Effective bases of closure systems

K. Adaricheva

Yeshiva University, New York

June 18, 2012 Workshop Algebra Across the Borders II Szeged

(1) "On the implicational bases of closure systems with the unique criticals" joint work with J.B.Nation (AN-2012)

(2) " Optimum bases of convex geometries" (A-2012)

Outline

- 2 Propositional Horn logic and Horn Boolean functions
- Types of efficient bases
- Canonical basis of Duquenne-Guigues
- 5 K-basis
- 6 UC-closure systems
 - 7 E-basis
- Optimum bases in convex geometries

$\langle \pmb{X}, \phi \rangle$ is a closure space, if

• X is non-empty set (finite in this talk);

• ϕ is a closure operator on X, i.e. $\phi : 2^X \to 2^X$ with

- (1) $Y \subseteq \phi(Y);$
- (2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
- (3) $\phi(\phi(Y)) = \phi(Y)$, for all $Y, Z \subseteq X$.

$\langle \pmb{X}, \phi angle$ is a closure space, if

• X is non-empty set (finite in this talk);

φ is a closure operator on X, i.e. φ : 2^X → 2^X with Y ⊆ φ(Y); Y ⊆ Z implies φ(Y) ⊆ φ(Z); φ(φ(Y)) = φ(Y), for all Y, Z ⊆ X. Closed set: A = φ(A).

$\langle \pmb{X}, \phi angle$ is a closure space, if

- X is non-empty set (finite in this talk);
- φ is a closure operator on X, i.e. φ : 2^X → 2^X with
 (1) Y ⊆ φ(Y);
 (2) Y ⊆ Z implies φ(Y) ⊆ φ(Z);
 - (3) $\phi(\phi(Y)) = \phi(Y)$, for all $Y, Z \subseteq X$.

 $\langle \pmb{X}, \phi \rangle$ is *a closure space*, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi : 2^X \to 2^X$ with

(1)
$$Y \subseteq \phi(Y);$$

2)
$$Y \subseteq Z$$
 implies $\phi(Y) \subseteq \phi(Z)$;

(3)
$$\phi(\phi(Y)) = \phi(Y)$$
, for all $Y, Z \subseteq X$.

 $\langle X, \phi \rangle$ is a closure space, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi : 2^X \to 2^X$ with
 - (1) $Y \subseteq \phi(Y);$
 - (2) $Y \subseteq Z$ implies $\phi(Y) \subseteq \phi(Z)$;
 - (3) $\phi(\phi(Y)) = \phi(Y)$, for all $Y, Z \subseteq X$.

 $\langle \textbf{X}, \phi \rangle$ is a closure space, if

- X is non-empty set (finite in this talk);
- ϕ is a closure operator on X, i.e. $\phi : 2^X \to 2^X$ with

(1)
$$Y \subseteq \phi(Y);$$

(2)
$$Y \subseteq Z$$
 implies $\phi(Y) \subseteq \phi(Z)$;

(3)
$$\phi(\phi(Y)) = \phi(Y)$$
, for all $Y, Z \subseteq X$.

Standard systems

If $X^* \subseteq X$, then $\phi^*(Y) = \phi(Y) \cap X^*$, $Y \subseteq X^*$, defines a closure operator on X^* .

 $\langle X^*, \phi^* \rangle$ is called a *standard* closure space, if X^* is a subset of the minimal cardinality such that the closure space $\langle X^*, \phi^* \rangle$ has the same number of closed sets as $\langle X, \phi \rangle$.

Standard spaces are characterized by the property:

```
\phi^*(x) \setminus x is closed, for every x \in X^*.
```

In particular, $\phi^*(\emptyset) = \emptyset$, and $\phi^*(x) = \phi^*(y)$ implies x = y. There exists a straightforward algorithm to obtain a standard closure system from the given one.

• Closed sets of $\langle X, \phi \rangle$ form *Moore family* \mathcal{M} :

 \mathcal{M} is closed with respect to intersection \cap and $X \in \mathcal{M}$;

- Every Moore family $\mathcal{M} \subseteq 2^X$ defines a closure operator on *X*: $\phi(Y) = \bigcap \{ Z \in \mathcal{M} : Y \subseteq Z \}, Y \subseteq X.$
- Moore family can be turned into lattice of closed sets Cl(X, φ):
 Y ∧ Z = Y ∩ Z,
 Y ∨ Z = ∩{W ∈ M : Y, Z ⊆ W}.

- Closed sets of ⟨X, φ⟩ form *Moore family* M:
 M is closed with respect to intersection ∩ and X ∈ M;
- Every Moore family $\mathcal{M} \subseteq 2^X$ defines a closure operator on *X*: $\phi(Y) = \bigcap \{ Z \in \mathcal{M} : Y \subseteq Z \}, Y \subseteq X.$
- Moore family can be turned into lattice of closed sets Cl(X, φ):
 Y ∧ Z = Y ∩ Z,
 Y ∨ Z = ∩{W ∈ M : Y, Z ⊆ W}.

- Closed sets of ⟨X, φ⟩ form *Moore family* M:
 M is closed with respect to intersection ∩ and X ∈ M;
- Every Moore family M ⊆ 2^X defines a closure operator on X:
 φ(Y) = ∩{Z ∈ M : Y ⊆ Z}, Y ⊆ X.
- Moore family can be turned into lattice of closed sets Cl(X, φ):
 Y ∧ Z = Y ∩ Z,
 Y ∨ Z = ∩{W ∈ M : Y, Z ⊆ W}.

- Closed sets of ⟨X, φ⟩ form *Moore family* M:
 M is closed with respect to intersection ∩ and X ∈ M;
- Every Moore family $\mathcal{M} \subseteq 2^X$ defines a closure operator on X: $\phi(Y) = \bigcap \{ Z \in \mathcal{M} : Y \subseteq Z \}, Y \subseteq X.$

Moore family can be turned into lattice of closed sets Cl(X, φ):
 Y ∧ Z = Y ∩ Z,
 Y ∨ Z = ∩{W ∈ M : Y, Z ⊆ W}.

- Closed sets of ⟨X, φ⟩ form *Moore family* M:
 M is closed with respect to intersection ∩ and X ∈ M;
- Every Moore family $\mathcal{M} \subseteq 2^X$ defines a closure operator on X: $\phi(Y) = \bigcap \{ Z \in \mathcal{M} : Y \subseteq Z \}, Y \subseteq X.$
- Moore family can be turned into lattice of closed sets Cl(X, φ):
 Y ∧ Z = Y ∩ Z,
 Y ∨ Z = ∩{W ∈ M : Y, Z ⊆ W}.

- Closed sets of ⟨X, φ⟩ form *Moore family* M:
 M is closed with respect to intersection ∩ and X ∈ M;
- Every Moore family $\mathcal{M} \subseteq 2^X$ defines a closure operator on X: $\phi(Y) = \bigcap \{ Z \in \mathcal{M} : Y \subseteq Z \}, Y \subseteq X.$
- Moore family can be turned into lattice of closed sets Cl(X, φ):
 Y ∧ Z = Y ∩ Z,
 Y ∨ Z = ∩{W ∈ M : Y, Z ⊆ W}.

- Closed sets of ⟨X, φ⟩ form *Moore family* M:
 M is closed with respect to intersection ∩ and X ∈ M;
- Every Moore family $\mathcal{M} \subseteq 2^X$ defines a closure operator on X: $\phi(Y) = \bigcap \{ Z \in \mathcal{M} : Y \subseteq Z \}, Y \subseteq X.$
- Moore family can be turned into lattice of closed sets $Cl(X, \phi)$: $Y \land Z = Y \cap Z$, $Y \lor Z = \bigcap \{ W \in \mathcal{M} : Y, Z \subseteq W \}.$

Proposition

Every finite lattice (L, \lor, \land) is the lattice of closed sets of some closure space $\langle X, \phi \rangle$.

- Take X = J(L), the set of join-irreducible elements: $j \in J(L)$, if $j \neq 0$, and $j = a \lor b$ implies j = a or j = b;
- define $\phi(Y) = \{j \in J(L) : j \leq \bigvee Y\}, Y \subseteq X$.

• This closure space is *standard*.

Proposition

Every finite lattice (L, \lor, \land) is the lattice of closed sets of some closure space $\langle X, \phi \rangle$.

- Take X = J(L), the set of join-irreducible elements: $j \in J(L)$, if $j \neq 0$, and $j = a \lor b$ implies j = a or j = b;
- define $\phi(Y) = \{j \in J(L) : j \leq \bigvee Y\}, Y \subseteq X.$
- This closure space is *standard*.

Proposition

Every finite lattice (L, \lor, \land) is the lattice of closed sets of some closure space $\langle X, \phi \rangle$.

- Take X = J(L), the set of join-irreducible elements: $j \in J(L)$, if $j \neq 0$, and $j = a \lor b$ implies j = a or j = b;
- define $\phi(\mathbf{Y}) = \{j \in J(L) : j \leq \bigvee \mathbf{Y}\}, \ \mathbf{Y} \subseteq \mathbf{X}.$

• This closure space is *standard*.

