# Descriptive complexity of translating an NFA into an $$\epsilon$$ -free NFA

Balázs Szörényi

Joint work with Judit Nagy-György, Szabolcs Iván and György Turán

Given: a directed bipartite graph G = (A, B, E), with all edges directed from A to B:



Given: a directed bipartite graph G = (A, B, E), with all edges directed from A to B:



A *k*-width representation of G with is a G':



s.t.  $\exists$  directed path  $a \rightsquigarrow b$  in G' iff  $(a, b) \in E$ 

Given: a directed bipartite graph G = (A, B, E), with all edges directed from A to B:



A *k*-width representation of G with is a G':



s.t.  $\exists$  directed path  $a \rightsquigarrow b$  in G' iff  $(a, b) \in E$ 

size = number of edges thus size(G) = |E| and size(G') =  $|E_1| + \cdots + |E_k|$ 

Assume m = |A| = |B| throughout for simplicity

Is there a large graph with small representation? Yes: the complete bipartite graph  $K_{m,m}$  has size $(K_{m,m}) = m^2$ , and has a trivial 2-width representation of size 2m

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Is there a large graph with small representation? Yes: the complete bipartite graph  $K_{m,m}$  has  $\operatorname{size}(K_{m,m}) = m^2$ , and has a trivial 2-width representation of size 2m

*k*-width-size(*G*): size of the smallest *k*-width representation of *G* unbounded-width-size(*G*) = min{*k*-width-size(*G*) : k = 2, 3, ...}

Is there a large graph with small representation? Yes: the complete bipartite graph  $K_{m,m}$  has  $\operatorname{size}(K_{m,m}) = m^2$ , and has a trivial 2-width representation of size 2m

*k*-width-size(*G*): size of the smallest *k*-width representation of *G* unbounded-width-size(*G*) = min{*k*-width-size(*G*) : k = 2, 3, ...}

**Problem 1**: determine the largest possible gap between the 2-width-size and the unbounded-width-size

Note: size(G)  $\leq k$ -width-size(G)<sup>2</sup> (because size(G)  $\leq m^2$  and  $\forall k \ m \leq k$ -width-size(G)) Is there a large graph with small representation? Yes: the complete bipartite graph  $K_{m,m}$  has  $\operatorname{size}(K_{m,m}) = m^2$ , and has a trivial 2-width representation of size 2m

*k*-width-size(*G*): size of the smallest *k*-width representation of *G* unbounded-width-size(*G*) = min{*k*-width-size(*G*) : k = 2, 3, ...}

**Problem 1**: determine the largest possible gap between the 2-width-size and the unbounded-width-size

Note: size(G)  $\leq k$ -width-size(G)<sup>2</sup> (because size(G)  $\leq m^2$  and  $\forall k \ m \leq k$ -width-size(G))

**Theorem (main result)**:  $\exists$  arbitrarily large *G* with 2-width-size(*G*) =  $\Omega(m^{3/2})$  and (log *m*)-width-size(*G*) =  $O(m \log m)$ 

Boolean circuits containing only OR gates. Thus

- A correspond to the input gates
- *B* correspond to the output gates
- the inner layers correspond to the OR gates

Results are typically bounds (even) for the unbounded width size:

Boolean circuits containing only OR gates. Thus

- A correspond to the input gates
- *B* correspond to the output gates
- the inner layers correspond to the OR gates

Results are typically bounds (even) for the unbounded width size:

- Lupanov, 1956:  $O(n^2/\log n)$  are enough to compute any  $f: \{0,1\}^n \to \{0,1\}^n$
- Nechiporuk, 1969: example (projective plane) with  $\Omega(n^{3/2})$  gates
- Pippenger, 1980 (based on Brown, 1966): example with  $\Omega(n^{5/3})$  gates
- Melhorn, 1979 and Wegener, 1980: similar bounds
- Jukna (based on Kollár et al. 1996):  $O(n^{2-\epsilon})$  for arbitrarily small  $\epsilon$

Boolean circuits containing only OR gates. Thus

- A correspond to the input gates
- *B* correspond to the output gates
- the inner layers correspond to the OR gates

