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ABSTRACT. It is proved in [8] that any two CD-bases in a finite distribu-
tive lattice have the same number of elements. We investigate CD-bases
in posets, semilattices and lattices. It is shown that their CD-bases
can be characterized as maximal chains in a related poset or lattice. We
point out two known lattice classes characterized by some ”0-conditions”
whose CD-bases satisfy the mentioned property.
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INTRODUCTION

Several independence notions are already investigated in lattice theory,
see e.g. [6, 8,9, 10]. The main result in [9] about weak independence was
successfully applied to a combinatorial problem, namely to the problem of
determining the maximum number of rectangular islands, see [5] for details.
The notion of an island appears first in [13] under the name of ”full seg-
ment”. It was observed that many subsets in island problems (see e.g. [1] or
[14]) are in fact CD-independent. Furthermore, the notion of a classification
tree can be also defined as a particular CD-independent set (see [20]).

In [8] the authors showed that the CD-bases in a finite distributive lattice
have the same number of elements, and conversely, if all finite lattices in a
lattice variety have this property, then the variety must coincide with the
variety of distributive lattices.

In this paper we define CD-independent sets in an arbitrary poset P =
(P, <), and we show that the CD bases of any poset P can be characterized
as maximal chains in a related poset D(P). We prove that if P is a com-
plete lattice, then D(P) is also a lattice having a weak distributive property.
We also point out two known lattice classes where the CD-bases in finite
lattices have the mentioned property: The first class is that one of graded,
dp-distributive lattices, and the second class is obtained by generalizing the
properties of the so-called interval lattices (having their origine in graph
theory). None of these classes is a variety, however their existence can mo-
tivate the study of CD-bases in some particular lattice classes related to
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combinatorial problems. Since these classes are generalizations of distribu-
tive lattices, our results also imply that the CD-bases in a finite distributive
lattice have the same number of elements, settled originally in [8] (see e.g.
Corollary 3.6 or Corollary 3.11).

1. CD-INDEPENDENT SUBSETS IN POSETS

Let P = (P, <) be a partially ordered set and a,b € P. The elements a
and b are called disjoint and we write a L b if

either P has least element 0 € P and inf{a,b} =0,
or P is without 0 and the elements a and b have no common lowerbound.

Notice, that a L b implies z L y for all x,y € P with < a and y <b. (1)

A nonempty set X C P is called CD-independent if for any z,y € X,z <y
or y <z, or x L y holds. Maximal CD-independent sets (with respect to
Q) are called CD-bases in P. If P contains least element 0 (greatest element
1) and B is a CD-base, then obviously 0 € B (1 € B). A nonempty set
D of nonzero elements of P is called a disjoint set in P if x 1 y holds
for all x,y € D, x # y; if P has 0-element, then {0} is considered to be
a disjoint set, too. Observe, that D is a disjoint set if and only if it is a
CD-independent antichain in P. This characterization and the fact that any
nonempty subset of a CD-independent set is also CD-independent yield:

Remark 1.1. (i) If D is a disjoint set in P, then 0 € D < D = {0}.
(ii) If X is a CD-independent set in P, then any antichain A C X is a
disjoint set in P.

We recall that any antichain A = {a; | i € I} of a poset P determines a

unique order-ideal I(A) of P, namely
I(A) = U(ai]={x € P|xz<a;for someic I},
el

where (a] stands for the principal ideal of an element a € P. As the order-
ideals of any poset form a (distributive) lattice with respect to C, the an-
tichains of a poset can be ordered as follows: If Aj, As are antichains in P,
then we say that A; is dominated by Ao, and we denote it by A; < Ag if

I(Ay) C I(Ay).

It is well-known that < is a partial order (see e.g. [4] or [11]), and it is easy
to see that A} < As is satisfied if and only if the following condition holds:

(A) For each z € A; there exists a y € Ag with x <.

Let D(P) denote the set of all disjoint sets of P. As the disjoint sets of
[P are also antichains, restricting < to D(P), we obtain a poset (D(P), <).
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Clearly, if P has least element 0, then {0} is the least element of (D(P), <).
The following facts are immediate consequeces of this definition (and (1)):

Remark 1.2. (i) I1(A1) < I(Az) & A; < Ay for any antichains A1, A C P.
(ii) Let D1 and D9 be disjoint sets in P. Then Dy C Ds implies D1 < Ds.
Furthermore, if D1 < D3, then
for all (x1,x2) € D1 X Da, x1 < x9 0or 1 L 9. (2)
(iii) Observe, that the poset (P, <) can be order-embedded into (D(P), <):
Indeed, for any = € P the set {z} itself is a disjoint set, and clearly,

<y (2] C (Y] & {z} <{y}
hold for any x,y € P.

Now define a relation p C P x P as follows: For any =,y € P
(r,y)epesrx<yory<zorzly.

Then p is reflexive and symmetric by its definition, i.e. it is a tolerance
relation on P. A block of a tolerance relation 7 C A x A is a subset B C A
maximal with respect to the property B x B C 7 (see e.g. [2]). It is easy
to see that the CD-bases of P are exactly the tolerance blocks of p. As any
tolerance relation has at least one tolerance block, and its blocks form a
covering of the underlying set, we obtain:

Proposition 1.3. Any poset P = (P, <) hast at least one CD-base, and the
set P is covered by the CD-bases of P.

Proposition 1.4. If B is a CD-base and D C B is a disjoint set in the
poset (P, <), then I(D)N B is also a CD-base in the subposet (I(D),<).

Proof. As I(D) N B remains CD-independent in (I/(D), <), it is enough
to show that for any = € I(D) \ B the set (I(D) N B) U {z} is not CD-
independent. Indeed, as B is a CD-base, B U {z} is not CD-independent,
and hence there exists a b € B such that b and x are not comparable and
have a common lowerbound u # 0. Then u < x < a for some a € D, and
u € I(D). Since 0 < u < a,b and a,b € B, a and b must be comparable.
Hence b < a, otherwise a < b would imply x < b, a contradiction. Thus we
get b € I(D) N B, and hence (BN I(D))U{z} is not CD-independent.

Given a set X, let | X| denote its cardinality. The connection between CD-
bases of a poset P and the poset (D(P), <) is shown by the next theorem:

Theorem 1.5. Let B be a CD-base of a finite poset (P,<), and let
|B| = n. Then there ezists a mazimal chain {D;}1<i<n in D(P), such that

n
B = |J D;. Moreover, for any mazimal chain {D;}1<i<m in D(P) the set
=1

1=

D = D, is a CD-base in (P, <) with |D| =m.
i=1

First we prove two lemmas:
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Lemma 1.6. If Dy < Dy in D(P), then Dy = {a}U{y € D1\ {0} | y L a}
for some minimal element a of the set
S={seP\(D1U{0})|yLsory<sforalyec D}

Moreover, Dy < {a}U{y € D;\{0} | y L a} holds for any minimal element
a of the set S.

