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Abstract. This paper deals with lattice-valued n-variable functions
on a k-element domain, considered as a generalization of lattice val-
ued Boolean functions. We investigate invariance groups of these
functions i.e., the group of such permutations that leaves the con-
sidered function invariant. We show that the invariance groups of
lattice-valued functions depend only on the cuts of the function. Fur-
thermore, we construct such lattice-valued Boolean function (and its
generalization), the cuts of which represent all representable invari-
ance groups.

1. Introduction

If the permutation group G consists of those variable-permutations that
leave a function invariant, then G is said to be the invariance group of the
considered function. It is well known that not all subgroups of Sn arise as in-
variance groups of Boolean functions (see [10,13,20]). Therefore, permutation
groups representable as invariance groups of functions of several variables were
studied by many authors. The paper by Wnuk [20] contains some preliminary
considerations on the topic, the paper of Kisielewicz [13] gives quite a detailed
survey. In [10], a Galois-connection is defined, to give another aspect and
result for the invariance group problem.

In this paper we investigate invariance groups of lattice valued functions
and their cuts, which (cuts) are represented as characteristic functions.
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Lattice valued functions are mappings whose co-domain is a complete lat-
tice, which may have additional properties (e.g., Boolean lattice, Heyting alge-
bra, residuated lattice, unit real interval). These functions were investigated
first in modeling classical and nonclassical (e.g., intuitionistic) logic ( [5, 15]).
They have been further applied to non-classical predicate logics, and also to
foundations of fuzzy set theory ( [1, 6, 8]). The notion of a cut set, or a p-
cut is one of the basic tools in algebraic usage of lattice valued functions (see
e.g., [14, 17]). Indeed, the collection of cuts characterizes the function and it
is a closure system on its domain.

Here we prove that the invariance group of a lattice valued function de-
pends only on the particular canonical representation of this function, whose
co-domain is a subset of the power set of the domain. This means that the
invariance groups of n-variable functions with different co-domain lattices co-
incide in case these functions have equal canonical representations. Further,
we prove that for a fixed n, the invariance groups of Boolean functions are the
invariance groups of cuts of a single lattice valued function. Finally, we prove
that every subgroup of the permutation group Sn is the invariance group of a
single lattice valued function.

Let us mention how the paper is organized. In preliminary section we
give necessary order theoretic and lattice valued notions. We also present a
construction of the canonical representation of a lattice valued function, whose
co-domain is a substructure of the domain. Then we define Boolean and lattice
valued functions and their connection to invariance groups. Section 3 contains
the results, first some cut properties, and then representation theorems of
invariance groups in term of cuts of lattice valued functions. Suitable examples
are also given.

2. Preliminaries

2.1. Order, lattices, closures. In the paper, we mostly deal with complete
lattices in general, and finite Boolean lattices, represented by all n-tuples
of 0 and 1. A closure system on A is a collection of subsets of A, closed
under set intersection and containing A. A mapping X 7→ X on a power set

P(A) of a set A, is a closure operator on A, if it fulfills: X ⊆ X, X = X,
and X ⊆ Y =⇒ X ⊆ Y . A subset X of A fulfilling X = X is said to
be closed under the corresponding closure operator. We use the following
known properties of closure systems and closure operators:

A closure system is a complete lattice under the set-inclusion.

The collection of all closed sets under the corresponding closure operator is
a closure system.
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If F is a closure system on A, then the mapping X 7→
∩
{Y ∈ F | X ⊆ Y }

is a closure operator on A.

Similarly, a closure operator on a lattice L is a mapping x 7→ x on L,
if it fulfills: x ≤ x, x = x, and x ≤ y =⇒ x ≤ y.

More details about posets, closures and lattices can be found in e.g., [4].

2.2. Lattice valued functions. Let S be a nonempty set and L a complete
lattice. Every mapping µ : S → L is called a lattice valued (L-valued)
function on S.

The support of µ is the set of all elements from S having a value different
from 0 ∈ L under f .

Let p ∈ L. A cut set of an L-valued function µ : S → L (a p-cut) is a
subset µp ⊆ S defined by:

x ∈ µp if and only if µ(x) ≥ p. (2.1)

In other words, a p-cut of µ : S → L is the inverse image of the principal filter
↑p, generated by p ∈ L:

µp = µ−1(↑p). (2.2)

It is obvious that for every p, q ∈ L, p ≤ q implies µq ⊆ µp.