Results are typically bounds (even) for the unbounded width size:

- Lupanov, 1956:  $O(n^2/\log n)$  are enough to compute any  $f: \{0,1\}^n \to \{0,1\}^n$
- Nechiporuk, 1969: example (projective plane) with  $\Omega(n^{3/2})$  gates
- Pippenger, 1980 (based on Brown, 1966): example with  $\Omega(n^{5/3})$  gates
- Melhorn, 1979 and Wegener, 1980: similar bounds
- Jukna (based on Kollár et al. 1996):  $O(n^{2-\epsilon})$  for arbitrarily small  $\epsilon$
- $\Rightarrow$  do not say anything about our problem

alphabet: some finite set  $\Sigma$ word: sequence of the form  $a_1a_2 \dots a_k$  s.t.  $a_i \in \Sigma$  and  $k \in \mathbb{N}$ language: a set L of words

nondeterministic finite automaton (NFA) M for generating the words in some (restricted) language L(M):  $M = (V, R, e, \triangleright, F)$ , where V is the set of states  $R \subseteq V^2$  is the set of transitions  $e: R \to \Sigma \cup \{\epsilon\}$  is a labeling of the transitions ( $\epsilon$ : "empty transition")  $\triangleright \in V$  is the initial state  $F \subseteq V$  is the set of finite states (notation: finite states will be boxed)

alphabet: some finite set  $\Sigma$ word: sequence of the form  $a_1a_2 \dots a_k$  s.t.  $a_i \in \Sigma$  and  $k \in \mathbb{N}$ language: a set L of words

nondeterministic finite automaton (NFA) M for generating the words in some (restricted) language L(M):  $M = (V, R, e, \triangleright, F)$ , where V is the set of states  $R \subseteq V^2$  is the set of transitions  $e: R \to \Sigma \cup \{\epsilon\}$  is a labeling of the transitions ( $\epsilon$ : "empty transition")  $\triangleright \in V$  is the initial state  $F \subseteq V$  is the set of finite states (notation: finite states will be boxed)

example 1:  $\Sigma = \{a, b\}, F = \{x_2\}, L(M) = \{ab\}$ 

$$> \xrightarrow{a} x1 \xrightarrow{b} x2$$

alphabet: some finite set  $\Sigma$ word: sequence of the form  $a_1a_2 \dots a_k$  s.t.  $a_i \in \Sigma$  and  $k \in \mathbb{N}$ language: a set L of words

nondeterministic finite automaton (NFA) M for generating the words in some (restricted) language L(M):  $M = (V, R, e, \triangleright, F)$ , where V is the set of states  $R \subseteq V^2$  is the set of transitions  $e: R \to \Sigma \cup \{\epsilon\}$  is a labeling of the transitions ( $\epsilon$ : "empty transition")  $\triangleright \in V$  is the initial state  $F \subseteq V$  is the set of finite states (notation: finite states will be boxed)

example 2: 
$$\Sigma = \{a, b, c\}, F = \{x_2, \triangleright\}, L(M) = \{\lambda, ab, abc, abcab, \dots\}$$



alphabet: some finite set  $\Sigma$ word: sequence of the form  $a_1a_2 \dots a_k$  s.t.  $a_i \in \Sigma$  and  $k \in \mathbb{N}$ language: a set L of words

nondeterministic finite automaton (NFA) M for generating the words in some (restricted) language L(M):  $M = (V, R, e, \triangleright, F)$ , where V is the set of states  $R \subseteq V^2$  is the set of transitions  $e: R \to \Sigma \cup \{\epsilon\}$  is a labeling of the transitions ( $\epsilon$ : "empty transition")  $\triangleright \in V$  is the initial state  $F \subseteq V$  is the set of finite states (notation: finite states will be boxed)

alphabet: some finite set  $\Sigma$ word: sequence of the form  $a_1a_2 \dots a_k$  s.t.  $a_i \in \Sigma$  and  $k \in \mathbb{N}$ language: a set L of words

