Nearest neighbor representations of Boolean functions

(Joint work with György Turán and Zhihao Liu)

Peter Hajnal

Bolyai Institute, University Szeged

18th of September, 2020.

Peter Hajnal SETIT, online meeting, 2020

< 回 > < 回 > < 回 >

The main notion

Peter Hajnal SETIT, online meeting, 2020

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

A nearest neighbor (NN) representation of a Boolean function

$$f: \{0,1\}^n \to \{0,1\}$$

- is a pair of disjoint subsets (P, N) of \mathbb{R}^n such that for every $a \in \{0, 1\}^n$
 - if a is positive/f(a) = 1 then there exists b ∈ P such that for every c ∈ N it holds that d(a, b) < d(a, c),
 - if a is negative/f(a) = 0 then there exists b ∈ N such that for every c ∈ P it holds that d(a, b) < d(a, c).

< 回 > < 回 > < 回 >

Peter Hajnal SETIT, online meeting, 2020

- 4 回 ト - 4 回 ト - -

э

• The points in *P* (resp., *N*) are called positive (resp., negative) *prototypes*.

イロト イボト イヨト イヨト

- The points in P (resp., N) are called positive (resp., negative) prototypes.
- The size of the representation is $|P \cup N|$.

イロト イヨト イヨト

- The points in *P* (resp., *N*) are called positive (resp., negative) *prototypes*.
- The size of the representation is $|P \cup N|$.
- The nearest neighbor complexity, NN(f), of f is the minimum of the sizes of the representations of f.

イロト イヨト イヨト

- The points in *P* (resp., *N*) are called positive (resp., negative) *prototypes*.
- The size of the representation is $|P \cup N|$.

• The nearest neighbor complexity, NN(f), of f is the minimum of the sizes of the representations of f.

• A nearest neighbor representation is Boolean if $P \cup N \subseteq \{0,1\}^n$, i.e., if the prototypes are Boolean vectors.

イロト 不得 トイヨト イヨト 二日

- The points in *P* (resp., *N*) are called positive (resp., negative) *prototypes*.
- The size of the representation is $|P \cup N|$.

• The nearest neighbor complexity, NN(f), of f is the minimum of the sizes of the representations of f.

• A nearest neighbor representation is Boolean if $P \cup N \subseteq \{0,1\}^n$, i.e., if the prototypes are Boolean vectors.

• The minimum of the sizes of the Boolean nearest neighbor representations is denoted by BNN(f).

Symmetric functions and their complexity

Peter Hajnal SETIT, online meeting, 2020

A Boolean function is *symmetric* if its value depends only on the weight of its input.

• • = • • = •

A Boolean function is *symmetric* if its value depends only on the weight of its input.

• A symmetric function f can be specified by a set $I_f \subseteq \{0, \ldots, n\}$ such that f(a) = 1 iff $|a| \in I_f$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

A Boolean function is *symmetric* if its value depends only on the weight of its input.

• A symmetric function f can be specified by a set $I_f \subseteq \{0, \ldots, n\}$ such that f(a) = 1 iff $|a| \in I_f$.

Proposition

a) For every *n*-variable symmetric function f it holds that $NN(f) \le n + 1$.

b)
$$BNN(x_1 \oplus x_2 \oplus \ldots \oplus x_n) = 2^n$$

Threshold functions

Peter Hajnal SETIT, online meeting, 2020

Ξ.

Threshold functions

Definition

A Boolean function f is a *threshold* function if there are weights $w_1, \ldots, w_n \in \mathbb{R}$ and a threshold $t \in \mathbb{R}$ such that for every $x \in \{0,1\}^n$ it holds that f(x) = 1 iff $w_1x_1 + \ldots + w_nx_n \ge t$.

A Boolean function f is a *threshold* function if there are weights $w_1, \ldots, w_n \in \mathbb{R}$ and a threshold $t \in \mathbb{R}$ such that for every $x \in \{0,1\}^n$ it holds that f(x) = 1 iff $w_1x_1 + \ldots + w_nx_n \ge t$.

• The special case when $w_1 = \ldots = w_n = 1$ is denoted by TH_n^t .

・ 同 ト ・ ヨ ト ・ ヨ ト

A Boolean function f is a *threshold* function if there are weights $w_1, \ldots, w_n \in \mathbb{R}$ and a threshold $t \in \mathbb{R}$ such that for every $x \in \{0,1\}^n$ it holds that f(x) = 1 iff $w_1x_1 + \ldots + w_nx_n \ge t$.

- The special case when $w_1 = \ldots = w_n = 1$ is denoted by TH_n^t .
- In particular, when $t = \frac{n}{2}$, we get the *n*-variable majority function $MAJ_n(x)$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Complexity of threshold functions

Peter Hajnal SETIT, online meeting, 2020

Complexity of threshold functions

Theorem

- a) For every threshold function f it holds that NN(f) = 2.
- b) If n is odd then BNN(MAJ_n) = 2 and if n is even then BNN(MAJ_n) ≤ ⁿ/₂ + 2.
 c) BNN (TH^[n/3]_n) = 2^{Ω(n)}.

