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Closure spaces, lattices and implications

Closure spaces

〈X , φ〉 is a closure space, if
X is non-empty set (finite in this talk);
φ is a closure operator on X , i.e. φ : 2X → 2X with
(1) Y ⊆ φ(Y );
(2) Y ⊆ Z implies φ(Y ) ⊆ φ(Z );
(3) φ(φ(Y )) = φ(Y ), for all Y ,Z ⊆ X .

Closed set: A = φ(A).
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Closure spaces, lattices and implications

Standard systems

If X ∗ ⊆ X , then φ∗(Y ) = φ(Y ) ∩ X ∗, Y ⊆ X ∗, defines a closure
operator on X ∗.
〈X ∗, φ∗〉 is called a standard closure space, if X ∗ is a subset of the
minimal cardinality such that the closure space 〈X ∗, φ∗〉 has the same
number of closed sets as 〈X , φ〉.
Standard spaces are characterized by the property:

φ∗(x) \ x is closed, for every x ∈ X ∗.

In particular, φ∗(∅) = ∅, and φ∗(x) = φ∗(y) implies x = y .
There exists a straightforward algorithm to obtain a standard closure
system from the given one.
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Closure spaces, lattices and implications

Moore family

Closed sets of 〈X , φ〉 form Moore familyM:
M is closed with respect to intersection ∩ and X ∈M;
Every Moore familyM⊆ 2X defines a closure operator on X :
φ(Y ) =

⋂
{Z ∈M : Y ⊆ Z}, Y ⊆ X .

Moore family can be turned into lattice of closed sets Cl(X , φ):
Y ∧ Z = Y ∩ Z ,
Y ∨ Z =

⋂
{W ∈M : Y ,Z ⊆W}.
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Closure spaces, lattices and implications

Lattices and closure spaces

Proposition

Every finite lattice (L,∨,∧) is the lattice of closed sets of some closure
space 〈X , φ〉.

Take X = J(L), the set of join-irreducible elements: j ∈ J(L), if
j 6= 0, and j = a ∨ b implies j = a or j = b;
define φ(Y ) = {j ∈ J(L) : j ≤

∨
Y}, Y ⊆ X .

This closure space is standard.

K.Adaricheva (Yeshiva University) Efficient bases Paris-2012 7 / 40



Closure spaces, lattices and implications

Lattices and closure spaces

Proposition

Every finite lattice (L,∨,∧) is the lattice of closed sets of some closure
space 〈X , φ〉.

Take X = J(L), the set of join-irreducible elements: j ∈ J(L), if
j 6= 0, and j = a ∨ b implies j = a or j = b;
define φ(Y ) = {j ∈ J(L) : j ≤

∨
Y}, Y ⊆ X .

This closure space is standard.

K.Adaricheva (Yeshiva University) Efficient bases Paris-2012 7 / 40



Closure spaces, lattices and implications

Lattices and closure spaces

Proposition

Every finite lattice (L,∨,∧) is the lattice of closed sets of some closure
space 〈X , φ〉.

Take X = J(L), the set of join-irreducible elements: j ∈ J(L), if
j 6= 0, and j = a ∨ b implies j = a or j = b;
define φ(Y ) = {j ∈ J(L) : j ≤

∨
Y}, Y ⊆ X .

This closure space is standard.

K.Adaricheva (Yeshiva University) Efficient bases Paris-2012 7 / 40



Closure spaces, lattices and implications

Lattices and closure spaces

Proposition

Every finite lattice (L,∨,∧) is the lattice of closed sets of some closure
space 〈X , φ〉.

Take X = J(L), the set of join-irreducible elements: j ∈ J(L), if
j 6= 0, and j = a ∨ b implies j = a or j = b;
define φ(Y ) = {j ∈ J(L) : j ≤

∨
Y}, Y ⊆ X .

This closure space is standard.

K.Adaricheva (Yeshiva University) Efficient bases Paris-2012 7 / 40



Closure spaces, lattices and implications

Example: Building a closure space associated with lattice A12.
X = J(A12) = {1,2,3,4,5,6}. φ({4,6}) = {1,3,4,6}, φ({2,4}) = X
etc.