Proof. Define Ty = {s} U {y € D1\ {0} | y L s} for each s € S. Then T is
a disjoint set, Ty # D1, and y € T, or y < s holds for all y € D;. Hence, in
view of (A), we obtain

Dy <Ts forall s € S. (3)

Further, let D1 < Dy. Then Dy # {0}, and hence 0 ¢ Dy, by Remark
1.1(i). Since, in virtue of (2), for any y € Dy and s € Do, y L s, or y < s,
or y = s holds, we have Dy \ D; C S. Clearly, Dy \ Dy # 0, otherwise by
Remark 1.2(ii) Dy C D; would imply Dy < Dj, a contradiction. Select an
element a € Dy \ Dy. Then a € S, and in virtue of (3), T, = {a} U{y €
D\ {0} | y L a} satisfies D; < T. Observe that T, < Ds by (A) since
a < a € Dy and for each y € Dy thereis ay’ € Dy with y <. So, D1 < Do
and a € Dy \ Dy imply that D; < T, < Ds.

Assume now D; < Ds. Notice at this point that if b is also in D9 \ D1,
then T, = Dy =T,, and {b} =T, \ D=1, \ Dy = {a} Thus

if Dy < Do, then |D2 \ Dl‘ = 1. (4)
Then also Dy = T, = {a} U{y € D1\ {0} | y L a}, as it was desired.
Suppose that s < a for some s € S. As Ts \ {s} € D; < T,, for each
y € Ts \ {s} there is a t € T, with y < t according to (A). Since s < a
and s ¢ T,, by (3) and (A) we get D1 < Ts < T, = D2, a contradiction to
Dy < Dsy. Thus a is a minimal element in S.

If a € S is minimal, then T}, is a disjoint set, and D; < Ty by (3). In order
to prove Dy < Ty, assume that D; < Dy < Ty for some Dy € D(P). Then,
in view of the first part of our proof, 0 ¢ Dy, ) # Dy \ D1 C S, and for any
b€ Do\ Dy, Ty is a disjoint set satisfying D; < T, < Dy < Tg. Clearly, we
have b < ¢ for some t € T, = {a} U{y € D1\ {0} | y L a} according to (A).
If t € Dy, then b € S and t £ b imply ¢ L b, hence we get 0 = inf{b,t} = b,
a contradiction to 0 ¢ S. Thus t = a and b < a. As a is minimal element of
S, we get b =a, Ty = T,, and hence Dy = T,. This proves D1 < T,. O

Now let max(X) stand for the set of maximal elements of the set X C P.

Lemma 1.7. Assume that B is a CD-base with at least two elements in
a finite poset P = (P,<), M = max(B), and m € M. Then M and
N := max(B\ {m}) are disjoint sets. Moreover M is a maximal element in

D(P), and N < M holds in D(P).

Proof. Since M and N are antichains in a CD-independent set, they are
disjoint sets. Suppose M < D for some D € D(P). In virtue of (2), for all
m € M and d € D we have m < d or m L d. Then by (1), b<dorb L d
holds for all b € B and d € D. This means that BU D is a CD-independent
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set. Since B is a CD-base, we deduce D C B. Then for each d € D there is
an m € M with d < m. In view of (A), this implies D < M in D(P). Thus
we get M = D, proving that M is maximal in D(P).

In order to prove N < M in D(P), consider the subposet (B, <). For
any antichain A C B, denote by Ip(A) the order-ideal determined by A in
(B,<). Clearly, Ig(M) = B. Since Ig(N) = B\ {m} = Ig(M) \ {m},
we obtain Ig(N) < Ig(M), and hence N < M holds in D(B) according to
Remark 1.2(i).

Now, in virtue of (2), N < M yields y < m or y L m for each y € N,
since m € M \ N. Moreover, m # 0 because m ¢ Ig(N). The last two facts
imply that m belongs to the set

S={seP\(NU{0}) |y Lsory<sforallye N}.

We claim that m is a minimal element in S. Indeed, let s < m for some
s € S. Since for any b € B\ {m}, b <y for some y € N, by (1) we have
blsorb<sforallbe B\ {m}. Then BU {s} is a CD-independent set.
As B is a CD-base, we get s € B. Now s € B\ {m} would imply s L s
or s < s, a contradiction. Thus s = m, proving our claim. Then, in view
of Lemma 1.6, T,,, = {m} U {y € N\ {0} | y L m} is a disjoint set and
N < T, in D(P). Hence, by showing T,,, = M our proof is completed. As
T, € B, any t € T), is less than or equal to some element of max(B) = M.
Thus N < T,,, < M holds in D(B) by (A). Hence N < M in D(B) implies
T =M. O

Proof of Theorem 1.5. Any poset (P, <) without least element becames a
poset with 0 by adding a new element 0 to P. In this way both the number
of the elements in the CD-bases of P and the length of the maximal chains
in D(P) are increased by one. Therefore, without loss of generality we may
assume that P contains 0 and |P| > 2.

To prove the first part of Theorem 1.5, assume that B is a CD-base in P.
Then clearly 0 € B and |B| > 2. Let D; = max(B). Take any m; € D; and
form Dy = max(B \ {m1}). Then, in view of Lemma 1.7, Dy, Dy € D(P),
Dy = Dy, and D; is a maximal element in D(P). Further, suppose that we
already have a sequence (D;,m;), 1 < i < k (k > 2) such that m; € D;,
Dy > ...> Dy in D(P) and

Dy, = max(B\ {m1,...,mp_1}).
We show that for all i € {1,...,k — 1} and d € Dy, we have d # m,. (5)

This is clear for ¢ = 1 since m; € max(B) and d € B, d # m;. If 2 <i <
k —1, then m; € max(B\ {m1,...,m;i_1}), and since d € B\ {m1, ..., m;_1},
d > m; would imply m; =d € B\ {my,...,my, ....,mi_1}, a contradiction.

Further, if |B \ {mi,....,mr_1}| > 2, then form the next set Dy i :=
max(B \ {m1,...,mp_1,mi}) and let myy; € Dgyq1. Since Dyyq is an an-
tichain in the CD-base B, it is a disjoint set, and clearly Dy, # Dj.

In order to prove Dy > Dy, consider the subposet (I(Dy),<). By
Proposition 1.4, By, := BNI(Dy) is a CD-base in (I(Dy), <). We claim that
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By =B \ {mla "'>mk—1}‘

Indeed, Dy, = max(B \ {m1,...,mg_1}) implies B \ {mq,....mi_1} € BN
I(Dy) = Bg. On the other hand, (5) implies {mq,...,mi_1} N I(Dg) = 0,
whence we get By, C B\ {m1,...,mp_1}, proving our claim. Hence Dy =
max(By), and Dyy1 = max (B \ {m, ..., mg_1,my}) = max(By \ {mg}).