Upper bound for an arbitrary function

Peter Hajnal SETIT, online meeting, 2020

Upper bound for an arbitrary function

Theorem

For every n-variable Boolean function it holds that

$$NN(f) \le (1+o(1))\frac{2^{n+2}}{n}.$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Peter Hajnal SETIT, online meeting, 2020

・ロト ・回ト ・ヨト ・ヨト

æ

Lower bound for a generic function

Theorem

For almost all n-variable Boolean functions

$$NN(f) > \frac{2^{n/2}}{n}.$$

э

Explicit functions

Peter Hajnal SETIT, online meeting, 2020

æ

Explicit functions

The mod 2 inner product function of 2n variables is defined by

$$IP_n(x_1,\ldots,x_n,y_1,\ldots,y_n) = (x_1 \wedge y_1) \oplus \ldots \oplus (x_n \wedge y_n).$$

э

Explicit functions

The mod 2 inner product function of 2n variables is defined by

$$IP_n(x_1,\ldots,x_n,y_1,\ldots,y_n) = (x_1 \wedge y_1) \oplus \ldots \oplus (x_n \wedge y_n).$$

Theorem

a)
$$NN(IP_n) \ge 2^{n/2}$$
.
b) $NN(x_1 \oplus \cdots \oplus x_n) \ge n+1$.

э

Nearest neighbor problem and sign-representation of Boolean functions

・ 同 ト ・ ヨ ト ・ ヨ ト

Nearest neighbor problem and sign-representation of Boolean functions

Lemma

If a Boolean function has a nearest neighbor representation with m prototypes then it has a sign-representation over $\{1,2\}$ having m terms.

• • = • • = •

Sign-representation

Peter Hajnal SETIT, online meeting, 2020

ヘロト ヘ団ト ヘヨト ヘヨト

æ

A multivariate polynomial $p(x_1, ..., x_n)$ is a sign-representation of a Boolean function $f(x_1, ..., x_n)$ if for every $x = (x_1, ..., x_n) \in \{0, 1\}^n$ it holds that $p(x) \ge 0$ iff f(x) = 1.

・ 戸 ト ・ ヨ ト ・ ヨ ト

A multivariate polynomial $p(x_1, ..., x_n)$ is a sign-representation of a Boolean function $f(x_1, ..., x_n)$ if for every $x = (x_1, ..., x_n) \in \{0, 1\}^n$ it holds that $p(x) \ge 0$ iff f(x) = 1.

Definition

A multivariate polynomial $p(\tilde{x}_1, \ldots, \tilde{x}_n)$ is a $\{1, 2\}$ -sign-representation of a Boolean function $f(x_1, \ldots, x_n)$ if for every $\tilde{x} = (\tilde{x}_1, \ldots, \tilde{x}_n) \in \{1, 2\}^n$ it holds that $p(\tilde{x}) \ge 0$ iff $\tilde{f}(\tilde{x}) = f(x) = 1$.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Peter Hajnal SETIT, online meeting, 2020

イロト イヨト イヨト イヨト

э

k-nearest neighbor representation

A *k*-nearest neighbor (*k*-*NN*) representation of *f* is a pair of disjoint subsets (*P*, *N*) of \mathbb{R}^n , such that for every $a \in \{0, 1\}^n$ it holds that

・ 同 ト ・ ヨ ト ・ ヨ ト

k-nearest neighbor representation

A *k*-nearest neighbor (*k*-*NN*) representation of *f* is a pair of disjoint subsets (*P*, *N*) of \mathbb{R}^n , such that for every $a \in \{0, 1\}^n$ it holds that

a is positive iff at least ^k/₂ of the k points in P ∪ N closest to a belong to P.

・ 同 ト ・ ヨ ト ・ ヨ ト

A *k*-nearest neighbor (*k*-*NN*) representation of *f* is a pair of disjoint subsets (*P*, *N*) of \mathbb{R}^n , such that for every $a \in \{0, 1\}^n$ it holds that

a is positive iff at least ^k/₂ of the k points in P ∪ N closest to a belong to P.

It is assumed that for every *a*, the *k* smallest distances of *a* from the prototypes are all smaller than the other $|P \cup N| - k$ distances from the prototypes. Thus the case k = 1 is the same as the nearest neighbor representation. The size of the representation is again $|P \cup N|$. The *k*-nearest neighbor complexity, k-NN(f), of f is the minimum of the sizes of the *k*-nearest neighbor representations of f.

イロト イヨト イヨト

Nearest neighbor problem and linear decision trees

Peter Hajnal SETIT, online meeting, 2020

<回>< E> < E> < E> <

э

Lemma

For every k and every Boolean function f it holds that $LDT(f) \leq (3 + o(1)) \cdot k \cdot NN(f)$.

Bounds

Peter Hajnal SETIT, online meeting, 2020

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bounds

Theorem

For every k it holds that

$$k\text{-}NN(IP_n) \geq \frac{n}{6+o(1)}.$$

Peter Hajnal SETIT, online meeting, 2020

・ロト ・回 ト ・ ヨト ・ ヨト …

Thank you for your attention!

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □