implies S ∈ D(I(D)). As any principal ideal of a graded poset is graded,
in view of Corollary 1.8, the CD-bases of I(D) have the same number of
elements. �

Remark 1.10 . Let P = (P,≤) be a poset with 0. Let A(P ) be the set of
atoms of P, i.e. of all a ∈ P with 0 ≺ a. Then x ⊥ y or x ≥ y holds for all
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x ∈ P and y ∈ A(P )∪{0}, and hence A(P )∪{0} is a subset of any CD-base
of P.

A disjoint set D 6= {0} of a poset (P,≤) is called complete, if there is no
p ∈ P \D such that D ∪ {p} is also a disjoint set.

Lemma 1.11. Let P = (P,≤) be a finite poset with 0. A disjoint set
D 6= {0} of P is complete if and only if A(P ) 6 D in D(P ).

Proof. Let D be a complete disjoint set and a ∈ A(P ). Then there is an
x ∈ D with a ≤ x, otherwise a ⊥ x for all x ∈ D would imply thatD∪{a} is a
disjoint set, a contradiction. Hence A(P ) 6 D according to (A). Conversely,
assume that A(P ) 6 D holds for some D ∈ D(P ) \ {0}, and take p ∈ P \D.
In view of Remark 1.1(i), D ∪ {p} is not a disjoint set for p = 0. Let p 6= 0.
Since P is finite, there is an atom a ∈ P with a ≤ p. As A(P ) 6 D, we get
a ≤ x for some x ∈ D by (A). Since x ⊥ p is not satisfied, D ∪ {p} is not a
disjoint set. Thus D is complete. �

This result means that the complete disjoint sets of P coincide with the
principal filter [A(P )) in D(P ). Their subposet ([A(P )),6) will be denoted
by DC(P ). Its importance is shown by the following assertion:

Proposition 1.12. Let P = (P,≤) be a finite poset with 0. Then the
following conditions are equivalent:
(i) The CD-bases of P have the same number of elements.
(ii) D(P ) is graded.
(iii) DC(P ) is graded.

Proof. (i)⇔(ii) is just Corollary 1.8, and (ii)⇒(iii) follows from the fact that
any pricipal filter of a finite graded poset is also graded.
(iii)⇒(ii). Let l be the length of DC(P ) and A(P ) = {a1, a2, ..., ak−1}. We
will show that any maximal chain C : D1 ≺ ... ≺ Dn in D(P ) has the length

k + l − 1. Indeed, in virtue of Theorem 1.5, B =
n⋃
i=1
Di is a CD-base in P

with |B| = n. Thus A(P ) ∪ {0} ⊆ B by Remark 1.10. By Lemma 1.6
A : {0} ≺ {a1} ≺ {a1, a2} ≺ ... ≺ {a1, ..., ak−1}

is a maximal chain in the interval [{0}, A(P )]. Consider the subposet (B,≤)
of P. As A is a chain in D(B), it is contained in a maximal chain M :
{0} = D′1 ≺ ... ≺ D′m of D(B). Then D′k = A(P ), and since B is the only

CD-base in (B,≤), by Theorem 1.5 we get B =
m⋃
i=1
D′i and m = |B| = n. By

Corollary 1.9(i) , M is also a maximal chain in D(P ), moreover, D′k, ..., D
′
n

are complete disjoint sets, according to Lemma 1.11. Therefore, D′k ≺ ... ≺
D′n is a maximal chain in DC(P ), and hence its length n − k is equal to l.
Then n− 1 = k + (n− k − 1) = k + l − 1, i.e. the length n− 1 of C equals
to k + l − 1. �
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Now, we will show that under some weak conditions, D(P ) graded implies
that P itself is graded. A poset with least element 0 and greatest element 1
is called bounded. A lattice L with 0 is called 0-modular if for any a, b, c ∈ L

(M0) a ≤ b and b ∧ c = 0 imply b ∧ (a ∨ c) = a

Equivalently, L has no pentagon sublattice N5 that contains 0 = 0L. If (M0)
is satisfied under the assumptions that a is an atom and c ≺ b∨ c, then L is
called weakly 0-modular. L is lower-semimodular if for any a, b, c ∈ L, b ≺ c
implies a∧b � a∧c. It is easy to see that any lower-semimodular lattice and
any 0-modular lattice is weakly 0-modular. We say that a poset P with 0 is
weakly 0-modular if the above weak form of (M0) holds whenever sup{a, c}
and sup{b, c} exist in P.

Proposition 1.13. Let P be a finite bounded poset.
(a) If all the principal ideals (a] of P are weakly 0-modular, then A(P )∪C
is a CD-base for every maximal chain C in P.
(b) If P has weakly 0-modular principal ideals and D(P ) is graded, then P
is also graded, and any CD-base of P contains |A(P )|+ l(P ) elements.