The collection µL = {f ⊆ S | f = µp, for some p ∈ L} of all cuts of
µ : S → L is usually ordered by set-inclusion. The following is known.

Lemma 2.1. If µ : S → L is an L-valued function on S, then the collection
µL of all cuts of µ is a closure system on S under the set-inclusion.

The following is a kind of a converse.

Proposition 2.2. Let F be a closure system on a set S. Then there is a
lattice L and an L-valued function µ : S → L, such that the collection µL of
cuts of µ is F .

Proof. It is straightforward to check that a required lattice L is the collection
F ordered by the reversed-inclusion, and that µ : S → L can be defined as
follows:

µ(x) =
∩

{f ∈ F | x ∈ f}. (2.3)

�

Remark 2.3. From the above proof, using the notation therein, one can
straightforwardly deduce that for every f ∈ F , the cut µf coincides with f ,
i.e., that µf = f .
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Throughout the paper we mostly consider p-cuts to be the corresponding
characteristic functions instead of subsets. Namely, if for p ∈ L, µp ⊆ S is a p-
cut, then we represent it as the function: µp : S → {0, 1}, defined by µp(x) = 1
if and only if µ(x) ≥ p, and µp(x) = 0 otherwise. A cut as a characteristic
function has the same notation as the cut being a subset, but this will not
cause any confusion. E.g., if we write σ ◦ µp, where σ is a function, then it
is clear that ◦ is a composition of functions and then µp is the characteristic
function of the corresponding subset.

2.3. Canonical representation of lattice valued functions. In this part
we introduce a kind of main representatives for lattice-valued functions with
a fixed domain S. Namely, we show that every function from S to a complete
lattice L has the same cuts as a particular function from S to a subset of
the power set of S, equipped with the order dual to the set inclusion. We
have been dealing with this topic in some earlier papers (see [17]), but the
presentation here is adopted to our present research, and some new properties
are proved.

Throughout the section, S is a nonempty set, not necessarily equipped with
operations or relations.

Let µ : S → L be an L-valued function and (µL,≤) the poset with µL =
{µp | p ∈ L} (the collection of cuts of µ) and the order ≤ being the inverse of
the set-inclusion: for µp, µq ∈ µL,

µp ≤ µq if and only if µq ⊆ µp.

Lemma 2.4. (µL,≤) is a complete lattice and for every collection {µp | p ∈
L1}, L1 ⊆ L of cuts of µ, we have∩

{µp | p ∈ L1} = µ∨{p|p∈L1}. (2.4)

Given an L-valued function µ : S → L, we define a relation ≈ on L: for
p, q ∈ L

p ≈ q if and only if µp = µq. (2.5)

Observe that the relation ≈ depends only on the range of µ.

The following is straightforward by (2.2).

Lemma 2.5. The relation ≈ is an equivalence on L, and

p ≈ q if and only if ↑p ∩ µ(S) = ↑q ∩ µ(S), (2.6)

where µ(S) = {r ∈ L | r = µ(x) for some x ∈ S}.
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We denote by L/≈ the collection of equivalence classes under ≈. By (2.4),
each ≈-class contains its supremum:∨

[p]≈ ∈ [p]≈. (2.7)

In particular, we have that for every x ∈ S

µ(x) =
∨

[µ(x)]≈. (2.8)

Lemma 2.6. The mapping p 7→
∨
[p]≈ is a closure operator on L.

The quotient L/≈ can be ordered by the relation ≤L/≈ defined as follows:

[p]≈ ≤L/≈ [q]≈ if and only if ↑q ∩ µ(S) ⊆ ↑p ∩ µ(S).
The order ≤L/≈ of classes in L/≈ corresponds to the order of suprema of
classes in L (we denote the order in L by ≤L):

Proposition 2.7. The poset (L/≈,≤L/≈) is a complete lattice fulfilling:

(i) [p]≈ ≤L/≈ [q]≈ if and only if
∨
[p]≈ ≤L

∨
[q]≈.

(ii) The mapping [p]≈ 7→
∨
[p]≈ is an injection of L/≈ into L.

Corollary 2.8. The sub-poset (
∨
[p]≈,≤L) of L is isomorphic to the lattice

(L/≈,≤L/≈) under
∨
[p]≈ 7→ [p]≈.

Next we connect the lattice (L/≈,≤L/≈) (Proposition 2.7) and the lattice
(µL,≤) of cuts of µ; recall that the latter is ordered by reversed inclusion.