Proposition

Every finite lattice (L, \lor, \land) is the lattice of closed sets of some closure space $\langle X, \phi \rangle$.

- Take X = J(L), the set of join-irreducible elements: $j \in J(L)$, if $j \neq 0$, and $j = a \lor b$ implies j = a or j = b;
- define $\phi(Y) = \{j \in J(L) : j \leq \bigvee Y\}, Y \subseteq X$.
- This closure space is *standard*.

Example: Building a closure space associated with lattice A_{12} . $X = J(A_{12}) = \{1, 2, 3, 4, 5, 6\}$. $\phi(\{4, 6\}) = \{1, 3, 4, 6\}$, $\phi(\{2, 4\}) = X$ etc.

Figure: A₁₂

• An implication σ on X: $Y \rightarrow Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.

- Moore family \mathcal{M}_{σ} contains subsets A of X that *respects* σ : if $Y \subseteq A$, then $Z \subseteq A$.
- if Σ is a set of implications {σ₁,...,σ_k}, then M_Σ is Moore family of subsets A that respect all σ_j;
- the corresponding closure space is $\langle X, \phi_{\Sigma} \rangle$
- Every closure space (X, φ) can be presented as (X, ψ_Σ), for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

- An implication σ on X: Y \rightarrow Z, for Y, Z \subseteq X, Z $\neq \emptyset$.
- Moore family M_σ contains subsets A of X that respects σ:
 if Y ⊆ A, then Z ⊆ A.
- if Σ is a set of implications {σ₁,..., σ_k}, then M_Σ is Moore family of subsets A that respect all σ_j;
- the corresponding closure space is $\langle X, \phi_{\Sigma} \rangle$
- Every closure space (X, φ) can be presented as (X, ψ_Σ), for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

- An implication σ on X: Y \rightarrow Z, for Y, Z \subseteq X, Z $\neq \emptyset$.
- Moore family M_σ contains subsets A of X that respects σ:
 if Y ⊆ A, then Z ⊆ A.
- if Σ is a set of implications {σ₁,..., σ_k}, then M_Σ is Moore family of subsets A that respect all σ_j;
- the corresponding closure space is $\langle X, \phi_{\Sigma} \rangle$
- Every closure space ⟨X, φ⟩ can be presented as ⟨X, ψ_Σ⟩, for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

- An implication σ on $X: Y \to Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- Moore family M_σ contains subsets A of X that respects σ:
 if Y ⊆ A, then Z ⊆ A.
- if Σ is a set of implications {σ₁,..., σ_k}, then M_Σ is Moore family of subsets A that respect all σ_j;
- the corresponding closure space is $\langle X, \phi_{\Sigma} \rangle$
- Every closure space (X, φ) can be presented as (X, ψ_Σ), for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

- An implication σ on $X: Y \to Z$, for $Y, Z \subseteq X, Z \neq \emptyset$.
- Moore family M_σ contains subsets A of X that respects σ:
 if Y ⊆ A, then Z ⊆ A.
- if Σ is a set of implications {σ₁,..., σ_k}, then M_Σ is Moore family of subsets A that respect all σ_j;
- the corresponding closure space is $\langle X, \phi_{\Sigma} \rangle$
- Every closure space (X, φ) can be presented as (X, ψ_Σ), for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

- An implication σ on X: Y \rightarrow Z, for Y, Z \subseteq X, Z $\neq \emptyset$.
- Moore family M_σ contains subsets A of X that respects σ:
 if Y ⊆ A, then Z ⊆ A.
- if Σ is a set of implications {σ₁,..., σ_k}, then M_Σ is Moore family of subsets A that respect all σ_j;
- the corresponding closure space is $\langle X, \phi_{\Sigma} \rangle$
- Every closure space (X, φ) can be presented as (X, ψ_Σ), for some set Σ of implications on X.
- Example: $\Sigma = \{A \rightarrow \phi(A) : A \subseteq X, A \neq \phi(A)\}.$

- Unit implication σ on X: $Y \rightarrow z, Y \subseteq X, z \in X$.
- Every implication Y → Z is equivalent to the set of unit implications {Y → z, z ∈ Z}: unit expansion.
- Logical interpretation of unit implication σ : $X = \{x_1, \dots, x_n\}, Y = \{x_1, \dots, x_k\}, z = x_{k+1}$ $\sigma \equiv x_1 \land x_2 \cdots \land x_k \to x_{k+1}.$
- Equivalent form without implication (a definite *Horn clause*): $\sigma \equiv \neg x_1 \lor \neg x_2 \cdots \lor \neg x_k \lor x_{k+1}$
- Equivalent form for the set of implications Σ = {σ₁,...,σ_m} (a definite *Horn formula*):

$$\Sigma_H \equiv igwedge_{j \le m} \sigma_j$$

- Unit implication σ on X: $Y \rightarrow z, Y \subseteq X, z \in X$.
- Every implication Y → Z is equivalent to the set of unit implications {Y → z, z ∈ Z}: unit expansion.
- Logical interpretation of unit implication σ : $X = \{x_1, \dots, x_n\}, Y = \{x_1, \dots, x_k\}, z = x_{k+1}$ $\sigma \equiv x_1 \land x_2 \cdots \land x_k \to x_{k+1}.$
- Equivalent form without implication (a definite *Horn clause*): $\sigma \equiv \neg x_1 \lor \neg x_2 \cdots \lor \neg x_k \lor x_{k+1}$
- Equivalent form for the set of implications Σ = {σ₁,...,σ_m} (a definite *Horn formula*):

$$\Sigma_H \equiv igwedge_{j \le m} \sigma_j$$

- Unit implication σ on X: $Y \rightarrow z, Y \subseteq X, z \in X$.
- Every implication Y → Z is equivalent to the set of unit implications {Y → z, z ∈ Z}: unit expansion.
- Logical interpretation of unit implication σ : $X = \{x_1, \ldots, x_n\}, Y = \{x_1, \ldots, x_k\}, z = x_{k+1}$ $\sigma \equiv x_1 \land x_2 \cdots \land x_k \to x_{k+1}.$
- Equivalent form without implication (a definite *Horn clause*): $\sigma \equiv \neg x_1 \lor \neg x_2 \cdots \lor \neg x_k \lor x_{k+1}$
- Equivalent form for the set of implications Σ = {σ₁,...,σ_m} (a definite *Horn formula*):

 $\Sigma_H \equiv igwedge_{j \le m} \sigma_j$

- Unit implication σ on X: $Y \rightarrow z, Y \subseteq X, z \in X$.
- Every implication Y → Z is equivalent to the set of unit implications {Y → z, z ∈ Z}: unit expansion.
- Logical interpretation of unit implication σ : $X = \{x_1, \ldots, x_n\}, Y = \{x_1, \ldots, x_k\}, z = x_{k+1}$ $\sigma \equiv x_1 \land x_2 \cdots \land x_k \to x_{k+1}.$
- Equivalent form without implication (a definite *Horn clause*): $\sigma \equiv \neg x_1 \lor \neg x_2 \cdots \lor \neg x_k \lor x_{k+1}$
- Equivalent form for the set of implications Σ = {σ₁,..., σ_m} (a definite *Horn formula*):

$$\Sigma_H \equiv igwedge_{j \leq m} \sigma_j$$

- Unit implication σ on X: $Y \rightarrow z, Y \subseteq X, z \in X$.
- Every implication Y → Z is equivalent to the set of unit implications {Y → z, z ∈ Z}: unit expansion.
- Logical interpretation of unit implication σ : $X = \{x_1, \ldots, x_n\}, Y = \{x_1, \ldots, x_k\}, z = x_{k+1}$ $\sigma \equiv x_1 \land x_2 \cdots \land x_k \to x_{k+1}.$
- Equivalent form without implication (a definite *Horn clause*): $\sigma \equiv \neg x_1 \lor \neg x_2 \cdots \lor \neg x_k \lor x_{k+1}$
- Equivalent form for the set of implications Σ = {σ₁,...,σ_m} (a definite *Horn formula*):

$$\Sigma_H \equiv \bigwedge_{j \le m} \sigma_j$$

For every (definite) Horn formula Σ_H of *n* variables x_1, x_2, \ldots, x_n , one can define *n*-ary Boolean function $f(x_1, \ldots, x_n) : \{0, 1\}^n \to \{0, 1\}$ such that

 $f(s_1, \ldots s_n) = 1$ iff Σ_H is true,

under assignment $x_i := s_i$, where $s_i \in \{0, 1\}$. Σ_H corresponds to CNF of function $f(x_1, \ldots, x_n)$.

A Boolean function $f(x_1, ..., x_n)$ is called (definite) *Horn function*, if it has some CNF representation by (definite) Horn formula Σ_H .