Now, by applying Lemma 1.7, we obtain that Dyy; < Dy holds in
D(I(Dy)). Finally, observe that any S € D(P) with S < Dy is also a
disjoint set in (I(Dg), <) according to (A). Moreover, since Dii1 < Dy
holds in D(I(Dy)), Dr+1 < S < Dy implies either S = Dy or S = Dy.;.
This means that Dyy; < Dy holds in D(P), too.

Thus we conclude by induction that the chain Dy > ... = Dy > ... can
be continued as long as the condition |B\ {m1,...,mp_1}| > 2 is still valid.
Since P is finite, the process stops after finite - let say n — 1 steps, when
|IB\ {m1,....,mp—1}| = 1, and the last set is D,, = B\ {my,....mu_1}.
As 0 € B, and since 0 ¢ max(X) whenever |X| > 2, we get {0} = B\
{mi,....mp_1} = D,. As D; is a maximal element and D,, = {0} is the
least element in D(P), Dy > ... = D, is a maximal chain in D(P). Since
B ={my,...,my_1,0}, we obtain |B| = n.

To prove the second part of Theorem 1.5, assume that the disjoint sets
Dy, ..., D,, form a maximal chain C:

Dy <..=< D,

m
in D(P). Then Dy = {0}. Let D = |J D;. First, we prove that the set D

=1
is CD-independent. Indeed, take anyza:, y€ D,ie x € D;and y € D; for
some 1 <4 < j <m. Then z < z for some z € D; by (A). Assume that
x and y are not comparable. Then z # y, and z L y implies z L y by (1).
This means that D is CD-independent.
Now, assume that D is not a CD-base. Then there is an z € P\ D such
that D U {z} is CD-independent. Next, consider the set

E={D;eC|z£dforallde D}

Clearly, D1 = {0} € £ since # £ 0. Let D; € £&. Then d L x or d < z holds
for each d € D; because D U{z} is CD-independent. Thus 7; := {z} U {d €
D; | d & x} is a disjoint set, and d < x or d € T; holds for all d € D;. Hence

D; <5, (6)

in view of (A) and = ¢ D,. Observe that D,, ¢ & since D,, < T,, is not
possible because C is a maximal chain. Thus, there exists a k¥ < m — 1 such
that Dy, € € but Dy41 ¢ €. This means that z £ d for all d € Dy, and z < 2z
holds for some z € Dy11. Then T, = {x}U{d € Dy, | d £ z} € D(P) satisfies
Dy, < Ty, in virtue of (6). Since T} \ {z} € Dy < D41 and z < z, for each
t € Ty thereisav € Dypyq with ¢ < v. In view of (A) we get Dy, < Ty, < D41
because = ¢ D1 C D. Since this fact contradicts Dy < Dg41, we conclude
that D is a CD-base.
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Further, in view of (4), it follows that any set D; \ D;—1, 2 < i < m
contains exactly one element, let say, a;. Observe also that

m m
D= UIDZ = DU UQ(Dl \ Di—l)-

1= 1=
Since D1 = {0} and D; \ D;—1 = {a;}, we get D = {0, aq, ..., a, }. We prove
that all the elements 0,as, ...,a,, are different: Clearly, 0 ¢ {ag,...,am}.
Take any 4,5 € {2,...,m}, i < j. Then D; < Dj_1 < Dj. As a; € D;, there
iS&bED]’,1 with 0 < a; < b by (A) ASCLj EDj\Dj,l,b<aj oer_aj
holds by (2). Since both facts imply a; # a;, we conclude that D contains
m different elements. O

The length [(P) of a poset P is defined as the supremum of |C'| — 1 where
C'is a chain in P. The poset P is called graded if all its maximal chains have
the same cardinality. In this case, I(P) = |Cy,| — 1 for any maximal chain
Cp, in P. Tt is known that any principal ideal (principal filter) of a finite
graded poset is also graded. The next assertion is a direct consequence of
Theorem 1.5.

Corollary 1.8. Let P = (P, <) be a finite poset. Then the CD-bases of P
have the same number of elements if and only if the poset D(P) is graded.

Corollary 1.9. Let P =(P, <) be a finite poset.

(i) Let B C P be a CD-base of P. Let (B,<) be the poset under the
restricted ordering. Then any mazimal chain C = {D;}i1<i<m in D(B) is
also a mazximal chain in D(P).

(ii) If D is a disjoint set in P and the CD-bases of P have the same number
of elements, then the CD-bases of the subposet (I(D), <) also have the same
number of elements.

Proof. (i). Since all D; (1 < i < n) are antichains with D; C B, they
are disjoint sets in (P, <), too. Thus C is a chain in D(P), and hence it
is contained in a maximal chain M of D(P). In view of Theorem 1.5,
n
B'={D | D € M} is a CD-base in D(P), and we have B’ D> |JD; = B.
i=1
As B is also a CD-base, we get B’ = B and this implies D C B for all
D € M. Hence M is a chain in D(B), and since C is maximal in D(B), we
obtain C = M. Therefore, C is a maximal chain in D(P).
(ii). We claim that D(I(D)) coincides with the principal ideal generated by
D in D(P). Indeed, any S € D(I(D)) is also a disjoint set in P, and satisfies
S < D in D(P) by (A). Conversely, if S < D holds in D(P), then (A)
implies S € D(I(D)). As any principal ideal of a graded poset is graded,
in view of Corollary 1.8, the CD-bases of I(D) have the same number of
elements. g

Remark 1.10. Let P = (P, <) be a poset with 0. Let A(P) be the set of
atoms of P, i.e. of all a € P with 0 < a. Then « L y or > y holds for all
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x € Pandy € A(P)U{0}, and hence A(P)U{0} is a subset of any CD-base
of P.

A disjoint set D # {0} of a poset (P, <) is called complete, if there is no
p € P\ D such that D U {p} is also a disjoint set.

Lemma 1.11. Let P = (P, <) be a finite poset with 0. A disjoint set
D # {0} of P is complete if and only if A(P) < D in D(P).

Proof. Let D be a complete disjoint set and a € A(P). Then there is an
x € D witha < z, otherwise a L x for all z € D would imply that DU{a} is a
disjoint set, a contradiction. Hence A(P) < D according to (A). Conversely,
assume that A(P) < D holds for some D € D(P)\ {0}, and take p € P\ D.
In view of Remark 1.1(i), D U {p} is not a disjoint set for p = 0. Let p # 0.
Since P is finite, there is an atom a € P with a < p. As A(P) < D, we get
a < z for some z € D by (A). Since x L p is not satisfied, D U {p} is not a
disjoint set. Thus D is complete. ([

This result means that the complete disjoint sets of P coincide with the
principal filter [A(P)) in D(P). Their subposet ([A(P)), <) will be denoted
by DC(P). Its importance is shown by the following assertion:

Proposition 1.12. Let P = (P, <) be a finite poset with 0. Then the
following conditions are equivalent:

(i) The CD-bases of P have the same number of elements.