Proposition 2.9. Let µ : S → L be an L-valued function on S. The lattice
(µL,≤) of cuts of µ is isomorphic to the lattice (L/≈,≤L/≈) of ≈-classes in L
under the mapping µp 7→ [p]≈.

In the following, for a function µ : S → L, we introduce another lattice
valued function, this time from S to the lattice defined on a particular subset F
of the power set P(S) of the domain S. The new function should have the same
cuts as µ, moreover it should have one-element classes of the corresponding
equivalence relation ≈. In addition, we want every f ∈ F to be equal to the
corresponding cut of the newly defined lattice valued function. For the co-
domain F we take the lattice (F ,≤), where F = µL ⊆ P(S) is the collection
of cuts of µ, and the order ≤ is the dual of the set inclusion. The definition
of this function follows.

Let µ̂ : S → F , where

µ̂(x) : =
∩

{µp ∈ µL | x ∈ µp}. (2.9)

Since the co-domain is constructed by the domain (F ⊆ P(S)), we say that
µ̂ is the canonical representation of µ.
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By the definition, every element of the co-domain lattice of µ̂ is a cut of µ.
Therefore, if f ∈ F , then f = µp for some p ∈ L, and for the cut µ̂f of µ̂, by
the definition of a cut and by (2.9), we have

µ̂f = {x ∈ S | µ̂(x) ≥ f} = {x ∈ S | µ̂(x) ⊆ µp}

= {x ∈ S |
∩

{µq | x ∈ µq} ⊆ µp} = µp = f.

Therefore, the collection of cuts of µ̂ is

µ̂F = {Y ⊆ S | Y = µ̂µp , for some µp ∈ µL}.

Proposition 2.10. The lattices of cuts of a lattice valued function µ and of
its canonical representation µ̂ coincide.

Proof. Straightforward, by the above consideration. �

Observe that the lattice valued function µ defined by (2.3) in the proof of
Proposition 2.2, coincides with its canonical representation, i.e., in this case
we have µ = µ̂.

In the next example we present two lattice valued functions µ and ν with
different co-domain lattices, having the same canonical representations.

Example 2.11. S = {a, b, c, d}
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Figure 1

µ : S → L1, µ =

(
a b c d
p s r t

)
. Lattice L1 is presented in Figure 1 a).

µo = S, µs = {a, b}, µt = {c, d}, µp = {a}, µq = ∅, µr = {c}, µ1 = ∅.
Family of these subsets under the relation inverse to inclusion is presented in
Figure 1 b).

ν : S → L2, ν =

(
a b c d
z w m v

)
. Lattice L2 is presented in Figure 1 c).

νo = S, νw = {a, b}, νm = {c, d}, νz = {a}, νv = {c}, νu = νx = νy = ν1 = ∅.
µ̂ : S → F and ν̂ : S → F , where the lattice F = {{a}, {a, b}, {c}, {c, d}, ∅, {a, b, c, d}},

(F ,≤) is presented in Figure 1 b).
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µ̂ = ν̂ =

(
a b c d

{a} {a, b} {c} {c, d}

)
.

2.4. Invariance group of lattice valued functions. We recall the def-
inition of an invariance group and we mention some related notions (see
e.g., [2, 3, 10,13,16]).

First, we list particular n-variable functions on a finite domain, which are
the subject of our study.

A Boolean function is a mapping f : {0, 1}n → {0, 1}, n ∈ N. The subset

supp(f) = {a ∈ {0, 1}n | f(a) = 1}
of {0, 1}n is called the support of f .

We also deal with lattice valued n-variable functions on a finite domain
{0, 1, . . . , k − 1}:

f : {0, 1, . . . , k − 1}n → L,

where L is a complete lattice.

In particular, for k = 2 we get f : {0, 1}n → L, which is a lattice valued
Boolean function.

Finally, we use also p-cuts of lattice valued functions as characteristic func-
tions: for f : {0, 1, . . . , k − 1}n → L and p ∈ L, we have

fp : {0, 1, . . . , k − 1}n → {0, 1},
such that fp(x1, . . . , xn) = 1 if and only if f(x1, . . . , xn) ≥ p.

Clearly, a cut of a lattice valued Boolean function is (as a characteristic
function) a Boolean function.

