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Abstract

Islands are combinatorial objects that can be intuitively defined on a board
consisting of a finite number of cells. It is a fundamental property that two
islands are either containing or disjoint. The maximum number of rectan-
gular, brick and triangular islands have been recently determined by Czédli;
Pluhár; Horváth, Németh and Pluhár. Here, we give short proofs for some
previous theorems, and also for new, analogous results on toroidal and some
other boards.
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1. Introduction, preliminaries

We start with an intuitive notion. Let a rectangular m × n board be
given. We associate a number (real or integer) to each cell of the board. We
can think of this number as a height above see level. A rectangular part of
the board is called a rectangular island if and only if there is a possible water
level such that the rectangle is an island in the usual sense.
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Figure 1: Rectangular landscape with heights

The notion of an island turned up recently in information theory. The
characterization of the lexicographical length sequences of binary maximal
instantaneous codes in Földes and Singhi [4] uses the notion of full segments,
which are one-dimensional islands. Several generalizations led to interesting
combinatorial problems. Czédli [2] discovered a connection between islands
and weakly independent subsets of finite distributive lattices. He determined
the maximum number of rectangular islands on a rectangular board. The
method is based on weak bases of a finite distributive lattice [3]. Pluhár
[7] gave upper and lower bounds in higher dimensions. The third author
together with Németh and Pluhár [5] gave upper and lower bounds for the
maximum number of triangular islands on a triangular board. Lengvárszky
[6] determined the minimal size of a maximal system of islands. In the present
paper, we list some related problems with exact formulae. In each case, we
present the proof, which we believe to be the shortest.

In full generality, we denote the set of all cells of some board by C. A
height function is a mapping h : C → R, c 7→ h(c). We have to specify
a neighborhood relation on the cells. If not otherwise stated, two cells are
neighbors if they share a point. Let R be a subset of cells. The neighbors of
R can be defined naturally as the set of cells not in R but having a neighbor
in R. A connected subset R of cells is called an island, if the minimum height
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in R is greater than the maximum height on the neighbors of R. That is, a
water level makes it an island in the usual sense. We always fix a geometric
shape, and consider the islands of this shape only. If h is a height function,
then we denote the induced set of islands by I(h). Let us consider rectangular
islands. We say that rectangles R and S are far from each other, if no cell
of R is the neighbor of any cell of S. We denote by P (C) the power set of
C, that is the set of all subsets of C. The following statement in a different
form was proved in [2].

Lemma 1. Let C be the set of all cells of some board, and let B denote
the entire board as an island. Let I be a set of islands. The following two
conditions are equivalent:

(i) there exists a mapping h : C → R, c 7→ h(c) such that I = I(h).
(ii) B ∈ I, and for any R1 6= R2 ∈ I either R1 ⊂ R2, or R2 ⊂ R1, or R1 and
R2 are far from each other.

A subset of P (C) satisfying the equivalent conditions of Lemma 1 is called
a system of islands. The set of maximal elements of I \ {B} is denoted by
max I.

2. Methods

We list three effective proof techniques for island problems. We give
detailed demonstration of the latter two, the original method can be read in
[2]. We recall the following result of [2]:

Theorem 2. The maximum number of rectangular islands of an m×n rect-
angular board is r(m,n) = [(m+ 1)(n+ 1)/2]− 1.

Let C be the set of unit squares of the m × n board. The proof in [2]
exploits that the islands form a weakly independent set in the distributive
lattice of P (C). In a distributive lattice, maximal weakly independent subsets
are called weak bases. By the main theorem of [3], any two weak bases have
the same cardinality. The details are given in [2].

We use basic graph theory, see Bondy and Murty [1]. A graph without
a cycle is called a forest. A connected forest is a tree. A forest with a
distinguished vertex (root) in each component is called a rooted forest. If a
vertex u is not a root, then u+ denotes the vertex following u on the unique
path from u to the root. It is called the father of u, while u is a son of u+.
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If v is on the path from u to a root, then v is an ancestor of u and u is a
descendant of v. For any v the vertex v and its descendants span a rooted
subtree Tv. Finally, leaves are vertices without sons. A rooted tree is binary
if and only if any non-leaf vertex has precisely two sons.