For every (definite) Horn formula Σ_H of *n* variables x_1, x_2, \ldots, x_n , one can define *n*-ary Boolean function $f(x_1, \ldots, x_n) : \{0, 1\}^n \to \{0, 1\}$ such that

 $f(s_1, \ldots s_n) = 1$ iff Σ_H is true,

under assignment $x_i := s_i$, where $s_i \in \{0, 1\}$. Σ_H corresponds to CNF of function $f(x_1, \ldots, x_n)$.

A Boolean function $f(x_1, ..., x_n)$ is called (definite) *Horn function*, if it has some CNF representation by (definite) Horn formula Σ_H .

For every (definite) Horn formula Σ_H of *n* variables x_1, x_2, \ldots, x_n , one can define *n*-ary Boolean function $f(x_1, \ldots, x_n) : \{0, 1\}^n \to \{0, 1\}$ such that

 $f(s_1, \ldots s_n) = 1$ iff Σ_H is true,

under assignment $x_i := s_i$, where $s_i \in \{0, 1\}$. Σ_H corresponds to CNF of function $f(x_1, \ldots, x_n)$.

A Boolean function $f(x_1, ..., x_n)$ is called (definite) *Horn function*, if it has some CNF representation by (definite) Horn formula Σ_H .
Summarizing:

Five equivalent ways to look at closure system $\langle X, \phi \rangle$:

- Moore family;
- lattice of closed sets Cl(X, φ);
- set of implications $\Sigma(X, \phi)$;
- definite Horn formula $\Sigma_H(X, \phi)$;
- definite Horn function $f : \{0, 1\}^{|X|} \rightarrow \{0, 1\}$.

Connections to computer science fields

Closure operators given by implications or Horn formulae appear in:

- relational data bases;
- data-mining;
- knowledge structures;
- data analysis;
- logic programming.

Connections to computer science fields

Closure operators given by implications or Horn formulae appear in:

- relational data bases;
- data-mining;
- knowledge structures;
- data analysis;
- Iogic programming.

- Every closure space (X, φ) can be presented as (X, ψ_Σ), for some set Σ of implications on X.
- Term a base or a basis is used when the set of implications Σ' that defines the same closure system satisfies some condition of minimality.

- Every closure space (X, φ) can be presented as (X, ψ_Σ), for some set Σ of implications on X.
- Term a base or a basis is used when the set of implications Σ' that defines the same closure system satisfies some condition of minimality.

- A basis Σ' is *non-redundant*, if none of its implications can be removed to get another basis.
- A basis Σ' is *minimum*, if it has the minimal number of implications among all the set of implications for the same closure system.
- A basis Σ' = {X_i → Y_i : i ≤ n} is called *optimum*, if number s(Σ') = |X₁| + · · · + |X_n| + |Y₁| + · · · + |Y_n| is smallest among all sets of implications for the same closure system.
- A basis is called *right-side (left-side)* optimum basis, if the number
 |Y₁| + ··· + |Y_n| (|X₁| + ··· + |X_n|) is smallest among all sets of
 implications for the same closure system.
- The right-side optimum basis is connected to the problem of the shortest (i.e. with the minimal number of clauses)
 CNF-representation of a (definite) Horn function, also, minimal representations of the directed hypergraphs.

- A basis Σ' is *non-redundant*, if none of its implications can be removed to get another basis.
- A basis Σ' is *minimum*, if it has the minimal number of implications among all the set of implications for the same closure system.
- A basis Σ' = {X_i → Y_i : i ≤ n} is called *optimum*, if number s(Σ') = |X₁| + · · · + |X_n| + |Y₁| + · · · + |Y_n| is smallest among all sets of implications for the same closure system.
- A basis is called *right-side (left-side)* optimum basis, if the number |Y₁| + ··· + |Y_n| (|X₁| + ··· + |X_n|) is smallest among all sets of implications for the same closure system.
- The right-side optimum basis is connected to the problem of the shortest (i.e. with the minimal number of clauses)
 CNF-representation of a (definite) Horn function, also, minimal representations of the directed hypergraphs.

- A basis Σ' is *non-redundant*, if none of its implications can be removed to get another basis.
- A basis Σ' is *minimum*, if it has the minimal number of implications among all the set of implications for the same closure system.
- A basis Σ' = {X_i → Y_i : i ≤ n} is called *optimum*, if number s(Σ') = |X₁| + · · · + |X_n| + |Y₁| + · · · + |Y_n| is smallest among all sets of implications for the same closure system.
- A basis is called *right-side (left-side)* optimum basis, if the number |Y₁| + · · · + |Y_n| (|X₁| + · · · + |X_n|) is smallest among all sets of implications for the same closure system.
- The right-side optimum basis is connected to the problem of the shortest (i.e. with the minimal number of clauses)
 CNF-representation of a (definite) Horn function, also, minimal representations of the directed hypergraphs.

- A basis Σ' is *non-redundant*, if none of its implications can be removed to get another basis.
- A basis Σ' is *minimum*, if it has the minimal number of implications among all the set of implications for the same closure system.
- A basis Σ' = {X_i → Y_i : i ≤ n} is called *optimum*, if number s(Σ') = |X₁| + ··· + |X_n| + |Y₁| + ··· + |Y_n| is smallest among all sets of implications for the same closure system.
- A basis is called *right-side (left-side)* optimum basis, if the number |Y₁| + · · · + |Y_n| (|X₁| + · · · + |X_n|) is smallest among all sets of implications for the same closure system.
- The right-side optimum basis is connected to the problem of the shortest (i.e. with the minimal number of clauses)
 CNF-representation of a (definite) Horn function, also, minimal representations of the directed hypergraphs.

- A basis Σ' is *non-redundant*, if none of its implications can be removed to get another basis.
- A basis Σ' is *minimum*, if it has the minimal number of implications among all the set of implications for the same closure system.
- A basis Σ' = {X_i → Y_i : i ≤ n} is called *optimum*, if number s(Σ') = |X₁| + ··· + |X_n| + |Y₁| + ··· + |Y_n| is smallest among all sets of implications for the same closure system.
- A basis is called *right-side (left-side)* optimum basis, if the number |Y₁| + · · · + |Y_n| (|X₁| + · · · + |X_n|) is smallest among all sets of implications for the same closure system.
- The right-side optimum basis is connected to the problem of the shortest (i.e. with the minimal number of clauses)
 CNF-representation of a (definite) Horn function, also, minimal representations of the directed hypergraphs.

Relation between bases

Theorem

[D.Maier, 1983] Optimum \implies minimum and left-side optimum \implies non-redundant.

- A basis Σ' is *minimum*, if it has the minimal number of implications among all the set of implications for the same closure system.
- A basis Σ' = {X_i → Y_i : i ≤ n} is called *optimum*, if number s(Σ') = |X₁| + · · · + |X_n| + |Y₁| + · · · + |Y_n| is smallest among all sets of implications for the same closure system.
- A basis is called *left-side* optimum basis, if the number $|X_1| + \cdots + |X_n|$ is smallest among all sets of implications for the same closure system.

Theorem

[AN-2012] Optimum \implies right-side optimum.

Relation between bases

Theorem

[D.Maier, 1983] Optimum \implies minimum and left-side optimum \implies non-redundant.

- A basis Σ' is *minimum*, if it has the minimal number of implications among all the set of implications for the same closure system.
- A basis Σ' = {X_i → Y_i : i ≤ n} is called *optimum*, if number s(Σ') = |X₁| + ··· + |X_n| + |Y₁| + ··· + |Y_n| is smallest among all sets of implications for the same closure system.
- A basis is called *left-side* optimum basis, if the number $|X_1| + \cdots + |X_n|$ is smallest among all sets of implications for the same closure system.

Theorem

[AN-2012] Optimum \implies right-side optimum.

Relation between bases

Theorem

[D.Maier, 1983] Optimum \implies minimum and left-side optimum \implies non-redundant.

- A basis Σ' is *minimum*, if it has the minimal number of implications among all the set of implications for the same closure system.
- A basis Σ' = {X_i → Y_i : i ≤ n} is called *optimum*, if number s(Σ') = |X₁| + ··· + |X_n| + |Y₁| + ··· + |Y_n| is smallest among all sets of implications for the same closure system.
- A basis is called *left-side* optimum basis, if the number $|X_1| + \cdots + |X_n|$ is smallest among all sets of implications for the same closure system.

Theorem

[AN-2012] Optimum \implies right-side optimum.

Types of efficient bases

Optimum and right-side optimum bases

Theorem

[D.Maier, 1983] The problem of finding an optimum basis of a finite closure system is NP-complete.

Theorem

[G. Ausiello, A. D'Atri and D. Saccá, 1986] The problem of finding a right-side optimum basis of a finite closure system is NP-complete.

Corollary

[AN-2012] Theorem 1 follows from Theorem 2.

Types of efficient bases

Optimum and right-side optimum bases

Theorem

[D.Maier, 1983] The problem of finding an optimum basis of a finite closure system is NP-complete.

Theorem

[G. Ausiello, A. D'Atri and D. Saccá, 1986] The problem of finding a right-side optimum basis of a finite closure system is NP-complete.