As usual, by Sn we denote the symmetric group of all permutations over an
n-element set. If f is an n-variable function on a finite domain X and σ ∈ Sn,
then f is invariant under σ, symbolically σ ⊢ f , if for all (x1, . . . , xn) ∈ Xn

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

If f is invariant under all permutations in G ≤ Sn and not invariant under
any permutation from Sn \ G, then G is the invariance group of f , and it
is denoted by G(f).

Obviously, a group G ≤ Sn can be the invariance group of any of the above
mentioned functions. Following the approach in [10], we say that G ≤ Sn
is (2, 2)-representable, if it is the invariance group of a Boolean function
f : {0, 1}n → {0, 1}.

Remark 2.12. In [10], a group G ≤ Sn is said to be (k,m)-representable if
there is a function f : {0, 1, . . . , k−1}n → {1, . . . ,m} whose invariance group is
G. IfG is the invariance group of a function f : {0, 1, . . . , k−1}n → N, then it is
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(k,∞)-representable. By Kisielewicz ( [13]), G ≤ Sn is m-representable if it is
the invariance group of a function f : {0, 1}n → {1, . . . ,m}; it is representable
if it is m-representable for some m ∈ N. By the above, representability is
equivalent to (2,∞)-representability. The notion of 2-representability is thor-
oughly investigated in [13] (see also [2], for invariance groups of Boolean and
pseudo-Boolean functions).

According to the above definitions, a permutation group G ≤ Sn is (k, L)-
representable, if there is a lattice valued function
f : {0, 1, . . . , k − 1}n → L, such that σ ⊢ f if and only if σ ∈ G.

In particular, a (2, L)-representable group is the invariance group of a lattice
valued Boolean function f : {0, 1}n → L.

The notion of (2, L)-representability is more general than (2, 2)-representabi-
lity. An example is the Klein 4-group: {id, (12)(34), (13)(24), (14)(23)}, which
is (2, L) representable (for L being a three element chain), but not (2, 2)-
representable. One can easily check that a permutation group G ⊆ Sn is
L-representable if and only if it is Galois closed over 2 ( [10]). Similarly, it is
easy to show that a permutation group is (k, L)-representable if and only if it
is Galois closed over the k-element domain.

3. Results

3.1. Cuts of composition of functions. In this part we present some auxil-
iary results concerning cuts. Namely, our task is to use cuts in order to analyze
lattice valued Boolean functions. To do this, we have to deal with composition
of cuts represented throughout the section as characteristic functions.

Theorem 3.1. Let L be a complete lattice, let A ̸= ∅ be a set and let σ : A→
A, µ : A→ L, ψ : L→ L. Then, for every p ∈ L,

(σ ◦ µ ◦ ψ)p = σ ◦ µ ◦ ψp.

Proof. Observe that σ ◦µ◦ψ is a function from A to L, and thus (σ ◦µ◦ψ)p is
a function from A to {0, 1}. Further, ψp is a function from L to {0, 1}, hence
σ ◦ µ ◦ ψp is also a function from A to {0, 1}.

For every x ∈ A, (σ ◦µ ◦ψ)p = 1 if and only if (σ ◦µ ◦ψ)(x) ≥ p if and only
if (ψ(µ(σ(x)))) ≥ p.

On the other hand,

σ ◦µ◦ψp(x) = 1 if and only if ψp(µ(σ(x))) = 1 if and only if (ψ(µ(σ(x)))) ≥ p.

Therefore, we proved that (σ ◦ µ ◦ ψ)p = σ ◦ µ ◦ ψp. �
Corollary 3.2. Let L be a complete lattice, let A ̸= ∅ and let µ : A → L.
Then the following holds.
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(i) µp = µ ◦ (IL)p, where IL is the identity mapping IL : L→ L.

(ii) (σ ◦ µ)p = σ ◦ µp, for σ : A→ A.

(iii) (µ ◦ ψ)p = µ ◦ ψp, where ψ is a map ψ : L→ L.

Proof. (i) Using Theorem 3.1, where σ is the identity function IA on A, we
get:

µp = (IA ◦ µ ◦ IL)p = IA ◦ µ ◦ (IL)p = µ ◦ (IL)p
(ii) By Theorem 3.1, where ψ is the identity function IL on L, we have:

(σ ◦ µ ◦ IL)p = σ ◦ µ ◦ (IL)p.
By (i), we get

(σ ◦ µ)p = (σ ◦ µ ◦ IL)p = σ ◦ µ ◦ (IL)p = σ ◦ µp.

