EXTENT PARTITIONS AND CONTEXT EXTENSIONS

Bernhard Ganter

Institute für Algebra, TU Dresden, 01062 Dresden, Germany e-mail: Bernhard.Ganter@tu-dresden.de

Attila Körei

Institute of Information Science, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary e-mail: matka@uni-miskolc.hu

Sándor Radeleczki

Institute of Mathematics, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary e-mail: matradi@uni-miskolc.hu

Abstract

An extent partition of a formal context $\mathbb{K} = (G, M, I)$ is a partition $\pi = \{G_t \mid t \in T\}$ of G, all classes of which are concept extents, that is $G_t'' = G_t$, for all $t \in T$. Note that, since the intersection of extents always yields an extent, the common refinements of extent partitions are again extent partitions. Therefore the extent partitions of \mathbb{K} form a complete \wedge -subsemilattice of the partition lattice of G, and thus a complete lattice. In particular, there is always a finest extent partition of (G, M, I) which we denote by π_{\square} .

We call a set $E \subseteq G$ a box extent of the context \mathbb{K} , if E is a class of some extent partition of \mathbb{K} , or $E = \emptyset''$. The intersection of box extents is a box extent, moreover, an extent $E \neq \emptyset''$ is a box extent iff it is a union of some classes of π_{\square} . In other words E is a box extent iff

$$g \in E \Rightarrow g^{\square \square} \subseteq E.$$

As a consequence, the box extents form a closure system and therefore a complete lattice $\mathbf{Box}(\mathbb{K})$. We prove that $\mathbf{Box}(\mathbb{K})$ is a complete atomistic lattice, where the atomic extents are exactly the classes of the finest extent partition π_{\square} of \mathbb{K} . We also characterise $\mathbf{Box}(\mathbb{K})$ as the largest atomistic complete \land -subsemilattice of the lattice of the concept extents of \mathbb{K} .

 \mathbb{K} is called a *one-object extension* of the subcontext (H, M, J) if it is obtained by adding a new element with attributes in M to the set H. We investigate the interplay between the box extents of (H, M, J) and those of its one-object extension \mathbb{K} , and describe those box extents of (H, M, J) which can be extended to \mathbb{K} .