(ii) D(P) is graded.

(iii) DC(P) is graded.

Proof. (i)<(ii) is just Corollary 1.8, and (ii)=-(iii) follows from the fact that
any pricipal filter of a finite graded poset is also graded.

(iii)=(ii). Let ! be the length of DC(P) and A(P) = {a1,a2,...,ar—1}. We
will show that any maximal chain C : D1 < ... < Dy, in D(P) has the length

k+1—1. Indeed, in virtue of Theorem 1.5, B = |J D; is a CD-base in P
i=1
with |B| =n. Thus A(P)U {0} C B by Remark 1.10. By Lemma 1.6
A: {0} < {(11} < {al,ag} <. < {al, ...,ak_l}
is a maximal chain in the interval [{0}, A(P)]. Consider the subposet (B, <)
of P. As A is a chain in D(B), it is contained in a maximal chain M :
{0} = D} < ... < D}, of D(B). Then D;, = A(P), and since B is the only

m
CD-base in (B, <), by Theorem 1.5 we get B = |J D} and m = |B| = n. By
i=1

Corollary 1.9(i) , M is also a maximal chain in D(P), moreover, D, ..., D],
are complete disjoint sets, according to Lemma 1.11. Therefore, D} < ... <
D!, is a maximal chain in DC(P), and hence its length n — k is equal to .
Thenn—-1=k+(n—k—1)=k+1—1, ie. the length n — 1 of C equals
tok+1—1. O
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Now, we will show that under some weak conditions, D(P) graded implies
that P itself is graded. A poset with least element 0 and greatest element 1
is called bounded. A lattice L with 0 is called 0-modular if for any a,b,c € L

(M) a<band bAc=01imply bA(aVc)=a

Equivalently, L has no pentagon sublattice N5 that contains 0 = 0. If (M)
is satisfied under the assumptions that a is an atom and ¢ < bV ¢, then L is
called weakly 0-modular. L is lower-semimodular if for any a,b,c € L, b < ¢
implies aAb =< aAc. It is easy to see that any lower-semimodular lattice and
any 0-modular lattice is weakly O-modular. We say that a poset P with 0 is
weakly 0-modular if the above weak form of (Mp) holds whenever sup{a, c}
and sup{b, ¢} exist in P.

Proposition 1.13. Let P be a finite bounded poset.

(a) If all the principal ideals (a] of P are weakly 0-modular, then A(P)UC
is a CD-base for every maximal chain C in P.

(b) If P has weakly 0-modular principal ideals and D(P) is graded, then P
is also graded, and any CD-base of P contains |A(P)| + l(P) elements.

Proof. (a) Let C' be a maximal chain. Clearly, C' has the form: 0 = ¢y <
¢ < ..<c,=1and A(P)UC is CD-independent. Now let y € P\ C such
that C' U {y} is CD-independent; we will prove y € A(P). Since y < 1 and
y # 0, there exists an element ¢; € C'\ {0} such that y < ¢; and y £ ¢;—1.
Since y > ¢;—1 does not hold, we get y 1 ¢;_1. Let a be an atom under y:
then a < ¢;, and a L ¢;—1 by (1). As ¢; is the unique upper cover of ¢;_; in
the subposet (¢;], it is also the least upperbound for {y,c;—1} and {a,c;—1}
in (¢;]. Hence aV ¢;—1 =y V ¢i—1 = ¢; holds in (¢;]. Since ((¢], <) is weakly
O-modular, 0 < a <y, y Ac¢i—1 = inf{y,¢;—1} =0 and ¢;—1 <y V ¢;—1 imply
a=yA(aVei1)=yANc =y. Thus y € A(P), hence A(P)UC is a CD
base.
(b) In view of Corollary 1.8, if D(P) is graded, then any CD-base B of P
has the same number of elements as A(P)UC, i.e. |B| =|A(P)|+ |C| — 1.
Consequently, if C1 and Cy are two maximal chains in P, then |A(P)| +
Cil — 1= |A(P)| + |G| — 1, ie. [C1] = [,

Thus P is graded and [(P) = |C| — 1. The remaining part is clear. O

2. CD-BASES IN SEMILATTICES AND LATTICES

Lemma 2.1. Let P be a poset with 0. Let Dy be disjoint sets in P for any
k € K, where K is a nonempty set. If the meet N\ a®) of any system of
keK
elements a'®) € Dy, k € K, exist in P, then )\ Dy also exists in D(P). In
keK
particular, for K = {1,2} and D1 ={a; |i € I}, Do ={b; | j € J} € D(P,)



10 ESZTER K. HORVATH AND SANDOR RADELECZKI

M!Z{ai/\bj#O’Z'GI,jGJ}, if M # (;

DinDs = { {0}, otherwise. (7)

Proof. Since {0} is the least element in D(P), we have {0} = A Dy,
keK
whenever {0} belongs to {Dj, | k € K}. Hence we may assume that Dy, #

{0}, k € K. Now, for all possible systems of elements a*) € Dy, k € K,

form the set M of their nonzero meets A a® in P. If M # (), then define
keK
S := M, otherwise let S := {0}. We show that S is a disjoint set. This
is clear for S = {0}. If S # {0}, then for any elements A a® # A b¥)
keK kEK
of S, there exists a ky € K such that a(k0) %+ bko) . Ag q(ko) plko) ¢ Dy,

we get alk0) 1 p(*k0) and this fact implies < A a(k)> 1 ( A b(k)> by (1).
keK keK
This result means that S € D(P). Next, we prove S = A Dj. The
keK
case M = () is clear since then S = 0 is the only lower bound of the Dy,
k € K. Hence we can assume that M = (). As for each A a® € S we
keK

have A a® < a® € Dy, k € K, we get S < Dy for all k € K. Let
keK
T ={tx | A € A} € D(P), such that T < Dy, k € K. If T = {0}, then

T < S If T # {0}, then ty # 0 for all A € A, and in view of (A), for
each k € K there is an element ag\k) € Dy, such that t), < aE\k). Since by
our assumption, all /\ag\k) exist in P, we get 0 < £y < A af\k), A€ A

keK keK
As A ag\k) € S, we obtain ' < S by (A). This proves S = A Dg. The
keK keK
remaining part is clear. ([l

Let P = (P, A\) be a semilattice with 0. Now, for any a,b € P the relation
a L b means that a A b = 0. Hence, a set {a; | i € I} of nonzero elements
is a disjoint set if and only if a; Aa; = 0 for all 4,5 € I, i # j. A pair
a,b € P with least upperbound a V b in P is called a distributive pair if
(cAa)V (cAb) exists in P for any ¢ € P, and cA(aVb) = (cAa)V (cAb). We
say that (P, A) is dp-distributive (distributive with respect to disjoint pairs)
if any pair a,b € P with a A b= 0 is a distributive pair.