Corollary

[AN-2012] Theorem 1 follows from Theorem 2.

Types of efficient bases

Optimum and right-side optimum bases

Theorem

[D.Maier, 1983] The problem of finding an optimum basis of a finite closure system is NP-complete.

Theorem

[G. Ausiello, A. D'Atri and D. Saccá, 1986] The problem of finding a right-side optimum basis of a finite closure system is NP-complete.

Corollary

[AN-2012] Theorem 1 follows from Theorem 2.

- Defined *quasi-closed* and *critical* subsets of X for any given closure system (X, φ).
- Canonical basis Σ_C is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.
- Σ_C is a minimum basis among all the bases generating $\langle X, \phi \rangle$.
- Defined *saturation closure operator* σ associated with ϕ .
- Every other basis relates to Σ_C , via saturation operator σ .
- Every optimum basis has the form $\{A' \rightarrow B' : (A \rightarrow B) \in \Sigma_C, A' \subseteq A, B' \subseteq B\}$. Moreover, $\sigma(A') = A$.

- Defined *quasi-closed* and *critical* subsets of X for any given closure system (X, φ).
- Canonical basis Σ_C is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.
- Σ_C is a minimum basis among all the bases generating $\langle X, \phi \rangle$.
- Defined *saturation closure operator* σ associated with ϕ .
- Every other basis relates to Σ_C , via saturation operator σ .
- Every optimum basis has the form $\{A' \rightarrow B' : (A \rightarrow B) \in \Sigma_C, A' \subseteq A, B' \subseteq B\}$. Moreover, $\sigma(A') = A$.

- Defined *quasi-closed* and *critical* subsets of X for any given closure system (X, φ).
- Canonical basis Σ_C is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.
- Σ_C is a minimum basis among all the bases generating $\langle X, \phi \rangle$.
- Defined *saturation closure operator* σ associated with ϕ .
- Every other basis relates to Σ_C , via saturation operator σ .
- Every optimum basis has the form $\{A' \to B' : (A \to B) \in \Sigma_C, A' \subseteq A, B' \subseteq B\}$. Moreover, $\sigma(A') = A$.

- Defined *quasi-closed* and *critical* subsets of X for any given closure system (X, φ).
- Canonical basis Σ_C is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.
- Σ_C is a minimum basis among all the bases generating $\langle X, \phi \rangle$.
- Defined *saturation closure operator* σ associated with ϕ .
- Every other basis relates to Σ_C , via saturation operator σ .
- Every optimum basis has the form $\{A' \rightarrow B' : (A \rightarrow B) \in \Sigma_C, A' \subseteq A, B' \subseteq B\}$. Moreover, $\sigma(A') = A$.

- Defined *quasi-closed* and *critical* subsets of X for any given closure system (X, φ).
- Canonical basis Σ_C is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.
- Σ_C is a minimum basis among all the bases generating $\langle X, \phi \rangle$.
- Defined saturation closure operator σ associated with ϕ .
- Every other basis relates to Σ_C , via saturation operator σ .
- Every optimum basis has the form $\{A' \rightarrow B' : (A \rightarrow B) \in \Sigma_C, A' \subseteq A, B' \subseteq B\}$. Moreover, $\sigma(A') = A$.

- Defined *quasi-closed* and *critical* subsets of X for any given closure system (X, φ).
- Canonical basis Σ_C is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.
- Σ_C is a minimum basis among all the bases generating $\langle X, \phi \rangle$.
- Defined saturation closure operator σ associated with ϕ .
- Every other basis relates to Σ_C , via saturation operator σ .
- Every optimum basis has the form $\{A' \rightarrow B' : (A \rightarrow B) \in \Sigma_C, A' \subseteq A, B' \subseteq B\}$. Moreover, $\sigma(A') = A$.

- Defined *quasi-closed* and *critical* subsets of X for any given closure system (X, φ).
- Canonical basis Σ_C is $\{A \rightarrow B : A \text{ is critical}, B = \phi(A) \setminus A\}$.
- Σ_C is a minimum basis among all the bases generating $\langle X, \phi \rangle$.
- Defined saturation closure operator σ associated with ϕ .
- Every other basis relates to Σ_C , via saturation operator σ .
- Every optimum basis has the form $\{A' \rightarrow B' : (A \rightarrow B) \in \Sigma_C, A' \subseteq A, B' \subseteq B\}$. Moreover, $\sigma(A') = A$.

- {*a*} is a critical set;
- $a \rightarrow B$ is present in the canonical basis;
- set of implications a → B from the basis are called the binary part of the basis;
- assuming ⟨X, φ⟩ is standard, one can define a partial order on X:
 a ≥_φ b iff a → B is in the canonical basis and b ∈ B.
- in $L = Cl(X, \phi), \langle X, \ge_{\phi} \rangle$ is a poset of join irreducible elements.

- {*a*} is a critical set;
- $a \rightarrow B$ is present in the canonical basis;
- set of implications a → B from the basis are called the binary part of the basis;
- assuming ⟨X, φ⟩ is standard, one can define a partial order on X:
 a ≥_φ b iff a → B is in the canonical basis and b ∈ B.
- in $L = CI(X, \phi)$, $\langle X, \ge_{\phi} \rangle$ is a poset of join irreducible elements.

- {*a*} is a critical set;
- $a \rightarrow B$ is present in the canonical basis;
- set of implications a → B from the basis are called the binary part of the basis;
- assuming ⟨X, φ⟩ is standard, one can define a partial order on X:
 a ≥_φ b iff a → B is in the canonical basis and b ∈ B.
- in $L = CI(X, \phi)$, $\langle X, \ge_{\phi} \rangle$ is a poset of join irreducible elements.

- {*a*} is a critical set;
- $a \rightarrow B$ is present in the canonical basis;
- set of implications a → B from the basis are called the binary part of the basis;
- assuming ⟨X, φ⟩ is standard, one can define *a partial order* on X:
 a ≥_φ *b* iff *a* → *B* is in the canonical basis and *b* ∈ *B*.
- in $L = CI(X, \phi)$, $\langle X, \ge_{\phi} \rangle$ is a poset of join irreducible elements.

- {*a*} is a critical set;
- $a \rightarrow B$ is present in the canonical basis;
- set of implications a → B from the basis are called the binary part of the basis;
- assuming ⟨X, φ⟩ is standard, one can define *a partial order* on X:
 a ≥_φ *b* iff *a* → *B* is in the canonical basis and *b* ∈ *B*.
- in $L = Cl(X, \phi)$, $\langle X, \ge_{\phi} \rangle$ is a poset of join irreducible elements.

Structure of the optimum basis per D. Maier.

	Binary part	Non-binary part
the left side	a ightarrow Bfixed parameter	$A \rightarrow B$ A is a fixed parameter
the right side	?(1)?	?(2)?

Proposition

[AN-2012] Assume that the closure system is standard. (1) For every $a \rightarrow B$ in any optimum basis, |B| is a fixed parameter. (2) Total size $R_n = |B_1| + ... |B_k|$ in non-binary part is a fixed parameter. (3) Each individual $|B_k|$ may vary.

Structure of the optimum basis per D. Maier.

	Binary part	Non-binary part
the left side	a ightarrow Bfixed parameter	A ightarrow B A is a fixed parameter
the right side	?(1)?	?(2)?

Proposition

[AN-2012] Assume that the closure system is standard.

(1) For every $a \rightarrow B$ in any optimum basis, |B| is a fixed parameter. (2) Total size $R_n = |B_1| + ... |B_k|$ in non-binary part is a fixed parameter. (2) Each individual |B| may vary

(3) Each individual |B_k| may vary.

Structure of the optimum basis per D. Maier.

	Binary part	Non-binary part
the left side	a ightarrow Bfixed parameter	A ightarrow B A is a fixed parameter
the right side	?(1)?	?(2)?

Proposition

[AN-2012] Assume that the closure system is standard. (1) For every $a \rightarrow B$ in any optimum basis, |B| is a fixed parameter. (2) Total size $R_n = |B_1| + ... |B_k|$ in non-binary part is a fixed parameter. (3) Each individual $|B_k|$ may vary.

Structure of the optimum basis per D. Maier.

	Binary part	Non-binary part
the left side	a ightarrow Bfixed parameter	$A \rightarrow B$ A is a fixed parameter
the right side	?(1)?	?(2)?

Proposition

[AN-2012] Assume that the closure system is standard. (1) For every $a \rightarrow B$ in any optimum basis, |B| is a fixed parameter. (2) Total size $R_n = |B_1| + ... |B_k|$ in non-binary part is a fixed parameter.

(3) Each individual $|B_k|$ may vary.

Structure of the optimum basis per D. Maier.

	Binary part	Non-binary part
the left side	a ightarrow Bfixed parameter	$A \rightarrow B$ A is a fixed parameter
the right side	?(1)?	?(2)?

Proposition

[AN-2012] Assume that the closure system is standard.