Proof. (a) Let C be a maximal chain. Clearly, C has the form: 0 = c0 ≺
c1 ≺ ... ≺ cn = 1 and A(P )∪C is CD-independent. Now let y ∈ P \C such
that C ∪ {y} is CD-independent; we will prove y ∈ A(P ). Since y < 1 and
y 6= 0, there exists an element ci ∈ C \ {0} such that y < ci and y � ci−1.
Since y ≥ ci−1 does not hold, we get y ⊥ ci−1. Let a be an atom under y:
then a ≤ ci, and a ⊥ ci−1 by (1). As ci is the unique upper cover of ci−1 in
the subposet (ci], it is also the least upperbound for {y, ci−1} and {a, ci−1}
in (ci]. Hence a ∨ ci−1 = y ∨ ci−1 = ci holds in (ci]. Since ((ci],≤) is weakly
0-modular, 0 ≺ a ≤ y, y ∧ ci−1 = inf{y, ci−1} = 0 and ci−1 ≺ y ∨ ci−1 imply
a = y ∧ (a ∨ ci−1) = y ∧ ci = y. Thus y ∈ A(P ), hence A(P ) ∪ C is a CD
base.
(b) In view of Corollary 1.8, if D(P ) is graded, then any CD-base B of P
has the same number of elements as A(P ) ∪ C, i.e. |B| = |A(P )|+ |C| − 1.
Consequently, if C1 and C2 are two maximal chains in P, then |A(P )| +
|C1| − 1 = |A(P )|+ |C2| − 1, i.e. |C1| = |C2|.

Thus P is graded and l(P ) = |C| − 1. The remaining part is clear. �

2. CD-bases in semilattices and lattices

Lemma 2.1. Let P be a poset with 0. Let Dk be disjoint sets in P for any
k ∈ K, where K is a nonempty set. If the meet

∧
k∈K

a(k) of any system of

elements a(k) ∈ Dk, k ∈ K, exist in P, then
∧
k∈K

Dk also exists in D(P ). In

particular, for K = {1, 2} and D1 = {ai | i ∈ I}, D2 = {bj | j ∈ J} ∈ D(P, )
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D1∧D2 =
{
M := {ai ∧ bj 6= 0 | i ∈ I, j ∈ J}, if M 6= ∅;
{0}, otherwise. (7)

Proof. Since {0} is the least element in D(P ), we have {0} =
∧
k∈K

Dk,

whenever {0} belongs to {Dk | k ∈ K}. Hence we may assume that Dk 6=
{0}, k ∈ K. Now, for all possible systems of elements a(k) ∈ Dk, k ∈ K,
form the set M of their nonzero meets

∧
k∈K

a(k) in P. If M 6= ∅, then define

S := M , otherwise let S := {0}. We show that S is a disjoint set. This
is clear for S = {0}. If S 6= {0}, then for any elements

∧
k∈K

a(k) 6=
∧
k∈K

b(k)

of S, there exists a k0 ∈ K such that a(k0) 6= b(k0). As a(k0), b(k0) ∈ Dk0 ,

we get a(k0) ⊥ b(k0), and this fact implies
( ∧
k∈K

a(k)

)
⊥
( ∧
k∈K

b(k)

)
by (1).

This result means that S ∈ D(P ). Next, we prove S =
∧
k∈K

Dk. The

case M = ∅ is clear since then S = 0 is the only lower bound of the Dk,
k ∈ K. Hence we can assume that M 6= ∅. As for each

∧
k∈K

a(k) ∈ S we

have
∧
k∈K

a(k) ≤ a(k) ∈ Dk, k ∈ K, we get S 6 Dk for all k ∈ K. Let

T = {tλ | λ ∈ Λ} ∈ D(P ), such that T 6 Dk, k ∈ K. If T = {0}, then
T 6 S. If T 6= {0}, then tλ 6= 0 for all λ ∈ Λ, and in view of (A), for
each k ∈ K there is an element a(k)

λ ∈ Dk, such that tλ ≤ a
(k)
λ . Since by

our assumption, all
∧

k∈K
a

(k)
λ exist in P, we get 0 < tλ ≤

∧
k∈K

a
(k)
λ , λ ∈ Λ.

As
∧
k∈K

a
(k)
λ ∈ S, we obtain T 6 S by (A). This proves S =

∧
k∈K

Dk. The

remaining part is clear. �

Let P = (P,∧) be a semilattice with 0. Now, for any a, b ∈ P the relation
a ⊥ b means that a ∧ b = 0. Hence, a set {ai | i ∈ I} of nonzero elements
is a disjoint set if and only if ai ∧ aj = 0 for all i, j ∈ I, i 6= j. A pair
a, b ∈ P with least upperbound a ∨ b in P is called a distributive pair if
(c∧a)∨ (c∧b) exists in P for any c ∈ P , and c∧ (a∨b) = (c∧a)∨ (c∧b). We
say that (P,∧) is dp-distributive (distributive with respect to disjoint pairs)
if any pair a, b ∈ P with a ∧ b = 0 is a distributive pair.

Theorem 2.2. (i) If P = (P,∧) is a semilattice with 0, then D(P ) is a
dp-distributive semilattice. If, in addition, D1, D2 ∈ D(P ) such that D1∪D2

is a CD-independent set, then D1, D2 is a distributive pair in D(P ).
(ii) If P is a complete lattice, then D(P ) is a dp-distributive complete lattice.