Theorem 2.2. (i) If P = (P, A) is a semilattice with 0, then D(P) is a
dp-distributive semilattice. If, in addition, D1, Dy € D(P) such that D1UDy
is a CD-independent set, then D1, Do is a distributive pair in D(P).

(ii) If P is a complete lattice, then D(P) is a dp-distributive complete lattice.

Proof. (i) Let D1 = {a; | i € I},Dy ={b; | j € J} € D(P). By applying
Lemma 2.1 (with K = {1,2}) we get that D; A Dy € D(P) always exists,
and it is given by (7). Thus D(P) is a semilattice with 0.
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JFrom now on, suppose that D U Dy is a CD-independent set. Since D1,
Dy are antichains, any chain in Dy U D3 has at most two elements (one in D
and the other in Dy). Thus max(D;UDs3) # (), and for any d € D;UD5 there
exists an m € max(D1UD3) with d < m. Since max(D1UD>) is an antichain
in a CD-independent set, it is a disjoint set, and D1, Dy < max(D; U D3)
by (A). We show that

max(Dl @] DQ) =D1V Dy in D(P) (8)

Indeed, take any T' € D(P), with D1, Dy < T. Then, in view of (A), for
any d € D1 U Da, there is at € T with d < t. As max(D; U Dy) C Dy U Do,
we get max(D; U D2) < T by (A). Thus max(D; U D) = Dy V Ds.

Further, we prove that for any D3 = {¢, | ¢ € Q} € D(P) we have

(Dl V DQ) A D3 = (Dl A Dg) vV (D2 A Dg) (9)

Since the inequality (D A D3)V (Da A D3) < (D1V D2) A D3 holds whenever
both of its sides exist, it is enough to show its converse. Clearly, we may
assume (D1 V Da) A D3 # {0}. Then, by applying (8) and (7), we obtain:

(D1V D2) ND3={mAcqg#0]|m e max(D;UDs),q€Q}.

In view of (8), (D1AD3)V(D2ADs3) exists in D(P), whenever (D ADs)U(DaA
Ds3) is CD-independent. This holds if Dy A D3 = {0} or D2 A D3 = {0}.
Otherwise, by (7), D1 AD3 ={aiAcg #0 | i € I,q € Q} € D(P) and
DyAND3={bjAcg #0|j€ JqgeQ} € D(P). If (a; Ncg) N(bj Acg) # 0O for
some i € I,j € Jand ¢,¢ € Q, then ¢y Acy # 0, a; Ab;j # 0, hence we get
cq = cg, and a; < bj or b; < a;, because ¢4, ¢y € D3, ai,b; € D1 U Do and
DU Dy is CD-independent. This implies a; Acy < bjAcy or bjAcy < a;Neg,
proving that (D1 A D3) U (D2 A D3) is CD-independent.

Now, consider an z € (D1V D2)ADs. Since {0} # (D1VD2)AD3 € D(P),
x # 0. By (8) and Lemma 2.1, there are i € {1,2}, d; € D; and d3 € D3 such
that x = d; Ads. (A) together with d; Ads € D; A D3 < (D1 /\Dg)U(Dg/\Dg)
give a y € (D1 A D3) U (D2 A D3) such that x = d; A ds < y. Hence
(D1V D9) A D3 < (D1 AD3)V (DA Ds) by (A) since x was arbitrary. This
proves (9).

Finally, let Dy = {a; | i € I} € D(P), Dy = {b; | j € J} € D(P) such
that D1 A Dy = {0}. Then, in view of (7) we have a; Ab; =0 for all i € I
and j € J. Thus DU D> is a CD-independent set, and hence D1V Do exists
in D(P). Therefore, D1, Dy is a distributive pair in D(P), according to (9).
This result means that (D(P), A) is dp-distributive.

(ii) As PP is a complete lattice, it has a 1 element, and {1} is the greatest
element of D(P). Since by Lemma 2.1, AX exists for all X C D(P), D(P)
is complete lattice. In view of (i), D(P) is dp-distributive. O

Let (P, <) be aposet and A C P. (A, <) is called a sublattice of (P, <), if
(A, <) is a lattice such that for any a,b € A the infimum and the supremum
of {a,b} are the same in the subposet (A4,<) and in (P,<). If z <4 y
implies z <p y for all x,y € A, then we say that (A, <) is a cover-preserving
subposet of (P, <).
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Theorem 2.3. Let P = (P, <) be a poset with 0 and let B be a CD-
base of it. Then (D(B),<) is a distributive cover-preserving sublattice of
the poset (D(P),<). If P is a N-semilattice, then for any D € D(P) and
Dyi,Dsy € D(B) we have (D1 \Y Dg) AND = (D1 N D) V (D2 VAN D) m D(P) .

Proof. Observe that any D € D(B) is also a disjoint set in P, since D
is an antichain within the CD-base B. Hence D(B) C D(P). Take any
x,y € B. Since we have x < yory <z orz L y, we get xt Ay = z, or
r ANy =y,orx Ay =0; sox Ay € B exists in all possible cases. Thus
(B,<) is a A-semilattice with 0. Take Di,Ds € D(B). In view of (7),
D1/\D2:{0} QBOI‘le\DQZ{l’/\y#O|$€D1,y€D2} C B.
Hence D; A D is the same both in D(B) and D(P). As Dy U Dy C B,
Dy U Dy is CD-independent. Then, in virtue of (8), D V Dy exists in D(P)
and D1V Dy = max(D1 U Dy) C B. Thus D; V Dy in D(B) is the same as
in D(P). Hence (D(B), <) is sublattice of (D(P),<). Let D € D(B). Since
(D(B), <) is a lattice and D; U D3 is CD-independent, in view of Theorem
2.2 we get (D1VDy)AD = (D1 AD)V (D2AD). Thus D(B) is a distributive
lattice. Finally, suppose that D < S holds in D(B) for some D, S € D(B).
Then D < S is contained in a maximal chain C of D(B). Since by Corollary
1.9(i), C is also a maximal chain in D(P), D < S holds in D(P), too.

