Descriptive complexity of translating an NFA into an ϵ-free NFA

Balázs Szörényi

Joint work with Judit Nagy-György, Szabolcs Iván and György Turán

The problem of interest-basic notions

Given: a directed bipartite graph $G=(A, B, E)$, with all edges directed from A to B :

The problem of interest-basic notions

Given: a directed bipartite graph $G=(A, B, E)$, with all edges directed from A to B :

A k-width representation of G with is a G^{\prime} :

s.t. \exists directed path $a \leadsto b$ in G^{\prime} iff $(a, b) \in E$

The problem of interest-basic notions

Given: a directed bipartite graph $G=(A, B, E)$, with all edges directed from A to B :

s.t. \exists directed path $a \leadsto b$ in G^{\prime} iff $(a, b) \in E$
size $=$ number of edges
thus $\operatorname{size}(G)=|E|$ and $\operatorname{size}\left(G^{\prime}\right)=\left|E_{1}\right|+\cdots+\left|E_{k}\right|$
Assume $m=|A|=|B|$ throughout for simplicity

The problem of interest

Is there a large graph with small representation?
Yes: the complete bipartite graph $K_{m, m}$ has $\operatorname{size}\left(K_{m, m}\right)=m^{2}$, and has a trivial 2-width representation of size $2 m$

The problem of interest

Is there a large graph with small representation?
Yes: the complete bipartite graph $K_{m, m}$ has $\operatorname{size}\left(K_{m, m}\right)=m^{2}$, and has a trivial 2-width representation of size $2 m$
k-width-size (G) : size of the smallest k-width representation of G unbounded-width-size $(G)=\min \{k$-width-size $(G): k=2,3, \ldots\}$

The problem of interest

Is there a large graph with small representation?
Yes: the complete bipartite graph $K_{m, m}$ has $\operatorname{size}\left(K_{m, m}\right)=m^{2}$, and has a trivial 2-width representation of size $2 m$
k-width-size (G) : size of the smallest k-width representation of G unbounded-width-size $(G)=\min \{k$-width-size $(G): k=2,3, \ldots\}$

Problem 1: determine the largest possible gap between the 2-width-size and the unbounded-width-size

Note: $\operatorname{size}(G) \leq k$-width-size $(G)^{2}$
(because $\operatorname{size}(G) \leq m^{2}$ and $\forall k m \leq k$-width-size (G))

The problem of interest

Is there a large graph with small representation?
Yes: the complete bipartite graph $K_{m, m}$ has $\operatorname{size}\left(K_{m, m}\right)=m^{2}$, and has a trivial 2-width representation of size $2 m$
k-width-size (G) : size of the smallest k-width representation of G unbounded-width-size $(G)=\min \{k$-width-size $(G): k=2,3, \ldots\}$

Problem 1: determine the largest possible gap between the 2-width-size and the unbounded-width-size

Note: $\operatorname{size}(G) \leq k$-width-size $(G)^{2}$ (because $\operatorname{size}(G) \leq m^{2}$ and $\forall k m \leq k$-width-size (G))

Theorem (main result): \exists arbitrarily large G with 2-width-size $(G)=\Omega\left(m^{3 / 2}\right)$ and $(\log m)$-width-size $(G)=O(m \log m)$

Motivation 1: rectifier networks

Boolean circuits containing only OR gates. Thus

- A correspond to the input gates
- B correspond to the output gates
- the inner layers correspond to the OR gates

Results are typically bounds (even) for the unbounded width size:

Motivation 1: rectifier networks

Boolean circuits containing only OR gates. Thus

- A correspond to the input gates
- B correspond to the output gates
- the inner layers correspond to the OR gates

Results are typically bounds (even) for the unbounded width size:

- Lupanov, 1956: $O\left(n^{2} / \log n\right)$ are enough to compute any $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- Nechiporuk, 1969: example (projective plane) with $\Omega\left(n^{3 / 2}\right)$ gates
- Pippenger, 1980 (based on Brown, 1966): example with $\Omega\left(n^{5 / 3}\right)$ gates
- Melhorn, 1979 and Wegener, 1980: similar bounds
- Jukna (based on Kollár et al. 1996): $O\left(n^{2-\epsilon}\right)$ for arbitrarily small ϵ