(1) For every $a \rightarrow B$ in any optimum basis, |B| is a fixed parameter. (2) Total size $R_n = |B_1| + ... |B_k|$ in non-binary part is a fixed

parameter.

(3) Each individual $|B_k|$ may vary.

UC-systems

Closure system $\langle X, \phi \rangle$ has *unique criticals*, or it is *UC-system*, if $\phi(C_1) = \phi(C_2)$, for some critical sets C_1, C_2 , implies $C_1 = C_2$.

Conjecture

In UC-system, for every $A \rightarrow B$ in the optimum basis, |B| is a fixed parameter.

- *K*-basis is inspired by ≪-minimal representations of elements in the lattice of closed sets.
- *K*-basis has the same number of implications as the canonical, i.e. it is a minimum basis.
- The size of *K*-basis is normally smaller than the size of the canonical.
- *K*-basis can be effectively obtained from the canonical.

- K-basis is inspired by ≪-minimal representations of elements in the lattice of closed sets.
- *K*-basis has the same number of implications as the canonical, i.e. it is a minimum basis.
- The size of *K*-basis is normally smaller than the size of the canonical.
- *K*-basis can be effectively obtained from the canonical.
- K-basis is inspired by ≪-minimal representations of elements in the lattice of closed sets.
- *K*-basis has the same number of implications as the canonical, i.e. it is a minimum basis.
- The size of *K*-basis is normally smaller than the size of the canonical.
- *K*-basis can be effectively obtained from the canonical.

- K-basis is inspired by ≪-minimal representations of elements in the lattice of closed sets.
- *K*-basis has the same number of implications as the canonical, i.e. it is a minimum basis.
- The size of *K*-basis is normally smaller than the size of the canonical.
- *K*-basis can be effectively obtained from the canonical.

«-Minimal representations by join irreducibles

A *join-representation* of element $a \in L$ is an expression $a = j_1 \vee \cdots \vee j_k$, for some join-irreducible elements j_1, \ldots, j_k .

A join-representation $a = j_1 \lor \cdots \lor j_k$ is called \ll -*minimal*, if none of j_1, \ldots, j_k can be dropped or replaced by smaller join-irreducibles to obtain another join-representation of a.

For example, the top element of A_{12} is $2 \lor 6 \lor 5$.

But $\{2,4\} \ll \{2,6,5\}$ and $2 \lor 4$ is \ll -minimal join representation.

«-Minimal representations by join irreducibles

A *join-representation* of element $a \in L$ is an expression $a = j_1 \vee \cdots \vee j_k$, for some join-irreducible elements j_1, \ldots, j_k .

A join-representation $a = j_1 \lor \cdots \lor j_k$ is called \ll -*minimal*, if none of j_1, \ldots, j_k can be dropped or replaced by smaller join-irreducibles to obtain another join-representation of *a*.

For example, the top element of A_{12} is $2 \lor 6 \lor 5$. But $\{2,4\} \ll \{2,6,5\}$ and $2 \lor 4$ is \ll -minimal join representation.

«-Minimal representations by join irreducibles

A *join-representation* of element $a \in L$ is an expression $a = j_1 \lor \cdots \lor j_k$, for some join-irreducible elements j_1, \ldots, j_k .

A join-representation $a = j_1 \vee \cdots \vee j_k$ is called \ll -*minimal*, if none of j_1, \ldots, j_k can be dropped or replaced by smaller join-irreducibles to

obtain another join-representation of a.

For example, the top element of A_{12} is $2 \vee 6 \vee 5$.

But $\{2,4\} \ll \{2,6,5\}$ and $2 \lor 4$ is \ll -minimal join representation.

«-Minimal representations by join irreducibles

A *join-representation* of element $a \in L$ is an expression $a = j_1 \lor \cdots \lor j_k$, for some join-irreducible elements j_1, \ldots, j_k .

A join-representation $a = j_1 \vee \cdots \vee j_k$ is called \ll -*minimal*, if none of

 j_1, \ldots, j_k can be dropped or replaced by smaller join-irreducibles to obtain another join-representation of *a*.

For example, the top element of A_{12} is $2 \lor 6 \lor 5$.

But $\{2,4\} \ll \{2,6,5\}$ and $2 \lor 4$ is \ll -minimal join representation.

Polynomial (in $s(\Sigma_C)$) Algorithm to obtain *K*-basis from the canonical.

Recall: $a \ge_{\phi} b$ iff $a \to B$ is in the canonical basis and $b \in B$.

Given: $A \rightarrow B$ in the canonical basis Σ_C . Obtain: $A_K \rightarrow B_K$ in the *K*-basis. Loop: (1) Find \geq_{ϕ} – max element $a \in A$, which was not checked yet. (2) Verify $\phi(A \setminus a) = \phi(A)$. When true, $A := A \setminus a$. Otherwise, End Loop.

Polynomial (in $s(\Sigma_C)$) Algorithm to obtain *K*-basis from the canonical.

Recall: $a \ge_{\phi} b$ iff $a \rightarrow B$ is in the canonical basis and $b \in B$.

Given: $A \rightarrow B$ in the canonical basis Σ_C . Obtain: $A_K \rightarrow B_K$ in the *K*-basis. Loop: (1) Find \geq_{ϕ} – max element $a \in A$, which was not checked yet. (2) Verify $\phi(A \setminus a) = \phi(A)$. When true, $A := A \setminus a$. Otherwise, End Loop.

Polynomial (in $s(\Sigma_C)$) Algorithm to obtain *K*-basis from the canonical.

Recall: $a \ge_{\phi} b$ iff $a \rightarrow B$ is in the canonical basis and $b \in B$.

Given: $A \rightarrow B$ in the canonical basis Σ_C . Obtain: $A_K \rightarrow B_K$ in the *K*-basis. Loop: (1) Find \geq_{ϕ} – max element $a \in A$, which was not checked yet. (2) Verify $\phi(A \setminus a) = \phi(A)$. When true, $A := A \setminus a$. Otherwise, End Loop.

Polynomial (in $s(\Sigma_C)$) Algorithm to obtain *K*-basis from the canonical.

Recall: $a \ge_{\phi} b$ iff $a \rightarrow B$ is in the canonical basis and $b \in B$.

Given: $A \rightarrow B$ in the canonical basis Σ_C . Obtain: $A_K \rightarrow B_K$ in the *K*-basis. Loop: (1) Find \geq_{ϕ} – max element $a \in A$, which was not checked yet. (2) Verify $\phi(A \setminus a) = \phi(A)$. When true, $A := A \setminus a$. Otherwise, End Loop.

Polynomial (in $s(\Sigma_C)$) Algorithm to obtain *K*-basis from the canonical.

Recall: $a \ge_{\phi} b$ iff $a \rightarrow B$ is in the canonical basis and $b \in B$.

Given: $A \rightarrow B$ in the canonical basis Σ_C . Obtain: $A_K \rightarrow B_K$ in the *K*-basis. Loop: (1) Find \geq_{ϕ} – max element $a \in A$, which was not checked yet. (2) Verify $\phi(A \setminus a) = \phi(A)$. When true, $A := A \setminus a$. Otherwise, End Loop. $A_K := \max_{A \setminus A} (A)$

 $B_k := \max_{\geq}(B).$

Polynomial (in $s(\Sigma_C)$) Algorithm to obtain *K*-basis from the canonical.

Recall: $a \ge_{\phi} b$ iff $a \rightarrow B$ is in the canonical basis and $b \in B$.

Given: $A \to B$ in the canonical basis Σ_C . Obtain: $A_K \to B_K$ in the *K*-basis. Loop: (1) Find \ge_{ϕ} – max element $a \in A$, which was not checked yet. (2) Verify $\phi(A \setminus a) = \phi(A)$. When true, $A := A \setminus a$. Otherwise, End Loop. $A_k := \max_{\ge}(A)$

Polynomial (in $s(\Sigma_C)$) Algorithm to obtain *K*-basis from the canonical.

Recall: $a \ge_{\phi} b$ iff $a \rightarrow B$ is in the canonical basis and $b \in B$.

```
Given: A \rightarrow B in the canonical basis \Sigma_C.

Obtain: A_K \rightarrow B_K in the K-basis.

Loop: (1) Find \geq_{\phi} – max element a \in A,

which was not checked yet.

(2) Verify \phi(A \setminus a) = \phi(A).

When true, A := A \setminus a.

Otherwise,

End Loop.

A_K := \max_{\phi} (A)
```

 $B_k := \max_{\geq}(B).$

Polynomial (in $s(\Sigma_C)$) Algorithm to obtain *K*-basis from the canonical.

Recall: $a \ge_{\phi} b$ iff $a \rightarrow B$ is in the canonical basis and $b \in B$.

Given: $A \rightarrow B$ in the canonical basis Σ_C . Obtain: $A_K \rightarrow B_K$ in the *K*-basis. Loop: (1) Find \geq_{ϕ} – max element $a \in A$, which was not checked yet. (2) Verify $\phi(A \setminus a) = \phi(A)$. When true, $A := A \setminus a$. Otherwise,

End Loop.

