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satisfiability in propositional logic is computationally hard
satisfiability in Horn logic is computationally easy

Horn logic is the framework for many applications, it is
natural for human reasoning

equivalent frameworks: closures, lattices, directed
hypergraphs, functional dependencies, formal concepts,
implicational systems

Poole - Mackworth: Artificial Intelligence: Foundations of
Computational Agents, 2010:

> ‘uses rational computational agents and Horn clause logic as
unifying threads in this vast field’



Horn formulas, entailment
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Horn clause: at most one unnegated variable, e.g.
C=3aVvbVc, written as a,b — ¢, Body(C) = {a, b},
Head(C) = ¢

definite clause: exactly one unnegated variable

(definite) formula: conjunction of (definite) Horn clauses
Horn function: representable by a Horn formula
entailment: (a,b — ¢) A (c — d) = (a, b — d)
implicate: K = C

prime implicate: no subclause is an implicate

forward chaining - efficient
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» optimization
» learning and mining from data

» dynamic problems



Horn minimization

» given a Horn formula ¢ and a number k, is there a Horn
formula with at most k clauses equivalent to ¢?

> X; = Yj, Yis,---s¥n—> X n°-+nclauses

> X;i = Xit1, Xn — Vi, Yi,---,¥n — X1 2n clauses



Previous work: minimization

» Umans (2000): CNF minimization is ¥5-complete

» Ausiello, D'Atri, Sacca (1986): Horn minimization is
NP-complete

» Hammer, Kogan (1993): NP-complete if the number of
literals is to be minimized; in P for quasi-acyclic formulas

» Maier (1983), Ausiello, D'Atri, Sacca (1986), Guigues,
Duquenne (1986), Angluin, Frazier, Pitt (1992): minimization
of the number of bodies can be done efficiently

» Boros, Cepek, Kogan (1997): iterative decomposition
algorithm
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Approximate minimization

» Hammer, Kogan (1993): Horn minimization (number of
clauses) has an (n — 1)-approximation algorithm (n: number
of different variables)  o(n)?

Theorem

Bhattacharya, DasGupta, Mubayi, T. (2010): if

NP ¢ DTIME (nP°'o&(n)) then for every 0 < § < 1 Horn
minimization is not efficiently

o(log size())!

approximable.

Theorem
Boros, Gruber (2011): if P # NP then 3-Horn minimization is not
efficiently

o(log size(p))' ()

approximable.



Introducing new variables

» Flogel, Kleine Biining, Lettmann (1993)
> X1/Y1,- -y Xn/yn — u 2" clauses
> Xi — Zzi, Vi —>Zi, Z1,...,Zp — u 2n+ 1 clauses

» same set of consequences over the original variables

> ¢~ 1, where R is a set of variables: same set of
consequences over R

» co — NP-complete even in rather restricted cases, so extension
is too powerful



Steiner extension

> introduce new variables in a restricted way

» x;i—y, i=1,...,n, j=1,...,m nm clauses

> x;—z, z—y, i=1...,n, j=1,....,m n+ mclauses
» new variables can be heads, or singleton bodies with old heads

> ¢ ~x 1, where variables new are introduced by Steiner
extension: can be decided efficiently

» minimization is MAX-SNP-hard
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A o(n) approximation algorithm

Theorem
There is an efficient

log log n n
Oln——=+~] O —
(" ozmr) (i)
approximation algorithm for Steiner definite Horn minimization .

» /log n Horn minimization can be done efficiently

» find an equivalent Horn formula with the minimal number of
bodies

» find a decomposition of the bipartite graph between heads and
bodies
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Decomposition of graphs

» given a graph, partition its edges into complete bipartite
graphs

» minimize the sum of the number of vertices



Efficient decomposition

Theorem
There is an efficient algorithm for finding

» a decomposition of (a, b)-bipartite graphs (a > b) into
complete bipartite graphs with

log a

O<ab+a|ogb> +a

vertices altogether.
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Directed hypergraphs

> directed hyperedge a,b — ¢
» directed hypergraph

» {(a,b—c),(a,c = d),(d,e = 1)}
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Combinatorics meets logic

» undirected graphs

» directed graphs, undirected hypergraphs

» directed hypergraphs = (definite) Horn formulas
» conjunctive normal forms

» propositional logic

> first-order logic
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Reachability or forward chaining

v

H = (V, F) directed hypergraph

v

forward chaining from vertex set S

» mark vertices in S

» while there is a hyperedge a, b — ¢ such that a, b is marked
and c is unmarked, mark ¢

v

closure cly(S) is the set of marked vertices

» vertex v is reachable from S if v € cly(S)
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Hydra number

v

directed hypergraph H = (V/, F) represents undirected graph
G=(V,E):

» (u,v) € E implies cly(u,v) =V

» (u,v) & E implies cly(u,v) = {u, v}

v

hydra number h(G) of undirected graph G = (V, E):

min{|F| : H=(V, F)represents G }.

v

Boros, Cepek (1994): related Horn formula class

v

motivation: special case of the minimization of Horn formulas
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Examples, single-headed graphs

> cycles
» complete binary tree on 7 vertices

» undirected graph G is single-headed if h(G) = |E|
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Basic properties of the hydra number

» |E| < h(G) < 2|E|, both are sharp for some graphs
» hamiltonian graphs are single-headed
» graphs with hamiltonian line graphs are single-headed

» if G has a single-headed connected spanning subgraph then it
is single-headed

» if G has a connected spanning subgraph with a hamiltonian
line graph then it is single-headed

» if G has a cut edge between with both halves having at least
two vertices then G is not single-headed
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Path covers of the line graph

» path cover number p(G): minimal number of paths needed to
cover all vertices

» if G’ is a connected spanning subgraph of G then

h(G) < |E(G)| + p(L(G"))

Theorem
There are single-headed graphs Gy with ©(k) edges such that
p(L(G")) = ©(k) for every connected spanning subgraph G’
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Hydra numbers of trees

Theorem

> a tree is single-headed iff it is a star

» h(T)=|E(T)|+1iff T isa caterpillar.
Theorem
For the complete binary tree of depth d

|E(Bd)| h(Bg) < *|E(Bd)!-
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