Proof. (i) Let D1 = {ai | i ∈ I}, D2 = {bj | j ∈ J} ∈ D(P ). By applying
Lemma 2.1 (with K = {1, 2}) we get that D1 ∧ D2 ∈ D(P ) always exists,
and it is given by (7). Thus D(P ) is a semilattice with 0.
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¿From now on, suppose that D1 ∪D2 is a CD-independent set. Since D1,
D2 are antichains, any chain in D1∪D2 has at most two elements (one in D1

and the other in D2). Thus max(D1∪D2) 6= ∅, and for any d ∈ D1∪D2 there
exists an m ∈ max(D1∪D2) with d ≤ m. Since max(D1∪D2) is an antichain
in a CD-independent set, it is a disjoint set, and D1, D2 6 max(D1 ∪ D2)
by (A). We show that

max(D1 ∪D2) = D1 ∨D2 in D(P ). (8)
Indeed, take any T ∈ D(P ), with D1, D2 6 T . Then, in view of (A), for

any d ∈ D1 ∪D2, there is a t ∈ T with d ≤ t. As max(D1 ∪D2) ⊆ D1 ∪D2,
we get max(D1 ∪D2) 6 T by (A). Thus max(D1 ∪D2) = D1 ∨D2.

Further, we prove that for any D3 = {cq | q ∈ Q} ∈ D(P ) we have

(D1 ∨D2) ∧D3 = (D1 ∧D3) ∨ (D2 ∧D3). (9)

Since the inequality (D1∧D3)∨ (D2∧D3) 6 (D1∨D2)∧D3 holds whenever
both of its sides exist, it is enough to show its converse. Clearly, we may
assume (D1 ∨D2) ∧D3 6= {0}. Then, by applying (8) and (7), we obtain:

(D1 ∨D2) ∧D3 = {m ∧ cq 6= 0 | m ∈ max(D1 ∪D2), q ∈ Q}.
In view of (8), (D1∧D3)∨(D2∧D3) exists inD(P ), whenever (D1∧D3)∪(D2∧
D3) is CD-independent. This holds if D1 ∧ D3 = {0} or D2 ∧ D3 = {0}.
Otherwise, by (7), D1 ∧ D3 = {ai ∧ cq 6= 0 | i ∈ I, q ∈ Q} ∈ D(P ) and
D2∧D3 = {bj ∧ cq 6= 0 | j ∈ J, q ∈ Q} ∈ D(P ). If (ai∧ cq)∧ (bj ∧ cq′) 6= 0 for
some i ∈ I, j ∈ J and q, q′ ∈ Q, then cq ∧ cq′ 6= 0, ai ∧ bj 6= 0, hence we get
cq = cq′ , and ai ≤ bj or bj ≤ ai, because cq, cq′ ∈ D3, ai, bj ∈ D1 ∪D2 and
D1∪D2 is CD-independent. This implies ai∧cq ≤ bj∧cq′ or bj∧cq′ ≤ ai∧cq,
proving that (D1 ∧D3) ∪ (D2 ∧D3) is CD-independent.

Now, consider an x ∈ (D1∨D2)∧D3. Since {0} 6= (D1∨D2)∧D3 ∈ D(P ),
x 6= 0. By (8) and Lemma 2.1, there are i ∈ {1, 2}, di ∈ Di and d3 ∈ D3 such
that x = di∧d3. (A) together with di∧d3 ∈ Di∧D3 6 (D1∧D3)∪(D2∧D3)
give a y ∈ (D1 ∧ D3) ∪ (D2 ∧ D3) such that x = di ∧ d3 ≤ y. Hence
(D1 ∨D2)∧D3 6 (D1 ∧D3)∨ (D2 ∧D3) by (A) since x was arbitrary. This
proves (9).

Finally, let D1 = {ai | i ∈ I} ∈ D(P ), D2 = {bj | j ∈ J} ∈ D(P ) such
that D1 ∧D2 = {0}. Then, in view of (7) we have ai ∧ bj = 0 for all i ∈ I
and j ∈ J . Thus D1∪D2 is a CD-independent set, and hence D1∨D2 exists
in D(P ). Therefore, D1, D2 is a distributive pair in D(P ), according to (9).
This result means that (D(P ),∧) is dp-distributive.

(ii) As P is a complete lattice, it has a 1 element, and {1} is the greatest
element of D(P ). Since by Lemma 2.1,

∧
X exists for all X ⊆ D(P ), D(P )

is complete lattice. In view of (i), D(P ) is dp-distributive. �

Let (P,≤) be a poset and A ⊆ P . (A,≤) is called a sublattice of (P,≤), if
(A,≤) is a lattice such that for any a, b ∈ A the infimum and the supremum
of {a, b} are the same in the subposet (A,≤) and in (P,≤). If x ≺A y
implies x ≺P y for all x, y ∈ A, then we say that (A,≤) is a cover-preserving
subposet of (P,≤).
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Theorem 2.3. Let P = (P,≤) be a poset with 0 and let B be a CD-
base of it. Then (D(B),6) is a distributive cover-preserving sublattice of
the poset (D(P ),6). If P is a ∧-semilattice, then for any D ∈ D(P ) and
D1, D2 ∈ D(B) we have (D1 ∨D2) ∧D = (D1 ∧D) ∨ (D2 ∧D) in D(P ) .