 $egin{aligned} &A_k := \max_{\geq}(A) \ &B_k := \max_{\geq}(B). \end{aligned}$

Polynomial (in $s(\Sigma_C)$) Algorithm to obtain *K*-basis from the canonical.

Recall: $a \ge_{\phi} b$ iff $a \rightarrow B$ is in the canonical basis and $b \in B$.

```
Given: A \rightarrow B in the canonical basis \Sigma_C.

Obtain: A_K \rightarrow B_K in the K-basis.

Loop: (1) Find \geq_{\phi} – max element a \in A,

which was not checked yet.

(2) Verify \phi(A \setminus a) = \phi(A).

When true, A := A \setminus a.

Otherwise,
```

End Loop.

Polynomial (in $s(\Sigma_C)$) Algorithm to obtain *K*-basis from the canonical.

Recall: $a \ge_{\phi} b$ iff $a \rightarrow B$ is in the canonical basis and $b \in B$.

Given: $A \rightarrow B$ in the canonical basis Σ_C . Obtain: $A_K \rightarrow B_K$ in the *K*-basis. Loop: (1) Find \geq_{ϕ} – max element $a \in A$, which was not checked yet. (2) Verify $\phi(A \setminus a) = \phi(A)$. When true, $A := A \setminus a$. Otherwise,

End Loop.

$$egin{aligned} & A_k := \max_{\geq}(A) \ & B_k := \max_{\geq}(B). \end{aligned}$$

Comparison

Figure: A₁₂

Canonical basis Σ_C : $2 \rightarrow 1, 6 \rightarrow 13, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 123 \rightarrow 6, 1345 \rightarrow 6, 12346 \rightarrow 5$ $s(\Sigma_C) = 27$ *K*-basis: $2 \rightarrow 1, 6 \rightarrow 3, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 23 \rightarrow 6, 15 \rightarrow 6, 24 \rightarrow 5$ $s(\Sigma_K) = 20$

Comparison

Figure: A₁₂

Canonical basis Σ_C : $2 \rightarrow 1, 6 \rightarrow 13, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 123 \rightarrow 6, 1345 \rightarrow 6, 12346 \rightarrow 5$ $s(\Sigma_C) = 27$ *K*-basis: $2 \rightarrow 1, 6 \rightarrow 3, 3 \rightarrow 1, 5 \rightarrow 4, 14 \rightarrow 3, 23 \rightarrow 6, 15 \rightarrow 6, 24 \rightarrow 5$ $s(\Sigma_K) = 20$

Comparison

Figure: A₁₂

$$\begin{array}{l} \text{Canonical basis } \Sigma_{C}:\\ 2 \to 1, 6 \to 13, 3 \to 1, 5 \to 4, 14 \to 3, 123 \to 6, 1345 \to 6, 12346 \to 5\\ s(\Sigma_{C}) = 27\\ K\text{-basis:}\\ 2 \to 1, 6 \to 3, 3 \to 1, 5 \to 4, 14 \to 3, 23 \to 6, 15 \to 6, 24 \to 5\\ s(\Sigma_{K}) = 20 \end{array}$$

Algorithmic aspect

Theorem

[A. Day, 1992] Given any basis Σ' of a finite closure system, it requires time $O(s(\Sigma')^2)$ to obtain the canonical basis of Duquenne-Guigues.

Theorem

[AN-2012] A K-basis can be obtained from canonical basis Σ_C of Duquenne-Guigues in time $O(s(\Sigma_C)^2)$.

Algorithmic aspect

Theorem

[A. Day, 1992] Given any basis Σ' of a finite closure system, it requires time $O(s(\Sigma')^2)$ to obtain the canonical basis of Duquenne-Guigues.

Theorem

[AN-2012] A K-basis can be obtained from canonical basis Σ_C of Duquenne-Guigues in time $O(s(\Sigma_C)^2)$.

In general, the closure space may have more than one K-basis.

A special subclass of *UC*-systems is defined via the lattice of closed sets.

Definition

A closure system is called semidistributive, if its closure lattice $CI(X, \phi)$ satisfies the property: (SD_{\vee}) $x \lor y = x \lor z \to x \lor y = x \lor (y \land z).$

Theorem

[Jónsson and Kiefer, 1962] Every element of a finite lattice has a unique minimal representation iff the lattice is semidistributive.

Corollary

[AN-2012] Every semidistributive closure system has a unique K-basis.

K.Adaricheva (Yeshiva University)

In general, the closure space may have more than one *K*-basis.

A special subclass of *UC*-systems is defined via the lattice of closed sets.

Definition

A closure system is called semidistributive, if its closure lattice $CI(X, \phi)$ satisfies the property: (SD_{\vee}) $x \lor y = x \lor z \to x \lor y = x \lor (y \land z).$

Theorem

[Jónsson and Kiefer, 1962] Every element of a finite lattice has a unique minimal representation iff the lattice is semidistributive.

Corollary

[AN-2012] Every semidistributive closure system has a unique K-basis.

K.Adaricheva (Yeshiva University)

In general, the closure space may have more than one *K*-basis.

A special subclass of *UC*-systems is defined via the lattice of closed sets.

Definition

A closure system is called semidistributive, if its closure lattice $Cl(X, \phi)$ satisfies the property: (SD_{\lor}) $x \lor y = x \lor z \to x \lor y = x \lor (y \land z).$

Theorem

[Jónsson and Kiefer, 1962] Every element of a finite lattice has a unique minimal representation iff the lattice is semidistributive.

Corollary

[AN-2012] Every semidistributive closure system has a unique K-basis.

K.Adaricheva (Yeshiva University)

In general, the closure space may have more than one *K*-basis.

A special subclass of *UC*-systems is defined via the lattice of closed sets.

Definition

A closure system is called semidistributive, if its closure lattice $Cl(X, \phi)$ satisfies the property: (SD_{\lor}) $x \lor y = x \lor z \to x \lor y = x \lor (y \land z).$

Theorem

[Jónsson and Kiefer, 1962] Every element of a finite lattice has a unique minimal representation iff the lattice is semidistributive.

Corollary

[AN-2012] Every semidistributive closure system has a unique K-basis.

K.Adaricheva (Yeshiva University)

Efficient bases

In general, the closure space may have more than one *K*-basis.

A special subclass of *UC*-systems is defined via the lattice of closed sets.

Definition

A closure system is called semidistributive, if its closure lattice $Cl(X, \phi)$ satisfies the property: (SD_{\lor}) $x \lor y = x \lor z \to x \lor y = x \lor (y \land z).$

Theorem

[Jónsson and Kiefer, 1962] Every element of a finite lattice has a unique minimal representation iff the lattice is semidistributive.

Corollary

[AN-2012] Every semidistributive closure system has a unique K-basis.

K.Adaricheva (Yeshiva University)

Efficient bases

Paris-2012 27 / 40

- In lattice theory: lower bounded lattices (lattices without *D*-cycles), free lattices (R.Freese, J.Jezek, J.B.Nation).
- In combinatorics: convex geometries and anti-matroids (P.Edelman and R. Jamison)
- In theory of Boolean functions: quasi-acyclic systems (P.Hammer and A.Kogan). This is a proper subclass of both: convex geometries and systems without *D*-cycles.

- In lattice theory: lower bounded lattices (lattices without *D*-cycles), free lattices (R.Freese, J.Jezek, J.B.Nation).
- In combinatorics: convex geometries and anti-matroids (P.Edelman and R. Jamison)
- In theory of Boolean functions: quasi-acyclic systems (P.Hammer and A.Kogan). This is a proper subclass of both: convex geometries and systems without *D*-cycles.

- In lattice theory: lower bounded lattices (lattices without *D*-cycles), free lattices (R.Freese, J.Jezek, J.B.Nation).
- In combinatorics: convex geometries and anti-matroids (P.Edelman and R. Jamison)
- In theory of Boolean functions: quasi-acyclic systems (P.Hammer and A.Kogan). This is a proper subclass of both: convex geometries and systems without *D*-cycles.

- In lattice theory: lower bounded lattices (lattices without *D*-cycles), free lattices (R.Freese, J.Jezek, J.B.Nation).
- In combinatorics: convex geometries and anti-matroids (P.Edelman and R. Jamison)
- In theory of Boolean functions: quasi-acyclic systems (P.Hammer and A.Kogan). This is a proper subclass of both: convex geometries and systems without *D*-cycles.

Lower bounded lattices, or lattices without *D*-cycles: can be defined via *D*-relation on the set of join-irreducible elements (A.Day, 1979).

Let D^* be the binary relation on X defined via any K-basis:

 aD^*b iff there exists $A^* \to B^*$ in a *K*-basis with $|A^*| > 1$ such that $a \in A^*$ and $b \in B^*$.

Theorem

- (1) A closure system $\langle X, \phi \rangle$ has the closure lattice without D-cycles iff there is no sequence $a_1 D^* a_2 D^* \dots D^* a_n = a_1$, with $a_i \in X$ and n > 1.
- (2) Given the canonical basis Σ_C of the closure system, there exists a polynomial time algorithm in s(Σ_C) that recognizes whether the system is without D-cycles.

