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1 Introduction
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Motivating questions

When are two databases the same?
Are two databases similar?
If a row is added or deleted in the database,

is only the instance changed?
Does this change alter the dependency structure, so a new database
is obtained?

A new attribute is added to the database, all rows are completed
with the value of the new attribute. Is this another database?
If two databases should be considered different, how different they
are?

A notion of distance between databases is needed.
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Our approach

Previous approaches are based on algorithmic conflict resolution.

Present talk: combinatorial approach, interested in the apparent
dependency structure of a database. Leads to the concept of distance
of closures.

Two database are considered the same if they have the same number of
attributes and the system of functional dependencies are identical. The
distance is introduced only between two databases having the same
number of attributes.
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2 Definition of distance of
databases/closures
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Closures

A schema R is considered fixed and every instance r is considered
together with all functional dependencies A! B such that
r j= A! B .

For a set of attributes A � R the closure of A is given by
`(r)(A) = fa 2 R : r j= A! ag. It is well known that the function
`(r) : 2R �! 2R is a closure that is it satisfies the properties

A � `(r)(A)
A � B =) `(r)(A) � `(r)(B)
`(r)(`(r)(A)) = `(r)(A):

(1)

Attribute set A is closed if A = `(r)(A). Since constant columns are
not really interesting, we assume that `(r)(;) = ;.
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Poset of closures

Fact
If r j= A! B, then r

0 j= A! B holds for any r
0 � r.

Closure `1 is said to be richer than or equal to `2, `1 � `2 in notation,
iff `1(A) � `2(A) for all attribute sets.

Proposition (Burosch, Demetrovics, Katona)
Let F(`) denote the collection of closed attribute sets for closure `.

`1 � `2 iff F(`1) � F(`2):
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Interpretation

If r1 and r2 are two instances of schema R, then the statement “`(r2)
is richer than `(r1)” can be interpreted as follows.

In r2 there are more subsets of attributes that only determine
attributes inside them, that is in r2 we need more attributes to
determine some attribute, so r2 conveys “more information” in the
sense that the values of tuples are more abitrary.
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Height of the poset of closures

`2 covers `1, if `1 � `2 and for all `0 such that `1 � `0 � `2 either `0 = `1
or `0 = `2.

Proposition (BDK)
`2 covers `1 iff F(`1) � F(`2) and jF(`2) n F(`1)j = 1.

The poset of all closures over a given schema R, P(R), is ranked: its
elements are distributed in levels and if `2 covers `1, then `2 is in the
next level above `1’s one.

Let jRj = n . Since ; and R are both closed for any closure considered,
the height of P(R) is 2n � 2.

Katona, Sali (Rényi Institute) Distance of Closures Tuesday, June 19. 2012 9 / 36



Height of the poset of closures

`2 covers `1, if `1 � `2 and for all `0 such that `1 � `0 � `2 either `0 = `1
or `0 = `2.

Proposition (BDK)
`2 covers `1 iff F(`1) � F(`2) and jF(`2) n F(`1)j = 1.

The poset of all closures over a given schema R, P(R), is ranked: its
elements are distributed in levels and if `2 covers `1, then `2 is in the
next level above `1’s one.

Let jRj = n . Since ; and R are both closed for any closure considered,
the height of P(R) is 2n � 2.

Katona, Sali (Rényi Institute) Distance of Closures Tuesday, June 19. 2012 9 / 36



Height of the poset of closures

`2 covers `1, if `1 � `2 and for all `0 such that `1 � `0 � `2 either `0 = `1
or `0 = `2.

Proposition (BDK)
`2 covers `1 iff F(`1) � F(`2) and jF(`2) n F(`1)j = 1.

The poset of all closures over a given schema R, P(R), is ranked: its
elements are distributed in levels and if `2 covers `1, then `2 is in the
next level above `1’s one.

Let jRj = n . Since ; and R are both closed for any closure considered,
the height of P(R) is 2n � 2.

Katona, Sali (Rényi Institute) Distance of Closures Tuesday, June 19. 2012 9 / 36



Height of the poset of closures

`2 covers `1, if `1 � `2 and for all `0 such that `1 � `0 � `2 either `0 = `1
or `0 = `2.

Proposition (BDK)
`2 covers `1 iff F(`1) � F(`2) and jF(`2) n F(`1)j = 1.

The poset of all closures over a given schema R, P(R), is ranked: its
elements are distributed in levels and if `2 covers `1, then `2 is in the
next level above `1’s one.