Proof. Observe that any D ∈ D(B) is also a disjoint set in P, since D
is an antichain within the CD-base B. Hence D(B) ⊆ D(P ). Take any
x, y ∈ B. Since we have x ≤ y or y ≤ x or x ⊥ y, we get x ∧ y = x, or
x ∧ y = y, or x ∧ y = 0; so x ∧ y ∈ B exists in all possible cases. Thus
(B,≤) is a ∧-semilattice with 0. Take D1, D2 ∈ D(B). In view of (7),
D1 ∧ D2 = {0} ⊆ B or D1 ∧ D2 = {x ∧ y 6= 0 | x ∈ D1, y ∈ D2} ⊆ B.
Hence D1 ∧ D2 is the same both in D(B) and D(P ). As D1 ∪ D2 ⊆ B,
D1 ∪D2 is CD-independent. Then, in virtue of (8), D1 ∨D2 exists in D(P )
and D1 ∨D2 = max(D1 ∪D2) ⊆ B. Thus D1 ∨D2 in D(B) is the same as
in D(P ). Hence (D(B),6) is sublattice of (D(P ),6). Let D ∈ D(B). Since
(D(B),6) is a lattice and D1 ∪D2 is CD-independent, in view of Theorem
2.2 we get (D1∨D2)∧D = (D1∧D)∨(D2∧D). Thus D(B) is a distributive
lattice. Finally, suppose that D ≺ S holds in D(B) for some D,S ∈ D(B).
Then D ≺ S is contained in a maximal chain C of D(B). Since by Corollary
1.9(i), C is also a maximal chain in D(P ), D ≺ S holds in D(P ), too.

Let P be a ∧-semilattice and D1, D2 ∈ D(B). Since D1 ∪ D2 is CD-
independent, (D1∨D2)∧D exists for any D ∈ D(P ), and in view of Theorem
2.2, (D1 ∨D2) ∧D = (D1 ∧D) ∨ (D2 ∧D). �

3. CD-bases in particular lattice classes

In this section we investigate CD-bases in two particular lattice classes.
The properties of the first class generalize the properties of tolerance lat-
tices of majority algebras. It was proved in [7] and [3] that the tolerance
lattice of any majority algebra is a pseudocomplemented, 0-modular and
dp-distributive lattice. These properties are not independent, we will show
for instance that dp-distributivity implies 0-modularity.

A lattice L with 0 is called pseudocomplemented if for each x ∈ L there
exists an element x∗ ∈ L such that for any y ∈ L, y ∧ x = 0 ⇔ y ≤ x∗. It
is known that an algebraic lattice L is pseudocomplemented if and only if it
is 0-distributive, that is, for any a, b, x ∈ L, x ∧ a = 0 and x ∧ b = 0 imply
x ∧ (a ∨ b) = 0. We say that L is weakly 0-distributive if this implication
holds under the condition a ∧ b = 0. Clearly, any 0-distributive lattice is
weakly 0-distributive. If D is a disjoint set in a weakly 0-distributive lattice
and |D| ≥ 2, then it is easy to see that replacing two different elements
d1, d2 ∈ D by their join d1 ∨ d2, we obtain again a disjoint set.

Lemma 3.1. Let L be a finite weakly 0-distributive lattice and D a dual
atom in D(L). Then either D = {d} for some d ∈ L with d ≺ 1, or D
consist of two different elements d1, d2 ∈ L with d1 ∨ d2 = 1.
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Proof. Assume that D ≺ {1} holds in D(L). If there exists d1, d2 ∈ D,
d1 6= d2, then D′ = {d1 ∨ d2} ∪ (D \ {d1, d2}) is disjoint set and D < D′.
Hence D ≺ {1} implies D′ = {1}, and this is possible only when d1 ∨ d2 = 1
and D = {d1, d2}. If D = {d} for some d ∈ L, then d ≺ 1, otherwise
d < x < 1 for some x ∈ L would imply D < {x} < {1}, a contradiction. �

Let L be a graded lattice, and 0, a ∈ L. Then the height of a is the length of
the interval [0, a], denoted by l(a) (In literature, it is also denoted by h(a).)

Remark 3.2. A graded lattice L with 0 is 0-modular, whenever l(a) + l(b) =
l(a ∨ b) holds for all a, b ∈ L with a ∧ b = 0: Indeed, if L is not 0-modular,
then in view of Varlet’s result [19] it has an N5 sublattice containing 0, thus
there exist a, b, c ∈ L such that c > b and a ∧ b = a ∧ c = 0, a ∨ b = a ∨ c.
Hence by our assumption l(a) + l(b) = l(a∨ b) = l(a∨ c) = l(a) + l(c). Thus
we obtain l(b) = l(c), in contradiction with b < c.

Theorem 3.3. Let L be a finite, weakly 0-distributive lattice. Then the
following are equivalent:
(i) L is graded, and l(a)+ l(b) = l(a∨b) holds for all a, b ∈ L with a∧b = 0.
(ii) L is 0-modular, and the CD-bases of L have the same number of ele-
ments.