1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

Figure: A12
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Closure spaces, lattices and implications

Closure spaces and implications

An implication σ on X : Y → Z , for Y ,Z ⊆ X , Z 6= ∅.
Moore familyMσ contains subsets A of X that respects σ:
if Y ⊆ A, then Z ⊆ A.
if Σ is a set of implications {σ1, . . . , σk}, thenMΣ is Moore family
of subsets A that respect all σj ;
the corresponding closure space is 〈X , φΣ〉
Every closure space 〈X , φ〉 can be presented as 〈X , ψΣ〉, for some
set Σ of implications on X .
Example: Σ = {A→ φ(A) : A ⊆ X ,A 6= φ(A)}.
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Propositional Horn logic and Horn Boolean functions

Implications and propositional Horn logic

Unit implication σ on X : Y → z, Y ⊆ X , z ∈ X .
Every implication Y → Z is equivalent to the set of unit
implications {Y → z, z ∈ Z}: unit expansion.
Logical interpretation of unit implication σ:
X = {x1, . . . , xn},Y = {x1, . . . , xk}, z = xk+1
σ ≡ x1 ∧ x2 · · · ∧ xk → xk+1.
Equivalent form without implication (a definite Horn clause):
σ ≡ ¬x1 ∨ ¬x2 · · · ∨ ¬xk ∨ xk+1

Equivalent form for the set of implications Σ = {σ1, . . . , σm} (a
definite Horn formula):

ΣH ≡
∧

j≤m σj
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Propositional Horn logic and Horn Boolean functions

Horn Boolean functions

For every (definite) Horn formula ΣH of n variables x1, x2, . . . , xn, one
can define n-ary Boolean function f (x1, . . . , xn) : {0,1}n → {0,1} such
that

f (s1, . . . sn) = 1 iff ΣH is true,

under assignment xi := si , where si ∈ {0,1}.
ΣH corresponds to CNF of function f (x1, . . . , xn).

A Boolean function f (x1, . . . , xn) is called (definite) Horn function, if it
has some CNF representation by (definite) Horn formula ΣH .
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Propositional Horn logic and Horn Boolean functions

Summarizing:

Five equivalent ways to look at closure system 〈X , φ〉:
Moore family;
lattice of closed sets Cl(X , φ);
set of implications Σ(X , φ);
definite Horn formula ΣH(X , φ);
definite Horn function f : {0,1}|X | → {0,1}.
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Propositional Horn logic and Horn Boolean functions

Connections to computer science fields

Closure operators given by implications or Horn formulae appear in:

relational data bases;
data-mining;
knowledge structures;
data analysis;
logic programming.
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Types of efficient bases

“Efficient" bases

Every closure space 〈X , φ〉 can be presented as 〈X , ψΣ〉, for some
set Σ of implications on X .
Term a base or a basis is used when the set of implications Σ′ that
defines the same closure system satisfies some condition of
minimality.
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Types of efficient bases

“Efficient" bases

A basis Σ′ is non-redundant, if none of its implications can be
removed to get another basis.
A basis Σ′ is minimum, if it has the minimal number of implications
among all the set of implications for the same closure system.
A basis Σ′ = {Xi → Yi : i ≤ n} is called optimum, if number
s(Σ′) = |X1|+ · · ·+ |Xn|+ |Y1|+ · · ·+ |Yn| is smallest among all
sets of implications for the same closure system.
A basis is called right-side (left-side) optimum basis, if the number
|Y1|+ · · ·+ |Yn| (|X1|+ · · ·+ |Xn|) is smallest among all sets of
implications for the same closure system.
The right-side optimum basis is connected to the problem of the
shortest (i.e. with the minimal number of clauses)
CNF-representation of a (definite) Horn function, also, minimal
representations of the directed hypergraphs.
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Types of efficient bases

Optimum and right-side optimum bases

Theorem
[D.Maier, 1983] The problem of finding an optimum basis of a finite
closure system is NP-complete.