Lower bounded lattices, or lattices without *D*-cycles: can be defined via *D*-relation on the set of join-irreducible elements (A.Day, 1979).

Let D^* be the binary relation on X defined via any K-basis:

 aD^*b iff there exists $A^* \to B^*$ in a *K*-basis with $|A^*| > 1$ such that $a \in A^*$ and $b \in B^*$.

Theorem

- (1) A closure system $\langle X, \phi \rangle$ has the closure lattice without D-cycles iff there is no sequence $a_1 D^* a_2 D^* \dots D^* a_n = a_1$, with $a_i \in X$ and n > 1.
- (2) Given the canonical basis Σ_C of the closure system, there exists a polynomial time algorithm in s(Σ_C) that recognizes whether the system is without D-cycles.

Lower bounded lattices, or lattices without *D*-cycles: can be defined via *D*-relation on the set of join-irreducible elements (A.Day, 1979).

Let D^* be the binary relation on X defined via any K-basis:

 aD^*b iff there exists $A^* \to B^*$ in a *K*-basis with $|A^*| > 1$ such that $a \in A^*$ and $b \in B^*$.

Theorem

- (1) A closure system $\langle X, \phi \rangle$ has the closure lattice without D-cycles iff there is no sequence $a_1 D^* a_2 D^* \dots D^* a_n = a_1$, with $a_i \in X$ and n > 1.
- (2) Given the canonical basis Σ_C of the closure system, there exists a polynomial time algorithm in s(Σ_C) that recognizes whether the system is without D-cycles.

Lower bounded lattices, or lattices without *D*-cycles: can be defined via *D*-relation on the set of join-irreducible elements (A.Day, 1979).

Let D^* be the binary relation on X defined via any K-basis:

 aD^*b iff there exists $A^* \to B^*$ in a *K*-basis with $|A^*| > 1$ such that $a \in A^*$ and $b \in B^*$.

Theorem

- (1) A closure system $\langle X, \phi \rangle$ has the closure lattice without D-cycles iff there is no sequence $a_1 D^* a_2 D^* \dots D^* a_n = a_1$, with $a_i \in X$ and n > 1.
- (2) Given the canonical basis Σ_C of the closure system, there exists a polynomial time algorithm in $s(\Sigma_C)$ that recognizes whether the system is without D-cycles.

Lower bounded lattices, or lattices without *D*-cycles: can be defined via *D*-relation on the set of join-irreducible elements (A.Day, 1979).

Let D^* be the binary relation on X defined via any K-basis:

 aD^*b iff there exists $A^* \to B^*$ in a *K*-basis with $|A^*| > 1$ such that $a \in A^*$ and $b \in B^*$.

Theorem

- (1) A closure system $\langle X, \phi \rangle$ has the closure lattice without D-cycles iff there is no sequence $a_1 D^* a_2 D^* \dots D^* a_n = a_1$, with $a_i \in X$ and n > 1.
- (2) Given the canonical basis Σ_C of the closure system, there exists a polynomial time algorithm in s(Σ_C) that recognizes whether the system is without D-cycles.

Bases in systems without *D*-cycles

This basis was introduced for the systems without *D*-cycles in: K.Adaricheva, J.B.Nation and R.Rand, "Ordered direct basis of a finite closure system", to appear in *Discrete Applied Mathematics*

E-basis:

Proposition

[AN-2012] E-basis can be obtained from K-basis via polynomial time algorithm: if $b \in B_1^*, B_2^*$, for two implications $A_1^* \to B_1^*, A_2^* \to B_2^*$ in the K-basis, and $\phi(A_1^*) \subset \phi(A_2^*)$, then b can be removed from B_2^* .
Bases in systems without *D*-cycles

This basis was introduced for the systems without *D*-cycles in: K.Adaricheva, J.B.Nation and R.Rand, "Ordered direct basis of a finite closure system", to appear in *Discrete Applied Mathematics*

E-basis:

Proposition

[AN-2012] E-basis can be obtained from K-basis via polynomial time algorithm: if $b \in B_1^*, B_2^*$, for two implications $A_1^* \to B_1^*, A_2^* \to B_2^*$ in the K-basis, and $\phi(A_1^*) \subset \phi(A_2^*)$, then b can be removed from B_2^* .

Bases in systems without *D*-cycles

This basis was introduced for the systems without *D*-cycles in: K.Adaricheva, J.B.Nation and R.Rand, "Ordered direct basis of a finite closure system", to appear in *Discrete Applied Mathematics*

E-basis:

Proposition

[AN-2012] E-basis can be obtained from K-basis via polynomial time algorithm: if $b \in B_1^*, B_2^*$, for two implications $A_1^* \to B_1^*, A_2^* \to B_2^*$ in the K-basis, and $\phi(A_1^*) \subset \phi(A_2^*)$, then b can be removed from B_2^* .

Bases in systems without *D*-cycles

This basis was introduced for the systems without *D*-cycles in: K.Adaricheva, J.B.Nation and R.Rand, "Ordered direct basis of a finite closure system", to appear in *Discrete Applied Mathematics*

E-basis:

Proposition

[AN-2012] E-basis can be obtained from K-basis via polynomial time algorithm: if $b \in B_1^*, B_2^*$, for two implications $A_1^* \to B_1^*, A_2^* \to B_2^*$ in the K-basis, and $\phi(A_1^*) \subset \phi(A_2^*)$, then b can be removed from B_2^* .

Recall: $|B_1| + |B_2| + \cdots + |B_K|$, for the right sides of non-binary part of any optimum basis, is a fixed parameter R_n .

Theorem

[AN-2012] The total right size of non-binary part of the E-basis attains the minimum R_n .

Theorem

[ANR-2011] The E-basis of a closure system without D-cycles is ordered direct.

4 parts of the optimum basis: systems without *D*-cycles

	Binary part	Non-binary part
the left side	a ightarrow Btractable	
the right side	a → B NP	$A \rightarrow B$ tractable

Proposition

[AN-2012] Assume that the closure system is without D-cycles.
(1) Finding the optimum right-side in binary part of the basis is NP-complete.
(2) Finding the optimum left-side in non-binary part of the basis is NP-complete.

4 parts of the optimum basis: systems without *D*-cycles

	Binary part	Non-binary part
the left side	$a \rightarrow B$ tractable	$egin{array}{c} egin{array}{c} egin{array}$
the right side	<i>a</i> → <i>B</i> NP	$A \rightarrow B$ tractable

Proposition

[AN-2012] Assume that the closure system is without D-cycles.

(1) Finding the optimum right-side in binary part of the basis is NP-complete.

(2) Finding the optimum left-side in non-binary part of the basis is NP-complete.

4 parts of the optimum basis: systems without *D*-cycles

	Binary part	Non-binary part
the left side	a ightarrow Btractable	
the right side	a → B NP	$A \rightarrow B$ tractable

Proposition

[AN-2012] Assume that the closure system is without D-cycles. (1) Finding the optimum right-side in binary part of the basis is NP-complete.

(2) Finding the optimum left-side in non-binary part of the basis is NP-complete.

4 parts of the optimum basis: systems without *D*-cycles

	Binary part	Non-binary part
the left side	a ightarrow Btractable	
the right side	<i>a</i> → B NP	$\frac{A \rightarrow B}{\text{tractable}}$

Proposition

[AN-2012] Assume that the closure system is without D-cycles. (1) Finding the optimum right-side in binary part of the basis is NP-complete. (2) Finding the optimum left side in non binary part of the basis i

(2) Finding the optimum left-side in non-binary part of the basis is NP-complete.

A closure system $\langle X, \phi \rangle$ is called a *convex geometry*, if $\phi(\emptyset) = \emptyset$, and *anti-exchange property* holds:

For every $A = \phi(A), x, y \notin A$, if $x \in \phi(A \cup y)$, then $y \notin \phi(A \cup x)$.

 $x \in A$ is called *extreme point* of A, if $x \notin \phi(A \setminus x)$. Ex(A) is a set of extreme points of A.

Theorem

[P. Edelman and R. Jamison, 1985] A closure system $\langle X, \phi \rangle$ is a convex geometry iff every closed set $A = \phi(Ex(A))$.

A closure system $\langle X, \phi \rangle$ is called a *convex geometry*, if $\phi(\emptyset) = \emptyset$, and *anti-exchange property* holds:

For every $A = \phi(A), x, y \notin A$, if $x \in \phi(A \cup y)$, then $y \notin \phi(A \cup x)$.

 $x \in A$ is called *extreme point* of A, if $x \notin \phi(A \setminus x)$. Ex(A) is a set of extreme points of A.

Theorem

[P. Edelman and R. Jamison, 1985] A closure system $\langle X, \phi \rangle$ is a convex geometry iff every closed set $A = \phi(Ex(A))$.