Proof. (i)⇒(ii). In view of Remark 3.2, (i) implies that L is 0-modular.
Further, denote by T the class of finite, weakly 0-distributive lattices sat-
isfying condition (i). We prove via induction on the length l of the lattices
L ∈ T that any CD-base of them has |A(L)|+ l elements. If l = 1, then L is
a chain 0 ≺ a, and our assertion holds trivially, since L itself is a CD-base.
Let L ∈ T have length l ≥ 2, and suppose that the assertion is true for
any K ∈ T , with length l(K) ≤ l − 1. Take any CD-base B of L; then
{0, 1} ∪ A(L) ⊆ B, max(B) = {1} is the greatest element in D(L), and
1 /∈ A(L). Let N = max(B \ {1}). In virtue of Lemma 1.7, N is a dual
atom in D(L). Clearly, A(L) ⊆ B \ {1} ⊆ I(N). Since L is finite and
weakly 0-distributive, Lemma 3.1 yields either N = {d} for some d ≺ 1, or
N = {d1, d2} with d1 ∨ d2 = 1.

In the first case, A(L) ⊆ B \ {1} = B ∩ (d], l(d) = l − 1, and clearly, the
lattice (d] belongs to the class T . In view of Proposition 1.4, B ∩ (d] is a
CD-base in (d], hence by applying the induction hypothesis to (d], we get
|B| − 1 = |A(L)|+ l − 1, i.e. |B| = |A(L)|+ l.

In the second case A(L) ⊆ B \ {1} ⊆ (d1]∪ (d2], and since N is a disjoint
set, d1 ∧ d2 = 0. Hence the single common element of (d1] and (d2] is 0, and
since B \ {1} = (B ∩ (d1]) ∪ (B ∩ (d2]) and A(L) ⊆ B \ {0, 1}, we obtain
|B| − 1 = |B ∩ (d1]| + |B ∩ (d2]| − 1, and |A(L)| = |A((d1])| + |A((d2])|. In
view of Proposition 1.4, B ∩ (d1] and B ∩ (d2] is a CD-base in (d1], (d2],
respectively. It is obvious that (d1], (d2] ∈ T and l(d1), l(d2) ≤ l − 1, hence
the induction hypothesis implies

|B ∩ (d1]|+ |B ∩ (d2]| = |A((d1])|+ l(d1) + |A((d2])|+ l(d2) =
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= |A(L)|+ l(d1) + l(d2).

As d1 ∧ d2 = 0, (i) implies l(d1) + l(d2) = l(d1 ∨ d2) = l. Thus we obtain
|B| = |B ∩ (d1]|+ |B ∩ (d2]| = |A(L)|+ l, which proves that (i) implies (ii).

(ii)⇒(i). Since the CD-bases of L have the same cardinality, in virtue
of Corollary 1.8 and Proposition 1.13(b), L is graded. Hence any principal
ideal (p] of L is a graded lattice, and by Corollary 1.9(ii) the CD-bases of
(p] have the same number of elements. As all the principal ideals in (p] are
0-modular, by Proposition 1.13(b) this number is |A((p])|+ l(p). (10)

Now, let a, b ∈ L, a ∧ b = 0. Clearly, to prove (i) it is enough to consider
the case a 6= 0, b 6= 0. Then a and b are incomparable, since a ∧ b /∈ {a, b}.
Consider the principal ideal I = (a ∨ b]. Since {a, b} is a CD-independent
set in I, there exists a CD-base BI of I containing {a, b}. As l(I) = l(a∨ b),
BI has |A(I)|+ l(a ∨ b) elements by (10).

Further, we prove that a and b are maximal elements in BI \ {a ∨ b}.
Indeed, a, b < a ∨ b because a, b are incomparable. Suppose that a ≤ x for
some x ∈ BI , x < a ∨ b. Then a ∨ b ≤ x ∨ b ≤ a ∨ b implies x ∨ b = a ∨ b.
Observe that b and x are incomparable; indeed, b ≤ x is not possible since
it yields x = a ∨ b. Furthermore, x ≤ b would imply b = a ∨ b, i.e. a ≤ b,
hence it should also be excluded. Thus we obtain x∧b = 0 because B is CD-
independent. Since L is 0-modular, by using (M0) we get x = x ∧ (x ∨ b) =
x∧ (a∨ b) = a. Therefore, a is a maximal element in BI \ {a∨ b}. Similarly,
we can prove b ∈ max(BI \{a∨ b}). Next, let N := max(BI \{a∨ b}). Since
max(BI) = {a ∨ b}, in view of Lemma 1.7 we get that N is a disjoint set
and N ≺ {a ∨ b} in D(I). Since a 6= b, a, b ∈ N , and I is finite and weakly
0-distributive, by applying Lemma 3.1 we obtain N = {a, b}.

Now, we can repeat the argument in the proof of (i)⇒(ii) (with d1 = a,
d2 = b and l = l(a ∨ b) = 2), and by using (10) we get |BI | = |BI ∩ (a]| +
|BI ∩ (b]| = |A(I)|+ l(a) + l(b). Thus we deduce l(a) + l(b) = l(a ∨ b), and
our proof is completed. �

We say that two elements a, b ∈ L form a modular pair in the lattice L
and we write (a, b)M if for any x ∈ L, x ≤ b implies x∨ (a∧ b) = (x∨a)∧ b.
a, b is called a dually modular pair if for any x ∈ L, x ≥ b implies x∧(a∨b) =
(x∧a)∨ b. This is denoted by (a, b)M∗. Clearly, if a, b is a distributive pair,
then (a, b)M∗ is satisfied. By the mean of modular pairs the 0-modularity
condition can be reformulated as follows (see [17]): For any a, b ∈ L,

a ∧ b = 0 =⇒ (a, b)M. (11)

Lemma 3.4. ([[17]; Lemma 1.9.15]) In a graded lattice of finite length,
(a, b)M implies l(a) + l(b) ≤ l(a ∧ b) + l(a ∨ b).