Motivation 1: rectifier networks

Boolean circuits containing only OR gates. Thus

- A correspond to the input gates
- B correspond to the output gates
- the inner layers correspond to the OR gates

Results are typically bounds (even) for the unbounded width size:

- Lupanov, 1956: $O\left(n^{2} / \log n\right)$ are enough to compute any $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- Nechiporuk, 1969: example (projective plane) with $\Omega\left(n^{3 / 2}\right)$ gates
- Pippenger, 1980 (based on Brown, 1966): example with $\Omega\left(n^{5 / 3}\right)$ gates
- Melhorn, 1979 and Wegener, 1980: similar bounds
- Jukna (based on Kollár et al. 1996): $O\left(n^{2-\epsilon}\right)$ for arbitrarily small ϵ \Rightarrow do not say anything about our problem

Motivation 2: formal languages and NFA

alphabet: some finite set Σ
word: sequence of the form $a_{1} a_{2} \ldots a_{k}$ s.t. $a_{i} \in \Sigma$ and $k \in \mathbb{N}$ language: a set L of words
nondeterministic finite automaton (NFA) M for generating the words in some (restricted) language $L(M): M=(V, R, e, \triangleright, F)$, where
V is the set of states
$R \subseteq V^{2}$ is the set of transitions
$e: R \rightarrow \Sigma \cup\{\epsilon\}$ is a labeling of the transitions (ϵ : "empty transition")
$\triangleright \in V$ is the initial state
$F \subseteq V$ is the set of finite states (notation: finite states will be boxed)

Motivation 2: formal languages and NFA

alphabet: some finite set Σ
word: sequence of the form $a_{1} a_{2} \ldots a_{k}$ s.t. $a_{i} \in \Sigma$ and $k \in \mathbb{N}$ language: a set L of words
nondeterministic finite automaton (NFA) M for generating the words in some (restricted) language $L(M): M=(V, R, e, \triangleright, F)$, where
V is the set of states
$R \subseteq V^{2}$ is the set of transitions
$e: R \rightarrow \Sigma \cup\{\epsilon\}$ is a labeling of the transitions (ϵ : "empty transition")
$\triangleright \in V$ is the initial state
$F \subseteq V$ is the set of finite states (notation: finite states will be boxed)
example 1: $\Sigma=\{a, b\}, F=\left\{x_{2}\right\}, L(M)=\{a b\}$

$$
D \xrightarrow{\mathrm{a}} \mathrm{x} 1 \xrightarrow{\mathrm{~b}} \mathrm{x} 2
$$

Motivation 2: formal languages and NFA

alphabet: some finite set Σ
word: sequence of the form $a_{1} a_{2} \ldots a_{k}$ s.t. $a_{i} \in \Sigma$ and $k \in \mathbb{N}$ language: a set L of words
nondeterministic finite automaton (NFA) M for generating the words in some (restricted) language $L(M): M=(V, R, e, \triangleright, F)$, where
V is the set of states
$R \subseteq V^{2}$ is the set of transitions
$e: R \rightarrow \Sigma \cup\{\epsilon\}$ is a labeling of the transitions (ϵ : "empty transition")
$\triangleright \in V$ is the initial state
$F \subseteq V$ is the set of finite states (notation: finite states will be boxed)
example 2: $\Sigma=\{a, b, c\}, F=\left\{x_{2}, \triangleright\right\}, L(M)=\{\lambda, a b, a b c, a b c a b, \ldots\}$

Motivation 2: formal languages and NFA

alphabet: some finite set Σ
word: sequence of the form $a_{1} a_{2} \ldots a_{k}$ s.t. $a_{i} \in \Sigma$ and $k \in \mathbb{N}$ language: a set L of words
nondeterministic finite automaton (NFA) M for generating the words in some (restricted) language $L(M): M=(V, R, e, \triangleright, F)$, where
V is the set of states
$R \subseteq V^{2}$ is the set of transitions
$e: R \rightarrow \Sigma \cup\{\epsilon\}$ is a labeling of the transitions (ϵ : "empty transition")
$\triangleright \in V$ is the initial state
$F \subseteq V$ is the set of finite states (notation: finite states will be boxed)
example 3: $\Sigma=\{0,1\}, F=\left\{x_{3}\right\}, L=$ words ending with 10,100 or 110