(iii) Similarly as in (i):

(IA ◦ µ ◦ ψ)p = IA ◦ µ ◦ ψp, i.e., (µ ◦ ψ)p = µ ◦ ψp. �

3.2. Main topic: Invariance groups of lattice valued Boolean func-
tions via cuts. Here we analyze invariance groups of Boolean functions in
the framework of cuts of lattice valued Boolean functions. We prove that the
invariance group of a lattice valued function depends only on the canonical
representation of this function. Further, we prove that the (2,2)-representable
groups, subgroups of Sn for a fixed n, are the invariance groups of cuts of a
single lattice valued Boolean function.

Proposition 3.3. Let f : {0, . . . , k − 1}n → L and σ ∈ Sn. Then

σ ⊢ f if and only if for every p ∈ L, σ ⊢ fp.

Proof. Observe that every permutation σ ∈ Sn uniquely determines a function
σ : {0, . . . , k − 1}n → {0, . . . , k − 1}n, as follows:

σ(x1, . . . , xn) = (xσ(1), . . . xσ(n)).

Now we apply Corollary 3.2 (ii) to functions σ and f , and we obtain

(σ ◦ f)p = σ ◦ fp.
Next, we suppose that σ ⊢ f , i.e., that for all x1, . . . , xn ∈ {0, 1, . . . , k − 1}n,

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

By the definition of σ, this is further equal to f(σ(x1, . . . , xn)), hence we have
f(x1, . . . , xn) = σ ◦ f(x1, . . . , xn).

(σ ◦ f)p = σ ◦ fp gives that this is equivalent to

σ ⊢ fp, for every p ∈ L.

�
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Since by Proposition 2.10, an L-valued function and its canonical represen-
tation have equal cuts, Proposition 3.3 yields that the invariance group of a
lattice valued function f depends only on the canonical representation of f .
Therefore, the following theorem is a straightforward corollary of Proposition
3.3.

Theorem 3.4. If f1 : {0, . . . , k − 1}n → L1 and f2 : {0, . . . , k − 1}n → L2

are two n-variable lattice valued functions on the same domain, then f̂1 = f̂2
implies G(f1) = G(f2).

In the following we prove a representation theorem for representable sub-
groups of Sn, for a given n: there is a lattice L and an L-valued Boolean
function {0, 1}n → L, such that every subgroup representable by a Boolean
function is also representable by a cut of this lattice valued Boolean function.

Theorem 3.5. For every n ∈ N, there is a lattice L and a lattice valued
Boolean function F : {0, 1}n → L satisfying the following: If G ≤ Sn and
G = G(f) for an n-variable Boolean function f , then G = G(Fp), for a cut Fp

of F .

Remark 3.6. This theorem states that every (2,2)-representable subgroup of
Sn is the invariance group of a cut of a single lattice valued Boolean function.

Proof. Let n ∈ N. Let {Gi | i ∈ I} be the family of all 2-representable
subgroups of Sn. Let {fi | i ∈ I} be a family of Boolean functions fi : {0, 1}n →
{0, 1}, such that Gi is 2-representable by fi for every i ∈ I. Now we take
lattice L to be a Boolean lattice with 2n − 2 (co-)atoms. Let c1, . . . , c2n−2

be co-atoms of L. Now, we define a Boolean function F : {0, 1}n → L such
that F (0, . . . , 0) = 0, F (1, . . . , 1) = 0 and values of all other elements from
{0, 1}n are different co-atoms. Now, if a group G is representable by a Boolean
function f : {0, 1}n → {0, 1}, we consider the support supp(f).

Let S be a set of co-atoms, such that c ∈ S if and only if there is an
x ∈ supp(f) such that F (x) = c. Let s =

∧
S.

Now, it is straightforward that the cut Fs is the support of a Boolean
function which represents G. Indeed, Fs(x) = 1 if and only if F (x) ≥ s, and
F (x) ≥ s for all x ∈ S.

The group Sn is represented by the 0-cut. �

The function F constructed in the proof of Theorem 3.5 is not unique, since
the value of F for n-tuples (0, . . . , 0) and (1, . . . , 1) can be different (and cuts
of F would still represent the observed groups).