Proposition 3.5. If L is a lattice with 0 such that (a, b)M∗ holds for all
a, b ∈ L with a ∧ b = 0, then L is 0-modular. If, in addition, L is a graded
lattice of finite length, then l(a ∨ b) = l(a) + l(b) holds for all a, b ∈ L with
a ∧ b = 0.
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Proof. If L is not 0-modular, then in view of Varlet’s result, it has an N5

sublattice containing 0, i.e. there exist elements a, b, c ∈ L such that c > b
and a ∧ b = a ∧ c = 0, a ∨ b = a ∨ c. Since (a, b)M∗ by our assumption, we
obtain c = c∧(a∨b) = (c∧a)∨b = (a∧b)∨b = b, a contradiction. Thus L is 0-
modular. Now, suppose that in addition L is graded and has a finite length l,
and let a, b ∈ L, a∧ b = 0. Since L is 0-modular, we get l(a∨ b) ≥ l(a) + l(b)
by (11) and Lemma 3.4. Now consider the lattice L(d) dual to L. Then
(a, b)M∗ in L implies (a, b)M in the lattice L(d). Clearly, L(d) is also a
graded lattice with length l and the height l(d)(x) of any element x in L(d) is
equal to l− l(x). (where l(x) is the height of x in L). Since (a, b)M holds in
L(d), by using again Lemma 3.4 we get l(d)(a)+l(d)(b) ≤ l(d)(a∧b)+l(d)(a∨b),
i.e. (l − l(a)) + (l − l(b)) ≤ l + l − l(a ∨ b) because l(d)(a ∧ b) = l. Hence
l(a) + l(b) ≥ l(a ∨ b), and this proves l(a ∨ b) = l(a) + l(b). �

Corollary 3.6. (i) Let L be a finite, weakly 0-distributive lattice such that
for each a, b ∈ L with a∧b = 0, condition (a, b)M∗ holds. Then the CD-bases
of L have the same number of elements if and only if L is graded.
(ii) If L is a finite, pseudocomplemented and modular lattice, then the CD-
bases of L have the same number of elements.

Proof. (i) follows directly from Proposition 3.5 and Theorem 3.3.
(ii) Since any pseudocomplemented lattice is weakly 0-distributive, and any
finite modular lattice L is graded, moreover, (a, b)M∗ holds for all a, b ∈ L,
(ii) is an immediate consequence of (i). �

As any dp-distributive lattice L is weakly 0-distributive, and (a, b)M∗ holds
for all a, b ∈ L with a ∧ b = 0 since a, b is a distributive pair, we obtain

Corollary 3.7. (i) Any dp-distributive lattice is 0-modular. If L is a dp-
distributive graded lattice with finite length, then l(a ∨ b) = l(a) + l(b) holds
for all a, b ∈ L with a ∧ b = 0.
(ii) The CD-bases in a finite dp-distributive lattice L have the same number
of elements if and only if L is graded.

The second lattice class mentioned in Introduction generalizes the prop-
erties of the lattice of closed sets of a so-called interval system. An interval
system (V, I) is an algebraic closure system satisfying the axioms (cf. [12]):

(I0) {x} ∈ I for all x ∈ V , and ∅ ∈ I;
(I1) A,B ∈ I and A ∩B 6= ∅ imply A ∪B ∈ I;
(I2) For any A,B ∈ I the relations A ∩ B 6= ∅, A " B and B " A imply
A \B ∈ I (and B \A ∈ I).

The modules (X-sets, or autonomous sets) of an undirected graph G =
(V,E) (see [16]), the intervals of an n-ary relation R j V n on the set V for
n ≥ 2 (cf. [12]) – in particular, the usual intervals of a linearly ordered set
(V,≤) (cf. [18]) – form interval systems. Clearly, ∩ is the meet operation
in the lattice (I,⊆) of closed sets of (V, I), and condition (I0) implies that
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(I,⊆) is an atomistic lattice with 0-element ∅. Moreover, for any A,B ∈ I
with A∩B 6= ∅, A∨B = A∪B by (I1) (see e.g. [16]). Hence condition (I1)
yields that for any A,B,C ∈ I the implication

A ∧B 6= 0 =⇒ C ∧ (A ∨B) = (C ∧A) ∨ (C ∧B) (12)
holds in this lattice, i.e. every A,B ∈ I with A ∧ B 6= 0 is a distributive
pair in (I,⊆). From here one can deduce that for any X ∈ I, X 6= ∅, the
principal filter [X) is a distributive sublattice of (I,⊆) (although (I,⊆) in
general is not distributive). Let us consider now the condition:

(I) If a ∧ b 6= 0, then (x ≤ a ∨ b and x ∧ a = 0)⇒ x ≤ b for all a, b, x ∈ L
Observe that (I) is satisfied whenever each pair a, b ∈ L with a ∧ b 6= 0 is a
distributive pair. Indeed, for any x ≤ a∨ b now we obtain x = x∧ (a∨ b) =
(x∧a)∨(x∧b), and hence x∧a = 0 implies x = x∧b, i.e. x ≤ b. Clearly, the
converse is not true; (I) does not imply that every a, b ∈ L with a ∧ b 6= 0
is a distributive pair. Hence lattices with 0 satisfying condition (I) and
with the property that [a) is a modular lattice for any a ∈ L, a 6= 0, can
be considered as a generalization of the lattice (I,⊆) of an interval system
(V, I). To study their CD-bases, first we prove:

Lemma 3.8. Let L be an atomic lattice satisfying condition (I), D ∈ D(L)
and

SD =
{
s ∈ L \ (D ∪ {0}) | d∧ s = 0 or d < s, for all d ∈ D

}
. (13)

Then for any b, c ∈ SD with b∧ c 6= 0 and any d ∈ D, d∧ (b∨ c) 6= 0 if and
only if 0 < d < b or 0 < d < c holds.

Proof. Assume that b ∧ c 6= 0, and take a d ∈ D such that d ∧ (b ∨ c) 6= 0.
Then d 6= 0, and since L is an atomic lattice, there exists an a ∈ A(L) such
that a ≤ d and a ≤ b∨ c. Since L satisfies condition (I) and b∧ c 6= 0, in the
case a ∧ b = 0 we get a ≤ c. Hence a ≤ b or a ≤ c must hold. This implies
d ∧ b 6= 0 or d ∧ c 6= 0. As b, c ∈ SD, in view of (13) we obtain 0 < d < b or
0 < d < c. The converse implication is obvious. �

Remark 3.9. Let L be a finite lattice and D = {dj | j ∈ J} ∈ DC(L). If
D ≺ D′ for some D′ ∈ D(L), in view of Lemma 1.6, there is a minimal
element a ∈ SD such that D′ = {a} ∪ {dj ∈ D \ {0} | dj ∧ a = 0}. We claim
that there exists a set K ⊆ J such that
K = {j ∈ J | dj < a} 6= ∅ and D′ = {a} ∪ {dj | j ∈ J \K}. (14)

Indeed, as D is complete, D 6= {0}, and hence 0 /∈ D. Then K 6= ∅,
otherwise a ∧ dj = 0 for all j ∈ J would imply that D ∪ {a} is a disjoint
set, in contrary with D ∈ DC(L). By the definition of K and SD we have:
dj ∧ a = 0 ⇔ j ∈ J \K. Hence D′ = {a} ∪ {dj | j ∈ J \K}.

It is well-known that a finite lattice L is semimodular if and only if it
satisfies Birkhoff’s condition, namely, for any a, b ∈ L
(Bi) a∧ b ≺ a, b implies a, b ≺ a∨ b.
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We also say that a pair a, b ∈ L satisfies Birkhoff’s condition, if the above
implication (Bi) is valid for a, b. It is known that any distributive pair
a, b ∈ L satisfies condition (Bi) (see e.g. [15]).

Theorem 3.10. Let L be a finite lattice satisfying condition (I). Assume,
in addition, that every proper principal filter of L is a modular lattice. Then
DC(L) is a semimodular lattice.

Proof. In view of Theorem 2.2(ii) and Lemma 1.11, DC(L) is a lattice. We
will show that it satisfies Birkhoff’s condition, i.e. D ≺ D1 and D ≺ D2

imply D1, D2 ≺ D1 ∨ D2 for any D = {dj | j ∈ J}, D1, D2 ∈ DC(L),
D1 6= D2. By Remark 3.9 and (14), there are some minimal elements b1 6= b2
in
SD =

{
s ∈ L \ (D ∪ {0}) | s ∧ dj = 0 or dj < s for all dj ∈ D

}
and some nonempty sets K1 = {j ∈ J | dj < b1},K2 = {j ∈ J | dj < b2}
such that D1 = {b1} ∪ {dj | j ∈ J \K1}, D2 = {b2} ∪ {dj | j ∈ J \K2}. If
b1 ∧ b2 = 0, then

∨
dj

j∈K1

≤ b1,
∨
dj

j∈K2

≤ b2 imply dj ∧ dj′ = 0 for all j ∈ K1 and

j′ ∈ K2, hence D1 ∪D2 is a CD-independent set. Then, in view of Theorem
2.2, D1, D2 is a distributive pair. Hence D1, D2 ≺ D1 ∨D2 by (14).

Now, suppose that b1 ∧ b2 6= 0. Since D = D1 ∧ D2, by using (7), we
obtain b1 ∧ b2 ∈ D. Hence b1 ∧ b2 = dj0 > 0 for some j0 ∈ J, and we
have D 6= {0}. In view of Lemma 3.8, dj ∧ (b1 ∨ b2) 6= 0 for j ∈ J implies
0 < dj < b1 or 0 < dj < b2, whence we get j ∈ K1 ∪ K2. Thus we have
either dj ∧ (b1 ∨ b2) = 0 for all j ∈ J \ (K1 ∪ K2), or J \ (K1 ∪ K2) = ∅.
Therefore, T = {b1 ∨ b2} ∪ {dj | j ∈ J \ (K1 ∪K2)} is a disjoint set. Since∨
{dj | j ∈ K1 ∪K2} ≤ b1 ∨ b2, we obtain D1, D2 6 T by (A).
Next, we prove T = D1 ∨ D2: Take any X ∈ D(L) with D1, D2 6 X.