A closure system $\langle X, \phi \rangle$ is called a *convex geometry*, if $\phi(\emptyset) = \emptyset$, and *anti-exchange property* holds:

For every $A = \phi(A), x, y \notin A$, if $x \in \phi(A \cup y)$, then $y \notin \phi(A \cup x)$.

 $x \in A$ is called *extreme point* of A, if $x \notin \phi(A \setminus x)$. Ex(A) is a set of extreme points of A.

Theorem

[P. Edelman and R. Jamison, 1985] A closure system $\langle X, \phi \rangle$ is a convex geometry iff every closed set $A = \phi(Ex(A))$.

A closure system $\langle X, \phi \rangle$ is called a *convex geometry*, if $\phi(\emptyset) = \emptyset$, and *anti-exchange property* holds:

For every $A = \phi(A), x, y \notin A$, if $x \in \phi(A \cup y)$, then $y \notin \phi(A \cup x)$.

 $x \in A$ is called *extreme point* of A, if $x \notin \phi(A \setminus x)$. Ex(A) is a set of extreme points of A.

Theorem

[P. Edelman and R. Jamison, 1985] A closure system $\langle X, \phi \rangle$ is a convex geometry iff every closed set $A = \phi(Ex(A))$.

A closure system $\langle X, \phi \rangle$ is called a *convex geometry*, if $\phi(\emptyset) = \emptyset$, and *anti-exchange property* holds:

For every $A = \phi(A), x, y \notin A$, if $x \in \phi(A \cup y)$, then $y \notin \phi(A \cup x)$.

 $x \in A$ is called *extreme point* of A, if $x \notin \phi(A \setminus x)$. Ex(A) is a set of extreme points of A.

Theorem

[P. Edelman and R. Jamison, 1985] A closure system $\langle X, \phi \rangle$ is a convex geometry iff every closed set $A = \phi(Ex(A))$.

4 parts of the optimum basis: convex geometries

	Binary part	Non-binary part
the left side	a ightarrow Btractable	$A \rightarrow B$ tractable
the right side	a ightarrow Btractable	

Proposition

Assume that the closure system is a convex geometry. (1)[M.Wild, 1994] Finding the optimum left-side in non-binary part of the basis is tractable. $A = Ex(\phi(A))$. (2) [A-2012] Finding the optimum right-side in binary part of the basis is tractable. $B = Ex(\phi(a) \setminus a)$.

4 parts of the optimum basis: convex geometries

	Binary part	Non-binary part
the left side	$a \rightarrow B$ tractable	$A \rightarrow B$ tractable
the right side	a ightarrow Btractable	

Proposition

Assume that the closure system is a convex geometry.

(1)[M.Wild, 1994] Finding the optimum left-side in non-binary part of the basis is tractable. $A = Ex(\phi(A))$. (2) [A-2012] Finding the optimum right-side in binary part of the basis is tractable. $B = Ex(\phi(a) \setminus a)$.

4 parts of the optimum basis: convex geometries

	Binary part	Non-binary part
the left side	a ightarrow Btractable	$A \rightarrow B$ tractable
the right side	a ightarrow Btractable	$A \rightarrow B$??

Proposition

Assume that the closure system is a convex geometry. (1)[M.Wild, 1994] Finding the optimum left-side in non-binary part of the basis is tractable. $A = Ex(\phi(A))$. (2) [A-2012] Finding the optimum right-side in binary part of the basis is tractable. $B = Ex(\phi(a) \setminus a)$.

4 parts of the optimum basis: convex geometries

	Binary part	Non-binary part
the left side	$a \rightarrow B$ tractable	$A \rightarrow B$ tractable
the right side	a ightarrow Btractable	

Proposition

Assume that the closure system is a convex geometry. (1)[M.Wild, 1994] Finding the optimum left-side in non-binary part of the basis is tractable. $A = Ex(\phi(A))$. (2) [A-2012] Finding the optimum right-side in binary part of the basis is tractable. $B = Ex(\phi(a) \setminus a)$.

Optimum basis: convex geometries without D-cycles

Corollary

[A-2012] If a closure system is a convex geometry without D-cycles, then optimum basis can be obtained in polynomial time.

This class properly includes the quasi-acyclic closure systems defined in [P. Hammer and A. Kogan, 1995], which are also G-geometries in [M.Wild, 1994].

Optimum basis: convex geometries without D-cycles

Corollary

[A-2012] If a closure system is a convex geometry without D-cycles, then optimum basis can be obtained in polynomial time.

This class properly includes the quasi-acyclic closure systems defined in [P. Hammer and A. Kogan, 1995], which are also G-geometries in [M.Wild, 1994].

Optimum basis: convex geometries with *n*-Carousel rule

Class of convex geometries with *n*-Carousel rule includes *affine* convex geometries $Co(\mathbb{R}^n, X)$: $X \subseteq \mathbb{R}^n$, $\phi(Y) = \text{convex hull}(Y) \cap X$. 2-Carousel Rule: $x, y \in \phi(A), A \subseteq X$, implies $x \in \phi(\{y, a_i, a_j\})$, for some $a_i, a_j \in A$.

Figure: 2-Carousel rule

Optimum basis: convex geometries with *n*-Carousel rule

Class of convex geometries with *n*-Carousel rule includes *affine* convex geometries $Co(\mathbb{R}^n, X)$: $X \subseteq \mathbb{R}^n$, $\phi(Y) = \text{convex hull}(Y) \cap X$. 2-Carousel Rule: $x, y \in \phi(A), A \subseteq X$, implies $x \in \phi(\{y, a_i, a_j\})$, for some $a_i, a_j \in A$.

Figure: 2-Carousel rule

Optimum basis: convex geometries with *n*-Carousel rule

Theorem

[A-2012] If a closure system is a convex geometry satisfying n-Carousel rule, then optimum basis can be obtained in polynomial time.

K.Adaricheva (Yeshiva University)

Efficient bases

Optimum basis: general case

Another tractable subclass: component-quadratic closure systems, E. Boros, O. Čepek, A. Kogan and P. Kucěra, RUTCOR, 2009. Question: Can the optimum basis be found effectively, for every conve geometry?

Theorem

[A-2012] Finding the optimum basis of convex geometry Co(P) of convex subsets of partially ordered set P, is an NP-complete problem.

Optimum basis: general case

Another tractable subclass: component-quadratic closure systems, E. Boros, O. Čepek, A. Kogan and P. Kucěra, RUTCOR, 2009. Question: Can the optimum basis be found effectively, for every convex geometry?

Theorem

[A-2012] Finding the optimum basis of convex geometry Co(P) of convex subsets of partially ordered set P, is an NP-complete problem.

Optimum basis: general case

Another tractable subclass: component-quadratic closure systems, E. Boros, O. Čepek, A. Kogan and P. Kucěra, RUTCOR, 2009. Question: Can the optimum basis be found effectively, for every convex geometry?

Theorem

[A-2012] Finding the optimum basis of convex geometry Co(P) of convex subsets of partially ordered set P, is an NP-complete problem.

- *K*-basis might not be an optimum basis, but it is always the minimum basis whose size is smaller than or equal the size of the canonical basis.
- In semidistributive closure systems K-basis is unique and is a good approximation of optimum basis.
- If the closure system is without *D*-cycles, further refinement of the *K*-basis can be effectively obtained, giving right-side optimum in its non-binary part.
- If a closure system is a convex geometry, either without *D*-cycles or with n-Carusel rule, the optimum basis is tractable. In general, the problem is NP-complete.

- *K*-basis might not be an optimum basis, but it is always the minimum basis whose size is smaller than or equal the size of the canonical basis.
- In semidistributive closure systems *K*-basis is unique and is a good approximation of optimum basis.
- If the closure system is without *D*-cycles, further refinement of the *K*-basis can be effectively obtained, giving right-side optimum in its non-binary part.
- If a closure system is a convex geometry, either without *D*-cycles or with n-Carusel rule, the optimum basis is tractable. In general, the problem is NP-complete.

- *K*-basis might not be an optimum basis, but it is always the minimum basis whose size is smaller than or equal the size of the canonical basis.
- In semidistributive closure systems K-basis is unique and is a good approximation of optimum basis.
- If the closure system is without *D*-cycles, further refinement of the *K*-basis can be effectively obtained, giving right-side optimum in its non-binary part.
- If a closure system is a convex geometry, either without *D*-cycles or with n-Carusel rule, the optimum basis is tractable. In general, the problem is NP-complete.

- *K*-basis might not be an optimum basis, but it is always the minimum basis whose size is smaller than or equal the size of the canonical basis.
- In semidistributive closure systems K-basis is unique and is a good approximation of optimum basis.
- If the closure system is without *D*-cycles, further refinement of the *K*-basis can be effectively obtained, giving right-side optimum in its non-binary part.
- If a closure system is a convex geometry, either without *D*-cycles or with n-Carusel rule, the optimum basis is tractable. In general, the problem is NP-complete.

Last slide: J.B.Nation

Figure: Hiking in Catskill mountains, New York State

.