Theorem
[G. Ausiello, A. D’Atri and D. Saccá, 1986] The problem of finding a
right-side optimum basis of a finite closure system is NP-complete.

Corollary
[AN-2012] Theorem 1 follows from Theorem 2.
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Canonical basis of Duquenne-Guigues

Canonical basis

J.L. Guigues, V. Duquenne, Familles minimales d’implications
informatives résultant d’une tables de données binares, Math. Sci.
Hum. 95 (1986), 5–18.

Defined quasi-closed and critical subsets of X for any given
closure system 〈X , φ〉.
Canonical basis ΣC is {A→ B : A is critical, B = φ(A) \ A}.
ΣC is a minimum basis among all the bases generating 〈X , φ〉.
Defined saturation closure operator σ associated with φ.
Every other basis relates to ΣC , via saturation operator σ.
Every optimum basis has the form
{A′ → B′ : (A→ B) ∈ ΣC ,A′ ⊆ A,B′ ⊆ B}. Moreover, σ(A′) = A.
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Canonical basis of Duquenne-Guigues

Binary part of canonical basis

Suppose φ({a}) 6= {a}, for some a ∈ X .
{a} is a critical set;
a→ B is present in the canonical basis;
set of implications a→ B from the basis are called the binary part
of the basis;
assuming 〈X , φ〉 is standard, one can define a partial order on X :
a ≥φ b iff a→ B is in the canonical basis and b ∈ B.
in L = Cl(X , φ), 〈X ,≥φ〉 is a poset of join irreducible elements.
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Canonical basis of Duquenne-Guigues

4 parts of the optimum basis

Structure of the optimum basis per D. Maier.

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side fixed parameter |A| is a fixed parameter
________ ____________________ ____________________

the right side ?(1)? ?(2)?

Proposition
[AN-2012] Assume that the closure system is standard.
(1) For every a→ B in any optimum basis, |B| is a fixed parameter.
(2) Total size Rn = |B1|+ . . . |Bk | in non-binary part is a fixed
parameter.
(3) Each individual |Bk | may vary.
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Canonical basis of Duquenne-Guigues

UC-systems

Closure system 〈X , φ〉 has unique criticals, or it is UC-system, if
φ(C1) = φ(C2), for some critical sets C1,C2, implies C1 = C2.

Conjecture

In UC-system, for every A→ B in the optimum basis, |B| is a fixed
parameter.

K.Adaricheva (Yeshiva University) Efficient bases Paris-2012 21 / 40



K -basis

K -basis

K -basis is inspired by�-minimal representations of elements in
the lattice of closed sets.
K -basis has the same number of implications as the canonical,
i.e. it is a minimum basis.
The size of K -basis is normally smaller than the size of the
canonical.
K -basis can be effectively obtained from the canonical.
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K -basis

�-Minimal representations by join irreducibles

A join-representation of element a ∈ L is an expression a = j1 ∨ · · · ∨ jk ,
for some join-irreducible elements j1, . . . , jk .
A join-representation a = j1 ∨ · · · ∨ jk is called�-minimal, if none of
j1, . . . , jk can be dropped or replaced by smaller join-irreducibles to
obtain another join-representation of a.
For example, the top element of A12 is 2 ∨ 6 ∨ 5.
But {2,4} � {2,6,5} and 2 ∨ 4 is�-minimal join representation.

1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

Figure: A12K.Adaricheva (Yeshiva University) Efficient bases Paris-2012 23 / 40
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K -basis

K -basis

Polynomial (in s(ΣC)) Algorithm to obtain K -basis from the canonical.

Recall: a ≥φ b iff a→ B is in the canonical basis and b ∈ B.

Given: A→ B in the canonical basis ΣC .
Obtain: AK → BK in the K -basis.
Loop: (1) Find ≥φ −max element a ∈ A,

which was not checked yet.
(2) Verify φ(A \ a) = φ(A).
When true, A := A \ a.