**nondeterministic finite automaton (NFA)** *M* for generating the words in some (restricted) language L(M):  $M = (V, R, e, \triangleright, F)$ , where *V* is the set of states  $R \subseteq V^2$  is the set of transitions  $e: R \to \Sigma \cup \{\epsilon\}$  is a labeling of the transitions ( $\epsilon$ : "empty transition")  $\triangleright \in V$  is the initial state  $F \subseteq V$  is the set of finite states (notation: finite states will be boxed)

example 3':  $\Sigma = \{0, 1\}$ ,  $F = \{x_3\}$ , L = words ending with 10, 100 or 110



Esample 3 and example 3' generate the same language:



but the latter has no  $\epsilon$ -transition: it is  $\epsilon$ -free!

**Problem 2**: What is the largest blow-up when translating an NFA into an  $\epsilon$ -free NFA?

#### Similar questions considered in the literature:

| translating from    | to                         | the blow-up is                                     | result by             |
|---------------------|----------------------------|----------------------------------------------------|-----------------------|
| regular expression  | $\epsilon$ -free NFA       | $O(n\log^2(n))$                                    | Hromkovic et al, 1997 |
| regular expression  | $\epsilon\text{-}free$ NFA | $\Omega\left(\frac{n\log^2(n)}{\log\log n}\right)$ | Lifshits, 2003        |
| regular expression  | $\epsilon$ -free NFA       | $\Omega(n \log^2 n)$                               | Schnitger, 2006       |
| CFG                 | chain-rule-free CFG        | $\Omega(n \log \log n)$                            | Blum, 1982            |
| CFG                 | chain-rule-free CFG        | $\Omega(n^{3/2-\epsilon})$                         | Blum, 1983            |
| CFG                 | chain-rule-free CFG        | $O(n^2)$                                           | folclore              |
| NFA                 | $\epsilon$ -free NFA       | $O(n^2)$                                           | folclore              |
| NFA                 | $\epsilon$ -free NFA       | $\Omega(n \log^2 n)$                               | Schnitger, 2006       |
| chain-rule-free CFG | Chomsky-for CFG            | $\Theta(n)$                                        | Folclore              |
| chain-rule-free CFG | Greibach-form CFG          | O(n3)                                              | Blum et al, 1997      |
| CFG                 | Greibach-form CFG          | $O(n^4)$                                           | Blum et al, 1997      |
| CFG                 | Greibach-form CFG          | $\Omega(n^2)$                                      | Kelemenova, 1984      |

Importance: programming and script languages are typically context free or regular languages

# Motivation 2: language containing only words of length 2

 $\Sigma$ : some alphabet

L: some language over  $\Sigma$  containing only words of length 2

Graph representation: the bipartite graph  $(\Sigma, \Sigma, \vec{E}_L)$  s.t.  $(a, b) \in \vec{E}_L$  iff  $ab \in L$ 

Example:  $L = \{aa, ab, ba, bc, cc\}$ 



# Motivation 2: language containing only words of length 2

 $\Sigma$ : some alphabet

L: some language over  $\boldsymbol{\Sigma}$  containing only words of length 2

Graph representation: the bipartite graph  $(\Sigma, \Sigma, \vec{E}_L)$  s.t.  $(a, b) \in \vec{E}_L$  iff  $ab \in L$ 

Conversion between  $\epsilon$ -free NFA and width-2 representation:





## Motivation 2: language containing only words of length 2

Converting a width-k representation to an NFA:



Thus a lower bound for Problem 1 translates to a lower bound for Problem 2  $% \left( {{{\rm{Problem}}} \right)$ 

(ロ)、(型)、(E)、(E)、 E) の(の)

Let q be some prime power, and d a positive integer.

The graph G = (A, B, E) is constructed as follows. A and B are two distinct copies of  $(\mathbb{Z}_q)^d$  and  $E = \{(a, b) : \langle a, b \rangle = 0\}$ , where  $\langle a, b \rangle = \sum_{i=1}^d a_i b_i$ 

**Lemma**: d-width-size(G) =  $O(d \cdot q^{d+2})$ 

**Lemma**: 2-width-size(G) =  $\Omega(q^{3d/2})$