Let P be a A-semilattice and Dy, Ds € D(B). Since Dy U Dy is CD-
independent, (D;V D2)AD exists for any D € D(P), and in view of Theorem
22, (D1VDy)ND = (Dy AND)V (D2 A D). O

3. CD-BASES IN PARTICULAR LATTICE CLASSES

In this section we investigate CD-bases in two particular lattice classes.
The properties of the first class generalize the properties of tolerance lat-
tices of majority algebras. It was proved in [7] and [3] that the tolerance
lattice of any majority algebra is a pseudocomplemented, O-modular and
dp-distributive lattice. These properties are not independent, we will show
for instance that dp-distributivity implies 0-modularity.

A lattice L with 0 is called pseudocomplemented if for each x € L there
exists an element x* € L such that for any y € L, yAz =0< y < z*. It
is known that an algebraic lattice L is pseudocomplemented if and only if it
is 0-distributive, that is, for any a,b,x € L, x Aa =0 and z A b = 0 imply
x A (aVb) =0. We say that L is weakly 0-distributive if this implication
holds under the condition a A b = 0. Clearly, any 0-distributive lattice is
weakly O-distributive. If D is a disjoint set in a weakly 0-distributive lattice
and |D| > 2, then it is easy to see that replacing two different elements
di,ds € D by their join d; V da, we obtain again a disjoint set.

Lemma 3.1. Let L be a finite weakly 0-distributive lattice and D a dual
atom in D(L). Then either D = {d} for some d € L with d < 1, or D
consist of two different elements dy,ds € L with dy V ds = 1.
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Proof. Assume that D < {1} holds in D(L). If there exists dy,d2 € D,
dy # dy, then D' = {dy Vda} U (D \ {dy,d2}) is disjoint set and D < D'.
Hence D < {1} implies D’ = {1}, and this is possible only when d; Vds = 1
and D = {d1,d2}. If D = {d} for some d € L, then d < 1, otherwise
d < z < 1 for some z € L would imply D < {z} < {1}, a contradiction. O

Let L be a graded lattice, and 0,a € L. Then the height of a is the length of
the interval [0, a], denoted by I(a) (In literature, it is also denoted by h(a).)

Remark 3.2. A graded lattice L with 0 is 0-modular, whenever [(a) +1(b) =
[(a Vv b) holds for all a,b € L with a A b = 0: Indeed, if L is not 0-modular,
then in view of Varlet’s result [19] it has an N5 sublattice containing 0, thus
there exist a,b,c € L such that c >band aAb=aAc=0,aVb=aVec
Hence by our assumption i(a) +1(b) = l(aVb) =(aVc) =l(a) +(c). Thus
we obtain (b) = [(c), in contradiction with b < c.

Theorem 3.3. Let L be a finite, weakly 0-distributive lattice. Then the
following are equivalent:

(i) L is graded, and l(a)+1(b) = I(aV b) holds for all a,b € L with anb= 0.
(ii) L is 0-modular, and the CD-bases of L have the same number of ele-
ments.

Proof. (1)=(ii). In view of Remark 3.2, (i) implies that L is 0-modular.
Further, denote by 7 the class of finite, weakly O-distributive lattices sat-
isfying condition (i). We prove via induction on the length [ of the lattices
L € T that any CD-base of them has |A(L)| 41 elements. If [ = 1, then L is
a chain 0 < a, and our assertion holds trivially, since L itself is a CD-base.
Let L € T have length [ > 2, and suppose that the assertion is true for
any K € 7, with length [(K) < [ — 1. Take any CD-base B of L; then
{0,1} U A(L) € B, max(B) = {1} is the greatest element in D(L), and
1 ¢ A(L). Let N = max(B \ {1}). In virtue of Lemma 1.7, N is a dual
atom in D(L). Clearly, A(L) € B\ {1} € I(N). Since L is finite and
weakly 0-distributive, Lemma 3.1 yields either N = {d} for some d < 1, or
N = {dl,dg} with dq Vdy = 1.

In the first case, A(L) C B\ {1} = BN (d], l(d) =1 — 1, and clearly, the
lattice (d] belongs to the class 7. In view of Proposition 1.4, B N (d] is a
CD-base in (d], hence by applying the induction hypothesis to (d], we get
|B| —1=|A(L)|+1—-1,1ie. |B|=|A(L)|+1.

In the second case A(L) C B\ {1} C (di] U (dz], and since N is a disjoint
set, dy Ady = 0. Hence the single common element of (d;] and (dz] is 0, and
since B\ {1} = (BN (di]) U (BN (de]) and A(L) C B\ {0,1}, we obtain
Bl—1 = [BO (d]] + B (d]] — 1, and [A(L)| = [A((dy])| + |A((d])]. In
view of Proposition 1.4, BN (d;] and B N (dg] is a CD-base in (d1], (da],
respectively. It is obvious that (d1], (d2] € T and I(d1),1(d2) <1 — 1, hence
the induction hypothesis implies

[B O (da]| + B0 (do]| = [A((da])| + 1(dr) + |A((d2])| + I(d2) =
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= |A(L)| + I(dy) + I(d2).

As dy Ady = 0, (i) implies I(dy) + I(d2) = I(dy V d3) = I. Thus we obtain
|B| = |B N (di]| + |B N (do]| = |A(L)| + I, which proves that (i) implies (ii).

(ii)=(i). Since the CD-bases of L have the same cardinality, in virtue
of Corollary 1.8 and Proposition 1.13(b), L is graded. Hence any principal
ideal (p] of L is a graded lattice, and by Corollary 1.9(ii) the CD-bases of
(p] have the same number of elements. As all the principal ideals in (p] are
0-modular, by Proposition 1.13(b) this number is |A((p])| + I(p). (10)

Now, let a,b € L, a Ab= 0. Clearly, to prove (i) it is enough to consider
the case a # 0, b # 0. Then a and b are incomparable, since a A b ¢ {a, b}.
Consider the principal ideal I = (a V b]. Since {a, b} is a CD-independent
set in I, there exists a CD-base By of I containing {a,b}. As{(I) =1(aVb),
By has |A(I)| + l(a V b) elements by (10).

Further, we prove that a and b are maximal elements in B; \ {a V b}.
Indeed, a,b < a V b because a, b are incomparable. Suppose that a < z for
some x € By, x <aVb ThenaVvVb<zxzVb<aVbimpliesxVb=aVbh.
Observe that b and x are incomparable; indeed, b < x is not possible since
it yields * = a V b. Furthermore, z < b would imply b =a V b, i.e. a < b,
hence it should also be excluded. Thus we obtain zAb = 0 because B is CD-
independent. Since L is 0-modular, by using (M) we get x =z A (x Vb) =
z A (aVb) = a. Therefore, a is a maximal element in By \ {a V b}. Similarly,
we can prove b € max(Br\{aVb}). Next, let N := max(Br\{aVb}). Since
max(By) = {a V b}, in view of Lemma 1.7 we get that N is a disjoint set
and N < {aV b} in D(I). Since a # b, a,b € N, and I is finite and weakly
O-distributive, by applying Lemma 3.1 we obtain N = {a, b}.