Otherwise,
End Loop.
Ak := max≥(A)
Bk := max≥(B).
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K -basis

Comparison
1 2 3 4 5

Figure 1. Example 9

1

2

3 4

56

Figure 2. Example 16

1

Figure: A12

Canonical basis ΣC :
2→ 1,6→ 13,3→ 1,5→ 4,14→ 3,123→ 6,1345→ 6,12346→ 5
s(ΣC) = 27
K -basis:
2→ 1,6→ 3,3→ 1,5→ 4,14→ 3,23→ 6,15→ 6,24→ 5
s(ΣK ) = 20
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K -basis

Algorithmic aspect

Theorem
[A. Day, 1992] Given any basis Σ′ of a finite closure system, it requires
time O(s(Σ′)2) to obtain the canonical basis of Duquenne-Guigues.

Theorem
[AN-2012] A K -basis can be obtained from canonical basis ΣC of
Duquenne-Guigues in time O(s(ΣC)2).
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K -basis

K -basis

In general, the closure space may have more than one K -basis.

A special subclass of UC-systems is defined via the lattice of closed
sets.

Definition
A closure system is called semidistributive, if its closure lattice Cl(X , φ)
satisfies the property:
(SD∨) x ∨ y = x ∨ z → x ∨ y = x ∨ (y ∧ z).

Theorem
[Jónsson and Kiefer, 1962] Every element of a finite lattice has a
unique minimal representation iff the lattice is semidistributive.

Corollary
[AN-2012] Every semidistributive closure system has a unique K -basis.
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UC-closure systems

Semidsitributive systems

Important subclasses of semidsitributive closure systems:

In lattice theory: lower bounded lattices (lattices without D-cycles),
free lattices (R.Freese, J.Jezek, J.B.Nation).

In combinatorics: convex geometries and anti-matroids
(P.Edelman and R. Jamison)

In theory of Boolean functions: quasi-acyclic systems (P.Hammer
and A.Kogan). This is a proper subclass of both: convex
geometries and systems without D-cycles.
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UC-closure systems

Systems without D-cycles

Lower bounded lattices, or lattices without D-cycles: can be defined
via D-relation on the set of join-irreducible elements (A.Day, 1979).

Let D∗ be the binary relation on X defined via any K -basis:

aD∗b iff there exists A∗ → B∗ in a K -basis with |A∗| > 1 such that
a ∈ A∗ and b ∈ B∗.

Theorem
[AN-2012]
(1) A closure system〈X , φ〉 has the closure lattice without D-cycles iff

there is no sequence a1D∗a2D∗ . . .D∗an = a1, with ai ∈ X and
n > 1.

(2) Given the canonical basis ΣC of the closure system, there exists a
polynomial time algorithm in s(ΣC) that recognizes whether the
system is without D-cycles.
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E-basis

Bases in systems without D-cycles

This basis was introduced for the systems without D-cycles in:
K.Adaricheva, J.B.Nation and R.Rand, "Ordered direct basis of a finite
closure system", to appear in Discrete Applied Mathematics

E-basis:

_______ Canonical basis K − basis E − basis
|A| > 1 A→ B A∗ → B∗ A∗ → B∗∗

|A| = 1 a→ B a→ B∗ a→ B∗

B∗∗ ⊆ B∗

Proposition
[AN-2012] E-basis can be obtained from K -basis via polynomial time
algorithm: if b ∈ B∗1,B

∗
2, for two implications A∗1 → B∗1, A∗2 → B∗2 in the

K -basis, and φ(A∗1) ⊂ φ(A∗2), then b can be removed from B∗2.
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E-basis

E-basis

Recall: |B1|+ |B2|+ · · ·+ |BK |, for the right sides of non-binary part of
any optimum basis, is a fixed parameter Rn.

Theorem
[AN-2012] The total right size of non-binary part of the E-basis attains
the minimum Rn.