It is a part of the folklore (first appeared probably in [20]), that every sub-
group of Sn is an invariance group of a function {0, . . . , k−1}n → {0, . . . , k−1}
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if and only if k ≥ n. The following proposition shows that if k ≥ n, then more
is true, namely we have:

Proposition 3.7. If k ≥ n, then for every subgroup G of Sn there exists a
function f : {0, . . . , k − 1}n → {0, 1} such that the invariance group of f is
exactly G.

Proof. Let G be a subgroup of Sn. Let (y1, . . . , yn) = (0, . . . , n−1). We define
a required function f , as follows: for every σ ∈ G, let f(yσ(1), . . . , yσ(n)) = 1
and let f(x1, . . . , xn) = 0 otherwise. �

Using Proposition 3.7, we prove the following theorem which is a general-
ization of Theorem 3.5.

Theorem 3.8. For k, n ∈ N and k ≥ n, there is a lattice L and a lattice valued
function F : {0, . . . , k − 1}n → L such that the following holds: If G ≤ Sn,
then G = G(Fp) for a cut Fp of of F .

Remark 3.9. The theorem states that every subgroup of Sn is the invariance
group of a cut of a single lattice valued function.

Proof. Let k, n ∈ N and k ≥ n. Let {Gi | i ∈ I} be the family of all subgroups
of Sn. Let {fi | i ∈ I} be a family of functions fi : {0, . . . , k−1}n → {0, 1}, such
that Gi is representable by fi for every i ∈ I. We take the functions defined as
in Proposition 3.7. For a subgroup Gi of Sn and (y1, . . . , yn) = (0, . . . , n− 1),
the function fi is defined as follows: for every σ ∈ Gi, fi(yσ(1), . . . , yσ(n)) = 1
and fi(x1, . . . , xn) = 0 otherwise.

Now we take lattice L to be a Boolean lattice with n! co-atoms c1, . . . , cn!.
We define a function F : {0, . . . , k− 1}n → L such that for every permutation
π of elements 0, . . . , n − 1 the value F (π(0), . . . , π(n − 1)) is a co-atom in
L, different permutations determining different values (co-atoms); for all the
remaining n-tuples (d1, . . . , dn) ∈ {0, . . . , k − 1}n let F (d1, . . . , dn) = 0 ∈ L.

Now, we take an arbitrary subgroup Gi of Sn and prove that it is the
invariance group of a cut of lattice valued function F .

Let Gi be representable by a function fi as above, and let Oi be a set of
co-atoms, such that c ∈ Oi if and only if there is an x ∈ supp(fi) fulfilling
F (x) = c. Let oi =

∧
Oi.

As in Theorem 3.5, we deduce that the cut Foi is the support of a Boolean
function which represents Gi. Namely, Foi(x) = 1 if and only if F (x) ≥ oi. We
have that F (x) ≥ oi for all x ∈ Oi. Finally, Sn is represented by the 0-cut. �

Example 3.10.
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Let us demonstrate the proof of Theorem 3.8, for n = k = 3. Following this
proof, we define 6 functions from the set {0, 1, 2} into {0, 1}, corresponding to
the 6 permutation subgroups of S3:

If G1 is identity group {I} (consisting only of the identity function I), then
the corresponding function f1 is defined by: f1(0, 1, 2) = 1 and f1(x, y, z) = 0,
otherwise.

If G2 is the alternating group (consisting of three elements), then the cor-
responding function f2 is defined by: f2(0, 1, 2) = f2(1, 2, 0) = f2(2, 0, 1) = 1
and f2(x, y, z) = 0, otherwise.

If G3 is the group {I, (1, 2)} then the corresponding function f3 is defined
by: f3(0, 1, 2) = f3(1, 0, 2) = 1 and f3(x, y, z) = 0, otherwise.

If G4 is the group {I, (1, 3)} then the corresponding function f4 is defined
by: f4(0, 1, 2) = f4(2, 1, 0) = 1 and f4(x, y, z) = 0, otherwise.

If G5 is the group {I, (2, 3)} then the corresponding function f5 is defined
by: f5(0, 1, 2) = f5(0, 2, 1) = 1 and f5(x, y, z) = 0, otherwise.

The lattice L is a Boolean lattice with six co-atoms. We define the function
F : {0, 1, 2}3 → L, such that for every permutation π of {0, 1, 2}, the value
F (π(0), π(1), π(2)) is a co-atom in L, different permutations determining dif-
ferent co-atoms. All other values of F are equal to the bottom, 0 ∈ L. By
the construction, every subgroup of S3 is the invariance group of a cut of the
function F .
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