Now, we can repeat the argument in the proof of (i)=-(ii) (with d; = a,
do =band l =1(aVb) = 2), and by using (10) we get |Br| = |Br N (a]| +
|Br N (b]| = |A(I)| + l(a) + 1(b). Thus we deduce I(a) + I(b) = l(a V b), and
our proof is completed. O

We say that two elements a,b € L form a modular pair in the lattice L
and we write (a,b)M if for any x € L, z < b implies xV (aAb) = (zV a) Ab.
a, b is called a dually modular pair if for any x € L, x > b implies x A(aVb) =
(x Aa)Vb. This is denoted by (a,b)M*. Clearly, if a, b is a distributive pair,
then (a,b)M™ is satisfied. By the mean of modular pairs the 0-modularity
condition can be reformulated as follows (see [17]): For any a,b € L,

aNb=0= (a,b)M. (11)

Lemma 3.4. ([[17]; Lemma 1.9.15]) In a graded lattice of finite length,
(a,b)M implies I(a) +1(b) < l(a Ab)+1(a VD).

Proposition 3.5. If L is a lattice with 0 such that (a,b)M* holds for all
a,b e L with a Nb=0, then L is 0-modular. If, in addition, L is a graded
lattice of finite length, then l(aV b) = l(a) + 1(b) holds for all a,b € L with
aNb=0.
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Proof. If L is not 0-modular, then in view of Varlet’s result, it has an N5
sublattice containing 0, i.e. there exist elements a,b,c € L such that ¢ > b
andaAb=aAc=0,aVb=aVec. Since (a,b)M* by our assumption, we
obtain ¢ = cA(aVb) = (cAa)Vb = (aAb)Vb = b, a contradiction. Thus L is 0-
modular. Now, suppose that in addition L is graded and has a finite length [,
and let a,b € L, aAb= 0. Since L is 0-modular, we get [(aVb) > l(a)+1(b)
by (11) and Lemma 3.4. Now consider the lattice L(¥) dual to L. Then
(a,b)M* in L implies (a,b)M in the lattice L(¥). Clearly, L9 is also a
graded lattice with length [ and the height I( (z) of any element = in L% is
equal to [ —I(z). (where {(z) is the height of z in L). Since (a,b)M holds in
L@ by using again Lemma 3.4 we get 1D (a) 41D (b) < 1D (aAb)+1D (aVb),
ie. (I—=1(a))+ (I —=1b) <Il+1—1(aVb) because IY(a Ab) = 1. Hence
l(a) +1(b) > I(a VD)), and this proves l(a V b) = I(a) + 1(b). O

Corollary 3.6. (i) Let L be a finite, weakly 0-distributive lattice such that
for each a,b € L with anb = 0, condition (a,b)M* holds. Then the CD-bases
of L have the same number of elements if and only if L is graded.

(ii) If L is a finite, pseudocomplemented and modular lattice, then the CD-
bases of L have the same number of elements.

Proof. (i) follows directly from Proposition 3.5 and Theorem 3.3.

(ii) Since any pseudocomplemented lattice is weakly O-distributive, and any
finite modular lattice L is graded, moreover, (a,b)M* holds for all a,b € L,
(ii) is an immediate consequence of (i). O

As any dp-distributive lattice L is weakly 0-distributive, and (a, b)M* holds
for all a,b € L with a A b= 0 since a, b is a distributive pair, we obtain

Corollary 3.7. (i) Any dp-distributive lattice is 0-modular. If L is a dp-
distributive graded lattice with finite length, then l(a Vv b) = [l(a) 4 1(b) holds
for all a,b € L with a Nb=0.

(ii) The CD-bases in a finite dp-distributive lattice L have the same number
of elements if and only if L is graded.

The second lattice class mentioned in Introduction generalizes the prop-
erties of the lattice of closed sets of a so-called interval system. An interval
system (V,Z) is an algebraic closure system satisfying the axioms (cf. [12]):

(Io) {z}€eZ forallz € V, and 0 € T;

(I.) A,BeTZ and ANB # 0 imply AUB € T,

(Ip) For any A, B € T the relations ANB # (0, A Z B and B € A imply
A\BeZ (and B\ A€1I).

The modules (X -sets, or autonomous sets) of an undirected graph G =
(V,E) (see [16]), the intervals of an n-ary relation R & V" on the set V' for
n > 2 (cf. [12]) — in particular, the usual intervals of a linearly ordered set
(V,<) (cf. [18]) — form interval systems. Clearly, N is the meet operation
in the lattice (Z, C) of closed sets of (V,Z), and condition (Ip) implies that
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(Z,CQ) is an atomistic lattice with 0-element (). Moreover, for any A, B € 7
with ANB # 0, AV B =AUDB by (1) (see e.g. [16]). Hence condition (I;)
yields that for any A, B,C € Z the implication

ANB#0=CA(AVB)=(CNA)V(CAB) (12)
holds in this lattice, i.e. every A, B € 7 with A A B # 0 is a distributive
pair in (Z,C). From here one can deduce that for any X € Z, X # (), the
principal filter [X) is a distributive sublattice of (Z,C) (although (Z,C) in
general is not distributive). Let us consider now the condition:

(ZT) Ifanb#0, then (x<aVband x Aa=0)=z <bforalabzecl

Observe that (Z) is satisfied whenever each pair a,b € L with a Ab# 0 is a
distributive pair. Indeed, for any < a Vb now we obtain z =z A (aV b) =
(xAa)V(zAb), and hence zAa = 0 implies x = zAb, i.e. x < b. Clearly, the
converse is not true; (Z) does not imply that every a,b € L with a Ab # 0
is a distributive pair. Hence lattices with 0 satisfying condition (Z) and
with the property that [a) is a modular lattice for any a € L, a # 0, can
be considered as a generalization of the lattice (Z,C) of an interval system
(V,Z). To study their CD-bases, first we prove:

Lemma 3.8. Let L be an atomic lattice satisfying condition (I), D € D(L)
and

Sp={seL\(DU{0})|dAs=0ord<s, foralld € D}. (13)

Then for any b,c € Sp with bAc# 0 and any d € D, dN(bV ¢) # 0 if and
only if 0 <d<bor0<d<c holds.