Let a height function h be defined on the set of cells, fix an island shape,
and consider I(h). In our discussion, the entire board B is always an island
itself. Therefore, the Hasse diagram of (I(h),⊆) is a rooted tree with root
B, denoted T0(I(h)). The sons of B are the maximal islands, and they are
disjoint. The leaves of T0(I(h)) are the minimal islands.

In what follows, we use I instead of I(h). For each vertex x with exactly
one son y, we add another son y′(x) to the graph T0(I). The new vertex
y′(x) is a dummy island. This way, we obtain the graph T (I). The leaves
of T (I) are the minimal islands and the dummy islands, and each non-leaf
vertex has at least two sons. See Figure 2 for an illustration.
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Figure 2: Hasse diagram of islands with respect to inclusion

In order to bound the number of islands, the following Lemma (folklore
or an easy exercise in studying rooted trees) is very useful.

Lemma 3.

(i) Let T be a binary tree with ` leaves. Then the number of vertices of T
depends only on ` and |V | = 2`− 1.

(ii) Let T be a rooted tree such that any non-leaf vertex has at least two sons.
Let ` be the number of leaves in T . Then |V | ≤ 2`− 1.

Our simple strategy is the following: if we know how to express the
number of islands by the number of vertices and dummy vertices, then we
apply Lemma 3.
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A proof example. Let Bm,n denote the set of mn unit squares of the m × n
rectangular board. Let the island shape be rectangular. We call the vertices
of the unit squares grid points, there are (m+ 1)(n+ 1) of them.

Let I be a system of islands with s minimal islands and d dummy islands.
Any island covers at least four grid points. If I1 and I2 are two islands, I1 ⊃
I2, and I2 is the only son of I1, then there is a dummy vertex joined to I1. On
the board, I1 covers at least 2 more grid points than I2. Therefore, we assign
grid points to the leaves of T (I): four points to the minimal islands, two
points to the dummy leaves. These assigned sets of grid points are disjoint
in the set of all (m+1)(n+1) grid points. Therefore, 4s+2d ≤ (m+1)(n+1).
The number of leaves of T (I) is ` = s+d. By Lemma 3, the number of islands
is |V | − d ≤ (2`− 1)− d = 2s+ d− 1 ≤ (m+ 1)(n+ 1)/2− 1.

This proof is very suggestive, clear and short. Still, it needed some techni-
cal preparation. As it turns out, we can make the proof even more elementary.

The iterative description of T0(I) or T (I) suggests a recursive proof tech-
nique: the mathematical induction. Actually, all known upper bounds on the
number of islands [2, 5, 7] can be proved by induction.

A proof example. Let r(m,n) be the maximum number of islands on Bm,n.
We claim that r(m,n) ≤ (m+1)(n+1)/2−1. Let us denote the covered grid
points by ‖Bm,n‖. For disjoint sub-boards S1, S2, . . . , Sk of Bm,n, we know
that ‖Bm,n‖ ≥ ‖S1‖+ ‖S2‖+ . . .+ ‖Sk‖ holds.

We prove the claim by induction. The case of small boards can be easily
checked. Let I∗ be a system of islands realizing the number r(m,n).
r(m,n) = 1 +

∑
R∈max I∗ r(R) ≤ 1 +

∑
R∈max I∗ (‖R‖/2− 1) =

1 + 1/2
∑

R∈max I∗ ‖R‖ − |max I∗| ≤ ‖Bm,n‖/2 + 1− |max I∗|.
If |max I∗| ≥ 2, then the induction is complete. If |max I∗| = 1, then one

needs a minor technical remark to finish the proof.

3. Applications

3.1. Peninsulas

A rectangular island P is a peninsula if it reaches at least one side of the
board. We denote the maximum number of peninsulas in an m×n board by
p(m,n). The following is a slight strengthening of Theorem 2.