Let jRj = n . Since ; and R are both closed for any closure considered,
the height of P(R) is 2n � 2.

Katona, Sali (Rényi Institute) Distance of Closures Tuesday, June 19. 2012 9 / 36



Distance

Definition
Let r and r

0 be two instances of schema R. Their distance d(r; r0) is
defined to be the graph theoretic distance of `(r) and `(r0) in the Hasse
diagram of P(R). That is, the length of the shortest path between
points `(r) and `(r0) using only covering edges.

Satisfies the triangle inequality.
Since every closure L on a finite underlying set is in the form L = `(r),
the distance of closures is defined.
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3 Possible applications
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Approximate semantic sampling of existing databases

Introduced by De Marchi and Petit.

Given a database relation r, which has normally many tuples, the goal
is to find a subrelation r

0 � r with a "small" number of tuples such
that r0 satisfies the same set of functional dependencies as r.
Sometimes any r

0 that satisfies the same set of functional dependencies
as r has still "too many" tuples for a database administrator to
understand what functional dependencies r currently satisfies.
Approximation of the problem: Given a database relation r and an
upper bound b, find a subrelation r

0 � r such that jr0j � b and
d(r; r0) = minfd(r; r00) : jr00j � b; r00 � rg.
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Approximate integrity enforcement

The usual update operations on a database system only allow updates
on a given relation r that result in a modified relation r

0 that satisfies
the set � of functional dependencies specified over the given relation
schema. Instead of this, we may allow more updates that keep the
integrity constraints “approximately intact”, as follows.
Given r, a time-window t and an upper bound b, only allow updates
within the time-window t that result in a modified relation r

0 whose
distance d(r0; r) from r is at most b. Here it is an important special
case if we enforce that r0 must satisfy the same keys as r.
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Semantic schema matching

The definition of distance of databases can be extended to relational
schemata.

For given (R;�) and (R0;�0) where R and R0 have the same number
of attributes and � and �0 are sets of functional dependencies on R
and R0, respectively, d(�;�0) denotes the number of elements in the
symmetric difference of the closed set systems generated by � and �0,
respectively. Note that if r is an Armstrong instance of (R;�) and r

0 is
an Armstrong instance of (R0;�0), then d(�;�0) = d(r; r0).
We want to match the two schemata as much as possible, so we want
to find a bijection � between R and R0 such that
d(�(�);�0) = minfd(�0(�);�0) : �0 is a bijection betweenR and R0g.
Here �(�) = f�(a1):::�(an)! �(a) : a1:::an ! a 2 �g.
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respectively.

Note that if r is an Armstrong instance of (R;�) and r
0 is

an Armstrong instance of (R0;�0), then d(�;�0) = d(r; r0).
We want to match the two schemata as much as possible, so we want
to find a bijection � between R and R0 such that
d(�(�);�0) = minfd(�0(�);�0) : �0 is a bijection betweenR and R0g.
Here �(�) = f�(a1):::�(an)! �(a) : a1:::an ! a 2 �g.
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4 General observations on the distance of
closures
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Maximum distance

Proposition
Let jRj = n. Then d(r; r0) � 2n � 2 for any
two instances of the schema R.

Proof

d(r; r0) � d(r; `m) + d(`m ; r0)

and

d(r; r0) � d(r; `M ) + d(`M ; r0)

Thus,

2 d(r; r0) � d(r; `m) + d(r; `M ) + d(`m ; r0)+
+d(`M ; r0) = 2n � 2+ 2n � 2:

lm

lM

r’

r

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
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Distance of two instances

Theorem
For any two instances r and r

0 of the schema R we have

d(r; r0) = jF(`(r))�F(`(r0))j; (2)

where A�B denotes the symmetric difference of the two sets, i.e.,
A�B = A nB [B nA.

The proof uses the following well-known result.

Theorem (Demetrovics, Katona)
A collection F of subsets of R is the collection of closed sets of
some closure `(r) for an appropriate instance r of R iff ;;R 2 F
and F is closed under intersection.

jF(`(r))j changes by one traversing along a covering edge in the Hasse
diagram of P(R), so LHS � RHS .
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Upper bound (sketch)

First, we “peel off” sets of F(`(r)) n F(`(r0)) one by one, taking always
a maximal element.

We arrive at F(`(r)) \ F(`(r0)).