Motivation 2: formal languages and NFA

alphabet: some finite set Σ
word: sequence of the form $a_{1} a_{2} \ldots a_{k}$ s.t. $a_{i} \in \Sigma$ and $k \in \mathbb{N}$ language: a set L of words
nondeterministic finite automaton (NFA) M for generating the words in some (restricted) language $L(M): M=(V, R, e, \triangleright, F)$, where
V is the set of states
$R \subseteq V^{2}$ is the set of transitions
$e: R \rightarrow \Sigma \cup\{\epsilon\}$ is a labeling of the transitions (ϵ : "empty transition")
$\triangleright \in V$ is the initial state
$F \subseteq V$ is the set of finite states (notation: finite states will be boxed)
example $3^{\prime}: \Sigma=\{0,1\}, F=\left\{x_{3}\right\}, L=$ words ending with 10,100 or 110

Motivation 2: formal languages and NFA

Esample 3 and example 3' generate the same language:

but the latter has no ϵ-transition: it is ϵ-free!

Problem 2: What is the largest blow-up when translating an NFA into an ϵ-free NFA?

Motivation 2: formal languages and NFA

Similar questions considered in the literature:

translating from	to	the blow-up is	result by
regular expression	ϵ-free NFA	$O\left(n \log ^{2}(n)\right)$	Hromkovic et al, 1997
regular expression	ϵ-free NFA	$\Omega\left(\frac{n \log 2(n)}{\log \log n}\right)$	Lifshits, 2003
regular expression	ϵ-free NFA	$\Omega\left(n \log ^{2} n\right)$	Schnitger, 2006
CFG	chain-rule-free CFG	$\Omega(n \log \log n)$	Blum, 1982
CFG	chain-rule-free CFG	$\Omega\left(n^{3 / 2-\epsilon}\right)$	Blum, 1983
CFG	chain-rule-free CFG	$O\left(n^{2}\right)$	folclore
NFA	ϵ-free NFA	$O\left(n^{2}\right)$	folclore
NFA	ϵ-free NFA	$\Omega\left(n \log ^{2} n\right)$	Schnitger, 2006
chain-rule-free CFG	Chomsky-for CFG	$\Theta(n)$	Folclore
chain-rule-free CFG	Greibach-form CFG	$O(n 3)$	Blum et al, 1997
CFG	Greibach-form CFG	$O\left(n^{4}\right)$	Blum et al, 1997
CFG	Greibach-form CFG	$\Omega\left(n^{2}\right)$	Kelemenova, 1984

Importance: programming and script languages are typically context free or regular languages

Motivation 2: language containing only words of length 2

Σ : some alphabet
L : some language over Σ containing only words of length 2
Graph representation: the bipartite graph $\left(\Sigma, \Sigma, \vec{E}_{L}\right)$ s.t. $(a, b) \in \vec{E}_{L}$ iff $a b \in L$

Example: $L=\{a a, a b, b a, b c, c c\}$

Motivation 2: language containing only words of length 2

Σ : some alphabet
L : some language over Σ containing only words of length 2
Graph representation:
the bipartite graph $\left(\Sigma, \Sigma, \vec{E}_{L}\right)$ s.t. $(a, b) \in \vec{E}_{L}$ iff $a b \in L$

Conversion between ϵ-free NFA and width-2 representation:

三

Motivation 2: language containing only words of length 2

Converting a width $-k$ representation to an NFA:

Motivation 2: formal languages and NFA

Thus a lower bound for Problem 1 translates to a lower bound for Problem 2

Proof outline for the main result

Let q be some prime power, and d a positive integer.

The graph $G=(A, B, E)$ is constructed as follows.
A and B are two distinct copies of $\left(\mathbb{Z}_{q}\right)^{d}$ and
$E=\{(a, b):\langle a, b\rangle=0\}$, where $\langle a, b\rangle=\sum_{i=1}^{d} a_{i} b_{i}$
Lemma: d-width-size $(G)=O\left(d \cdot q^{d+2}\right)$
Lemma: 2 -width-size $(G)=\Omega\left(q^{3 d / 2}\right)$