Theorem 4. In a rectangular m× n board p(m,n) = r(m,n).
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Proof. Let p′(m,n) be the maximum number of peninsulas reaching the
west or north side of the board. Clearly, p′(m,n) ≤ p(m,n) ≤ r(m,n). We
prove p′(m,n) ≥ r(m,n) by induction. For m ∈ {1, 2} and n ∈ {1, 2}, we
check that p′(m,n) = r(m,n). For the induction step, let us delete two
rows from south. This 2 × n board contains n different peninsulas of width
one reaching the west side of the original board. We can similarly delete
two columns from east. In both cases, the entire m × n board is a new
peninsula beyond the ones on the smaller boards. Therefore, p′(m,n) ≥
p′(m,n − 2) + m + 1 = [(m(n− 2) +m+ (n− 2) + 1)/2] − 1 + m + 1 =
[(mn+m+ n− 1)/2]− 1 = r(m,n).

3.2. Cylindric board, rectangular islands

In this section, we put a square grid on the surface of a cylinder with
height m and circumference of the base circle n. We get the same object by
identifying the sides of lengthm of anm×n rectangle. We denote by c1(m,n)
the maximum number of rectangular islands on this cylinder, assuming that
the entire board is an island, but no other cylinders are.

Theorem 5. If m,n are integers, n ≥ 2, then c1(m,n) = [(m+ 1)n/2].

Proof. By deleting a column of the cylinder, we get an m × (n − 1)
rectangle. Therefore, c1(m,n) ≥ r(m,n− 1) + 1 = [(m+ 1)n/2].

Let I∗ be a maximum cardinality system of islands. For an island R, let
u(R) and v(R) denote the length of its horizontal and vertical side. We drop
R, and simply write u and v, when there is no danger of ambiguity. Now
c1(m,n) = 1 +

∑
R∈maxI∗ f(R) = 1 +

∑
R∈maxI∗ ([(u+ 1)(v + 1)/2]− 1) =

1 − |max(I∗)| +
∑

R∈maxI∗ [(u+ 1)(v + 1)/2] ≤ 1 − 1 + [(m+ 1)n/2] =
[(m+ 1)n/2] . We applied |max(I∗)| ≥ 1, and

∑
R∈maxI∗ [(u+ 1)(v + 1)/2] ≤

[(m+ 1)n/2]. To see the latter, observe that we count the grid points of the
entire board on the right-hand side and the grid points covered by the max-
imal islands on the left-hand side.

3.3. Cylindric board, cylindric and rectangular islands

On a cylindric board, it is natural to consider cylindric islands as well. In
this section, we allow two shapes for the islands, cylindric and rectangular.
We denote by c2(m,n) the maximum cardinality of such a system of islands
on the cylindric m× n board.

Theorem 6. If n ≥ 2, then c2(m,n) = [(m+ 1)n/2] + [(m− 1)/2].
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Proof. We show by induction on m, that c2(m,n) ≥ [(m+ 1)n/2] +
[(m− 1)/2]. Notice, that c2(1, n) = n and c2(2, n) ≥ r(2, n − 1) + 1 =
[3n/2] . Let m > 2. For the induction step, we remove a 2 × n cylinder,
which can contain n islands of height one and an empty row. Therefore,
c2(m,n) ≥ c2(m − 2, n) + n + 1 = [(m− 1)n/2] + [(m− 3)/2] + n + 1 =
[(m+ 1)n/2] + [(m− 1)/2].

We show that c2(m,n) ≤ [(m+ 1)n/2] + [(m− 1)/2]. Assume there is a
maximum cardinality system given. By Theorem 5, there is a cylindric island
in this system, Y say. Now Y is contained in a maximal cylindric island, M
say, that is different from the entire board. Observe, that M is bordered
with a strip of smaller heights from one side. By maximality, the rest of the
board is a maximal cylindric island. Therefore, there exist a, b ∈ N0 so that
a+b+1 = m and c2(m,n) = c2(a, n)+c2(b, n)+1 = [(a+ 1)n/2]+[(a− 1)/2]+
[(b+ 1)n/2]+[(b− 1)/2]+1 ≤ [(a+ b+ 1 + 1)n/2]+[(a+ b+ 1− 3)/2]+1 =
[(m+ 1)n/2] + [(m− 1)/2].