Then, X 6= {0} and we obtain in virtue of (A) that b1 ≤ x1, b2 ≤ x2 for some
x1, x2 ∈ X. Moreover, if J\(K1∪K2) 6= ∅, then for any j ∈ J\(K1∪K2) there
exist an x(j) ∈ X with dj ≤ x(j). If x1 6= x2, then dj0 = b1∧b2 ≤ x1∧x2 = 0,
a contradiction. Hence x1 = x2, and b1 ∨ b2 ≤ x1 = x2. Thus we deduce
T 6 X, proving T = D1 ∨D2.

Further, assume for a contradiction that there exists a D3 ∈ DC(L) with
D1 < D3 < D1 ∨D2 = {b1 ∨ b2} ∪ {dj | j ∈ J \ (K1 ∪K2)}. In view of (A),
then there exist d∗ ∈ D3 and d ∈ D1 ∨ D2 with 0 < b1 ≤ d∗ ≤ d. Notice,
that d∗ = dj for some j ∈ J \ (K1 ∪ K2) is not possible, since it implies
0 < b1 = b1 ∧ dj , however b1 ∧ dj = 0 for all j ∈ J \K1. Hence d∗ ≤ b1 ∨ b2.
We are going to prove that {b1 ∧ b2, b1, d∗, b2, b1 ∨ b2} is a sublattice of L
isomorphic to N5. First, we show d∗ ∧ b2 = b1 ∧ b2 and b1 < d∗ < b1 ∨ b2.
Clearly d∗ ∧ b2 6= 0, since d∗ ∧ b2 ≥ b1 ∧ b2 6= 0. Observe that D1 <
D3 < D1 ∨ D2 is in contradiction with D2 6 D3, so D3 ∧ D2 6= D2. Now
D = D1 ∧ D2 ≤ D3 ∧ D2 < D2 and D ≺ D2 imply D3 ∧ D2 = D. As
d∗∧b2 6= 0, by applying (7) to D3∧D2, we get d∗∧b2 ∈ D. Since b1∧b2 ∈ D,
b1 ∧ b2 ≤ d∗ ∧ b2 implies b1 ∧ b2 = d∗ ∧ b2. As both b1 and b2 are minimal
elements in SD and b1 6= b2, they are incomparable. Hence d∗ 6= b1 ∨ b2,
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since otherwise b1 ∧ b2 = d∗ ∧ b2 = (b1 ∨ b2) ∧ b2 = b2 would impy b2 ≤ b1.
Thus d∗ < b1 ∨ b2. In order to prove b1 < d∗, first notice that for each
u ∈ D3 \ {d∗} we have b1 ∧ u ≤ d∗ ∧ u = 0. Now, let us show that u ≤ dj
for some dj ∈ D: Indeed, if u � b1 ∨ b2, then D3 < D1 ∨D2 yields u ≤ dj
for some j ∈ J \ (K1 ∪ K2) by (A) and we are done. If u ≤ b1 ∨ b2, then
b1∧ b2 6= 0 and b1∧u = 0 by condition (I) imply u ≤ b2. As u 6= 0, by (7) it
follows u = u ∧ b2 ∈ D3 ∧D2 = D, i.e. u = dj for some dj ∈ D. This result
proves D3 \ {d∗} 6 D 6 D1, according to (A). Thus any u ∈ D3 \ {d∗}
is less than or equal to some y ∈ D1. Hence d∗ = b1 ∈ D1 would imply
D3 6 D1, a contradiction. This proves b1 < d∗. Finally, b1 ≤ d∗ ≤ b1 ∨ b2
implies b1 ∨ b2 ≤ d∗ ∨ b2 ≤ b1 ∨ b2, whence we obtain d∗ ∨ b2 = b1 ∨ b2.

Now, it is easy to see that Q = {b1 ∧ b2, b1, d, b2, b1 ∨ b2} is a sublattice of
L isomorphic to N5. Clearly, Q ⊆ [b1∧ b2). However, this is a contradiction,
since [b1 ∧ b2) is a modular sublattice of L, because b1 ∧ b2 6= 0. Therefore,
we conclude that there is no D3 ∈ DC(L) with D1 < D3 < D1 ∨ D2, i.e.
D1 ≺ D1 ∨D2 holds. Symmetrically, we can prove D2 ≺ D1 ∨D2. �

Corollary 3.11.(i) If L is a finite distributive lattice, then DC(L) is a
semimodular lattice.
(ii) If L is a finite lattice which satisfies the conditions in Theorem 3.10,
then its CD-bases have the same number of elements.

Proof. (i) Clearly, any distributive lattice satisfies the conditions in 3.10.
(ii) Since now DC(L) is a finite semimodular lattice, it is graded. Hence (ii)
is proved by applying Proposition 1.12.

By applying Corollary 3.11(ii) to interval systems we obtain:

Corollary 3.12. If (V, I) is a finite interval system, then the CD-bases of
the lattice (I,⊆) contain the same number of elements.
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