Theorem
[ANR-2011] The E-basis of a closure system without D-cycles is
ordered direct.
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E-basis

4 parts of the optimum basis: systems without
D-cycles

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable NP
________ ____________________ ____________________

a→ B A→ B
the right side NP tractable

Proposition
[AN-2012] Assume that the closure system is without D-cycles.
(1) Finding the optimum right-side in binary part of the basis is
NP-complete.
(2) Finding the optimum left-side in non-binary part of the basis is
NP-complete.
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Optimum bases in convex geometries

Convex geometry

A closure system 〈X , φ〉 is called a convex geometry, if φ(∅) = ∅, and
anti-exchange property holds:

For every A = φ(A), x , y 6∈ A, if x ∈ φ(A ∪ y), then y 6∈ φ(A ∪ x).

x ∈ A is called extreme point of A, if x 6∈ φ(A \ x). Ex(A) is a set of
extreme points of A.

Theorem
[P. Edelman and R. Jamison, 1985] A closure system 〈X , φ〉 is a
convex geometry iff every closed set A = φ(Ex(A)).

In particular, every convex geometry is semidistributive.
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Optimum bases in convex geometries

4 parts of the optimum basis: convex geometries

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable tractable
________ ____________________ ____________________

a→ B A→ B
the right side tractable ??

Proposition
Assume that the closure system is a convex geometry.
(1)[M.Wild, 1994] Finding the optimum left-side in non-binary part of
the basis is tractable. A = Ex(φ(A)).
(2) [A-2012] Finding the optimum right-side in binary part of the basis
is tractable. B = Ex(φ(a) \ a).
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Optimum bases in convex geometries

Optimum basis: convex geometries without D-cycles

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable tractable
________ ____________________ ____________________

a→ B A→ B
the right side tractable tractable

Corollary
[A-2012] If a closure system is a convex geometry without D-cycles,
then optimum basis can be obtained in polynomial time.

This class properly includes the quasi-acyclic closure systems defined
in [P. Hammer and A. Kogan, 1995] , which are also G-geometries in
[M.Wild, 1994].
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in [P. Hammer and A. Kogan, 1995] , which are also G-geometries in
[M.Wild, 1994].
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Optimum basis: convex geometries with n-Carousel
rule

Class of convex geometries with n-Carousel rule includes affine
convex geometries Co(Rn,X ): X ⊆ Rn, φ(Y ) = convex hull(Y ) ∩ X .
2-Carousel Rule: x , y ∈ φ(A),A ⊆ X , implies x ∈ φ({y ,ai ,aj}), for
some ai ,aj ∈ A.

a1 
 

a2 

ai 

an-1 

an 

y 

x 

Figure: 2-Carousel rule
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Optimum bases in convex geometries

Optimum basis: convex geometries with n-Carousel
rule

Binary part Non-binary part
____________ ____________________ ____________________

a→ B A→ B
the left side tractable tractable
________ ____________________ ____________________

a→ B A→ b
the right side tractable tractable

Theorem
[A-2012] If a closure system is a convex geometry satisfying
n-Carousel rule, then optimum basis can be obtained in polynomial
time.
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Optimum basis: general case

Another tractable subclass: component-quadratic closure systems,
E. Boros, O. Čepek, A. Kogan and P. Kucěra, RUTCOR, 2009.
Question: Can the optimum basis be found effectively, for every convex
geometry?

Theorem
[A-2012] Finding the optimum basis of convex geometry Co(P) of
convex subsets of partially ordered set P, is an NP-complete problem.
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Optimum bases in convex geometries

Conclusions

K -basis might not be an optimum basis, but it is always the
minimum basis whose size is smaller than or equal the size of the
canonical basis.
In semidistributive closure systems K -basis is unique and is a
good approximation of optimum basis.
If the closure system is without D-cycles, further refinement of the
K -basis can be effectively obtained, giving right-side optimum in
its non-binary part.
If a closure system is a convex geometry, either without D-cycles
or with n-Carusel rule, the optimum basis is tractable. In general,
the problem is NP-complete.
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Last slide: J.B.Nation

Figure: Hiking in Catskill mountains, New York State
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.
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