3.4. Toroidal board, rectangular islands

With respect to the neighborhood relation, the most symmetric case ap-
pears on a toroidal board. Naturally, we get the most compact result of
all.

Assume there is an m × n board on the torus, that is also known as
Cm × Cn. The island shape is fixed as rectangular, but we consider the
entire board as an island. We denote by t(m,n) the maximum number of
rectangular islands on the m× n toroidal board.

Theorem 7. If m and n are integers, m,n ≥ 2, then t(m,n) = [mn/2].

Proof. We can cut off a horizontal and a vertical strip to get an (m−1)×
(n−1) rectangular board. Therefore, t(m,n) ≥ r(m−1, n−1)+1 = [mn/2].

We denote by I∗ a set of rectangular islands that realize the maximum
cardinality. Analogously to the proof of Theorem 5, we obtain t(m,n) =
1+

∑
R∈maxI∗ r(R) = 1+

∑
R∈maxI∗ ([(u+ 1)(v + 1)/2]− 1) = 1−|max(I∗)|+∑

R∈max I∗ [(u+ 1)(v + 1)/2] ≤ 1− 1 + [mn/2] = [mn/2].

4. Changing the neighborhood relation

In this section, we define two distinct cells as neighbors if and only if they
have a side in common. For a height function h defined on a rectangular
m×n board, the set of induced rectangular islands will be denoted by Î. The
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maximum value of |Î| for all possible height functions h is denoted r̂(m,n).
Notice, that R1 and R2 are far from each other now if their intersection
consist of at most one point. As one may expect, Lemma 1 remains true. On
the other hand, the following theorem is much less expectable.

Theorem 8. r̂(m,n) = [(m+ 1)(n+ 1)/2]− 1, the same as r(m,n).

Proof. Clearly, r̂(m,n) ≥ r(m,n). We show r̂(m,n) ≤ r(m,n) via induc-
tion on mn. We check the statement for m ∈ {1, 2} and n ∈ {1, 2}. Let I∗

be a maximum cardinality system of islands.
We mimic the proof of Theorem 5 and 7 with a sole difference: we asso-

ciate all covered grid points to a rectangle except two. Namely, the northwest
and northeast corner are left out from the counting. Assume that R is a rect-
angle with side lengths u and v. Let µ(R) = µ(u, v) := (u + 1)(v + 1) − 2.
The induction step goes as before:
r̂(m,n) = 1 +

∑
R∈maxI∗ r̂(R) = 1 +

∑
R∈maxI∗ ([(u+ 1)(v + 1)/2]− 1) =

1 +
∑

R∈maxI∗ ([µ(u, v)/2]) ≤ 1 + [µ(m,n)/2] − 2. In the last inequality,∑
R∈max I∗ µ(R) ≤ µ(m,n) would be trivial. The small improvement by 2

can be easily verified, calculating the number of northeast and northwest
corners.

5. Islands in hypercubes

We give an exact formula for the maximum number of hypercubic islands
in a big hypercube. The board consists of all vertices of a hypercube, or in
other words the elements of a Boolean algebra A = {0, 1}n. Two cells are
neighbors if their Hamming distance is 1. We denote the maximum number
of islands in A = {0, 1}n by b(n).

Theorem 9. b(n) = 1 + 2n−1.

Proof. Consider the vertices with an odd number of 1’s. They form a
system of singleton islands. Therefore, b(n) ≥ 1 + 2n−1, if we consider the
entire space as an island.

We prove the opposite direction by induction on n. For n = 0, 1 the
statement is easy to check. For n ≥ 2, we cut the hypercube into two half-
hypercubes of size 2n−1. If one of them is an island, then the other part can
not contain an island. If neither of them is an island, then by the induction
hypothesis, in both half-hypercubes, the maximum cardinality of a system
of islands is at most 2n−2. This implies the claim: b(n) ≤ 1 + 2n−1.
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