Proof. Assume that b A ¢ # 0, and take a d € D such that d A (bV ¢) # 0.
Then d # 0, and since L is an atomic lattice, there exists an a € A(L) such
that a < d and a < bVec. Since L satisfies condition (Z) and bA ¢ # 0, in the
case a ANb =0 we get a < ¢. Hence a < b or a < ¢ must hold. This implies
dANb#O0ordANc#0. Asb,c € Sp, in view of (13) we obtain 0 < d < b or
0 < d < ¢. The converse implication is obvious. O

Remark 3.9. Let L be a finite lattice and D = {d; | j € J} € DC(L). If
D < D' for some D' € D(L), in view of Lemma 1.6, there is a minimal
element a € Sp such that D' = {a} U{d; € D\ {0} | d; Aa = 0}. We claim
that there exists a set K C J such that

K={jeJ|dj<a}#0and D'={a}uU{d;|jeJ\ K} (14)
Indeed, as D is complete, D # {0}, and hence 0 ¢ D. Then K # 0,
otherwise a A d; = 0 for all j € J would imply that D U {a} is a disjoint
set, in contrary with D € DC(L). By the definition of K and Sp we have:
diNa=0<je J\ K. Hence D' ={a}U{d; | je J\ K}

It is well-known that a finite lattice L is semimodular if and only if it
satisfies Birkhoff’s condition, namely, for any a,b € L

(B1) aNb =< a,bimplies a,b < a V b.
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We also say that a pair a,b € L satisfies Birkhoff’s condition, if the above
implication (Bi) is valid for a,b. It is known that any distributive pair
a,b € L satisfies condition (Bi) (see e.g. [15]).

Theorem 3.10. Let L be a finite lattice satisfying condition (Z). Assume,
in addition, that every proper principal filter of L is a modular lattice. Then
DC(L) is a semimodular lattice.

Proof. In view of Theorem 2.2(ii) and Lemma 1.11, DC(L) is a lattice. We
will show that it satisfies Birkhoff’s condition, i.e. D < Dy and D < Do
imply Di,Dy < D1V Dy for any D = {d; | j € J},D1,Dy € DC(L),
Dy # Ds. By Remark 3.9 and (14), there are some minimal elements by # bo
in

Sp={seL\(DU{0})|sAdj=0o0rdj<sforald;eD}
and some nonempty sets K1 = {j € J | dj <}, Ko ={j € J|d; <ba}
such that D1 = {bl} U {dj ’j € J\Kl}, Dy = {bQ} U {dj | j € J\KQ} If
bi Abgy =0, then \/d; < b1, \/d; < b imply d;j Adj =0 for all j € Ky and

JEK, JEK2
j" € Ky, hence Dy U Dy is a CD-independent set. Then, in view of Theorem
2.2, Dy, Dy is a distributive pair. Hence D1, Dy < D1V Dy by (14).

Now, suppose that by A by # 0. Since D = Dy A Dy, by using (7), we
obtain by A ba € D. Hence by A by = dj, > 0 for some jo € J, and we
have D # {0}. In view of Lemma 3.8, d; A (b1 V b2) # 0 for j € J implies
0 <dj <bor0<dj < b, whence we get j € K1 U K3. Thus we have
either dj A (b1 Vbg) =0 for all j € J\ (K UK>), or J\ (K1 UK>) = 0.
Therefore, T' = {b1 Vb2} U{d; | j € J\ (K1 UK>)} is a disjoint set. Since
\/{dj ‘ je KU KQ} < by V by, we obtain Dy, Dy < T by (A)

Next, we prove T' = Dy V Dy: Take any X € D(L) with Dy, Dy < X.
Then, X # {0} and we obtain in virtue of (A) that b; < z1, bs < o for some
x1, 22 € X. Moreover, if J\ (K1UK3) # (), then for any j € J\ (K;UK>) there
exist an z() € X with d; < 2. If 24 # x9, then dj, = b1 Aby < x1Axe =0,
a contradiction. Hence 1 = x99, and by V by < 1 = x9. Thus we deduce
T < X, proving T'= D1 V Ds.

Further, assume for a contradiction that there exists a D3 € DC(L) with
D1 < D3 < D1V Dy = {bl \/bQ} U {dj | j€E J\ (K1 UKQ)}. In view of (A),
then there exist d* € D3 and d € D1V Dy with 0 < b1 < d* < d. Notice,
that d* = d; for some j € J\ (K; U K3) is not possible, since it implies
0 < by = by Adj, however by Ad; =0 for all j € J\ K;. Hence d* < by V by.
We are going to prove that {by A be, by, d*, b, b1 V ba} is a sublattice of L
isomorphic to N5. First, we show d* A by = by A by and by < d* < by V bo.
Clearly d* A ba #£ 0, since d* A by > by A ba # 0. Observe that D; <
D3 < Dy V Ds is in contradiction with Dy < D3, so D3 A Dy # Ds. Now
D =Dy ANDy < D3ANDy < Dy and D < D5 imply D3 A Dy = D. As
d* Nbe # 0, by applying (7) to D3 A Do, we get d* Aby € D. Since by Aby € D,
b1 A by < d* A by implies by A by = d* A by. As both by and by are minimal
elements in Sp and b; # by, they are incomparable. Hence d* # by V ba,
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since otherwise by A by = d* A by = (b1 V ba) A by = be would impy be < by.
Thus d* < by V be. In order to prove by < d*, first notice that for each
u € D3\ {d*} we have by Au < d* Au = 0. Now, let us show that u < d;
for some d; € D: Indeed, if u ﬁ b1 V ba, then D3 < Dy V Ds yields u < d;
for some j € J\ (K; U K3) by (A) and we are done. If u < by V by, then
by Aba # 0 and by Au = 0 by condition (Z) imply u < ba. As u # 0, by (7) it
follows u =u A by € D3 AN Dy = D, i.e. u = d; for some d; € D. This result
proves D3 \ {d*} < D < Dq, according to (A). Thus any u € D3 \ {d*}
is less than or equal to some y € D;. Hence d* = by € D; would imply
D3 < D1, a contradiction. This proves by < d*. Finally, by < d* < by V by
implies by V by < d* V by < b1 V by, whence we obtain d* V by = by V b.
Now, it is easy to see that Q = {b1 A b2, b1,d, b2, b1 V b2} is a sublattice of
L isomorphic to N5. Clearly, @ C [by Aby). However, this is a contradiction,
since [by A by) is a modular sublattice of L, because by A by # 0. Therefore,
we conclude that there is no D3 € DC(L) with D; < D3 < Dy V Do, i.e.
Dy < Dy V Dy holds. Symmetrically, we can prove Dy < D1V Ds. O

Corollary 3.11.(i) If L is a finite distributive lattice, then DC(L) is a
semimodular lattice.

(ii) If L is a finite lattice which satisfies the conditions in Theorem 3.10),
then its CD-bases have the same number of elements.

Proof. (i) Clearly, any distributive lattice satisfies the conditions in 3.10.
(ii) Since now DC(L) is a finite semimodular lattice, it is graded. Hence (ii)
is proved by applying Proposition 1.12.

By applying Corollary 3.11(ii) to interval systems we obtain:

Corollary 3.12. If (V,I) is a finite interval system, then the CD-bases of
the lattice (Z,C) contain the same number of elements.
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