Add successively a minimal element of F(`(r0)) n F(`(r)) with respect
to set containment.
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3 Diameter of collection of databases with
the same set of minimal keys
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Keys, minimal keys

K � R is a key in instance r if r j= K ! R, and it is minimal if
8K 0 $ K : r 6j= K 0 ! R. () K is a minimal key for r iff there are
no two rows of r that agree on K , but K is minimal with respect to
this property.

K(r) denotes the system of minimal keys of r. It is an inclusion-free
family.

`(r) uniquely determines K(r), since r j= A! B () B � `(r)(A).

K(r) does not determine `(r).
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An example

Let R = fa ; b; c; dg, and the family of keys be
K = ffa ; cg; fa ; dg; fb; cg; fb; dgg.

K is system of keys,
when `(r1)-closed sets are
;; fa ; bg; fc; dg; fa ; b; c; dg.

r1 =

a b c d
0 0 0 0
0 0 1 1
2 2 0 0

On the other hand, `(r2) >

`(r1) has the same key sys-
tem, where additionally the one-
element subsets are `(r2)-closed,
too.

r2 =

a b c d
0 0 0 0
0 0 1 1
2 2 0 0
0 3 3 3
4 0 4 4
5 5 0 5
6 6 6 0
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Antikeys

A subset A � R is a maximal antikey if it does not contain any key,
and maximal with respect to this property. The collection of antikeys
for a minimal key system K is denoted by K�1.

Minimal keys and aximal antikeys determine each other, respectively:

Maximal antikeys are maximal sets that do not contain any key and
keys are minimal sets that are not contained in any antikey.

Both minimal key systems and maximal antikey systems form
inclusion-free families of subsets of R, that is no minimal key/antikey
can contain another minimal key/antikey.

In the previous example K = ffa ; cg; fa ; dg; fb; cg; fb; dgg and
K�1 = ffa ; bg; fc; dgg.
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The theorem

For a set system A of subsets of R let
A#= fB � R : 9A 2 A with B � Ag [ fRg and let A\ = fB �
R : 9i � 1;A1;A2; : : :Ai 2 A with B = A1 \A2 \ : : :\Aig[fRg[f;g.

That is, A# is the down-set generated by A appended with R and A\

is the set system closed under intersection generated by A.

Theorem
Let K be an inclusion-free family of subsets of R. Then the
closures whose minimal key system is K form an interval in the
poset of closures P(R) whose smallest element is the closure with
closed sets K�1

\ and largest element is the closure with closed sets
K�1#

Corollary
The diameter, that is the largest distance between any two
elements of the collection of closures with given key system K is
jK�1# j � jK�1

\ j.
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Proof (or something like that) of the Theorem

Let A be a maximal antikey. For any b 2 R nA, A [ fbg is a key, thus
A [ fbg ! R holds.

Thus A 6! b, so `(r)(A) = A for every antikey A 2 K�1.

F(`(r)) is closed under intersection, so K�1
\ � F(`(r)).

If `(r)(X ) = X holds for some X $ R, then X is contained in maximal
antikey A � X , hence X 2 K�1#.
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4.1 Non-uniform minimal key system
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The Theorem

Let M be a non-empty, inclusion-free family. Define

D(M) = fH : 9M 2M such that H �Mg; (3)

U(M) = fH : 9M 2M such that H �Mg: (4)

Theorem

Let K be a non-empty inclusion-free family of subsets of [n ], where
jKj � n is fixed. Furthermore, let S(K) denote the set of all
closures in which the family of minimal keys is exactly K. Then

diam(S(K)) � 2n � jU(K�)j; (5)

where K� consists of some lexicographically last sets of size s and
all the s + 1-element sets not containing the selected s-element
ones, for some 0 � s � n � 2 and jK�j = jKj.
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Tools of the proof

Define the (r ; `)-shadow of a family of r -element sets A �
�[n ]
r
�
for

` < r :

�r ;`(A) = fH : jH j = `;9A 2 A such that H � Ag: (6)

Theorem (Shadow Theorem, Kruskal, Katona)

If A �
�[n ]
r
�
; jAj = m then j�r ;`(A)j is at least as large as the

(r ; `)-shadow of the family of the lexicographically first m members
of
�[n ]
r
�
, that is, the size of the (r ; `)-shadow attains its minimum

for the lexicographically first r-element sets.
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Tools of the proof II

For A � 2[n ] let

Ar = A \

 
[n ]
r

!
: (7)

The profile vector of the family A � 2[n ] is p = (p0; p1; : : : ; pn) where
pr = pr (A) = jAr j.

Lemma
Let M be a non-empty inclusion-free family of subsets of [n ] with
fixed jMj � n. Then jD(M)j attains its minimum for a family
satisfying the following conditions with some 2 � r � n.

pn = : : : = pr+1 = pr�2 = : : : = p1 = p0 = 0; (8)

Mr consists of the lexicographically first pr r � element subsets;
(9)

Mr�1 =

 
[n ]
r � 1

!
n �r ;r�1(Mr ): (10)
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4.2 Uniform minimal key system
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Unique minimal key

Theorem
The diameter of the set of closures having exactly one minimal key
A where 0 < jAj = r < n is 2n � 2r � 2n�r .

The family of closed sets F satisfies the following conditions.

If F � R nA then F 2 F ; (11)

if F � A;F 6= R then F 62 F ; (12)

; 2 F : (13)
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Why not 1-element keys?

If all keys are one-element sets, then K�1 consists of a single set A,
thus K�1# consists of all subsets of A and R, while K�1

\ consists of
three sets, ;, A and R, i.e. the diameter is 2jAj � 2.

A Keys

R
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2-element keys

Let G = ([n ];E) be the graph where fi ; j g 2 E(i 6= j ) iff fi ; j g 62 K.
The set of closures having

�[n ]
2

�
� E as the set of minimal kys is

denoted by S2(G). We give upper bound for

s2(e) = max
fG=([n ];E): jE j=eg

diamS2(G): (14)

Theorem

If e =
�t
2

�
+ r, where 0 < r � t, then

diamS2(G) �

(
2t + 2r � 4 if r < t
2t+1 � 2 if r = t

(15)

for a graph G whose connected components are isolated vertices
except for one component. Furthermore, this bound is sharp.
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Antikeys and cliques

If the family of minimal keys is K =
�[n ]
2

�
� E , then the members of

K�1 are maximal complete subgraphs in G .
K�1# consists of all complete subgraphs of G , while K�1

\ consists of
those complete subgraphs that are intersections of cliques.

jK�1# j � 2t + 2r + n � t � 1: (16)

Follows from the following theorem of Erdős.

Theorem (Erdős, 1962)
Let G = (V ;E) be a connected graph of e edges. Assume, that
e =

�t
2

�
+ r, where 0 < r � t. Then the number of complete

k-subgraphs Ck (G) of G is at most

Ck (G) �

 
t
k

!
+

 
r

k � 1

!
: (17)
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r -uniform key system

Let D be a closure whose minimal keys have exactly r(� 2) elements.
H = ([n ]; E) be the hypergraph where K =

�[n ]
r
�
n E , with jEj = e . The

set of closures having
�[n ]
r
�
n E as the set of minimal keys will be

denoted by Sr (H ). Want upper estimate on

max
fH=([n ];E): jEj=eg

diamSr (H ): (18)

Theorem

If e �
�a
r
�
then diam(Sr (H )) � 2a + e2r :
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Proof sketch

K =
�[n ]
r
�
n E implies that

K�1 = fB � [n ] :
�B
r
�
� E ^ 8B 0 ) B

�B 0

r
�
n E 6= ;g. These are called

the (hyper)cliques of H .
Need: the number of sets of the vertices of H which are subsets of at
least one hyperclique and are not intersections of those is at most
2a + e2r . jK�1# j � jK�1

\ j � 2a + e2r .
We show that jK�1# j � 2a + e2r .
For 0 < i � r let I be an i -element subset of a hyperclique.
) 9jRj = r : I � R 2 E . number of such I ’s is at most e

�r
i
�
.

r < i . Let A1; : : : ;Am be the family of i -element subsets, whose all
r -element subsets are in E . If m >

�a
i
�
then by the Shadow Theorem

(Lovász’ version) the number of r -element subsets (hyperedges) is
>
�a
r
�
� e , so m �

�a
i
�
.

Add up these maximums:

e
rX

i=1

 
r
i

!
+

aX
i=r+1

 
a
i

!
� 2a + e2r :
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Need: the number of sets of the vertices of H which are subsets of at
least one hyperclique and are not intersections of those is at most
2a + e2r . jK�1# j � jK�1

\ j � 2a + e2r .

We show that jK�1# j � 2a + e2r .
For 0 < i � r let I be an i -element subset of a hyperclique.
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.

r < i . Let A1; : : : ;Am be the family of i -element subsets, whose all
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An interesting combinatorial question

Given a hypergraph H = (V ; E), what is the number of complete
subhypergraphs that are not intersections of maximal complete
subhypergraphs?
We have given good upper bounds in the case of ordinary graphs.
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