Nearest neighbor representations of Boolean functions

(Joint work with György Turán and Zhihao Liu)

Peter Hajnal

Bolyai Institute, University Szeged

18th of September, 2020.

Definition

A nearest neighbor (NN) representation of a Boolean function

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

is a pair of disjoint subsets (P, N) of \mathbb{R}^{n} such that for every $a \in\{0,1\}^{n}$

- if a is positive $/ f(a)=1$ then there exists $b \in P$ such that for every $c \in N$ it holds that $d(a, b)<d(a, c)$,
- if a is negative $/ f(a)=0$ then there exists $b \in N$ such that for every $c \in P$ it holds that $d(a, b)<d(a, c)$.

Language of learning and complexity

Language of learning and complexity

- The points in P (resp., N) are called positive (resp., negative) prototypes.

Language of learning and complexity

- The points in P (resp., N) are called positive (resp., negative) prototypes.
- The size of the representation is $|P \cup N|$.

Language of learning and complexity

- The points in P (resp., N) are called positive (resp., negative) prototypes.
- The size of the representation is $|P \cup N|$.
- The nearest neighbor complexity, $N N(f)$, of f is the minimum of the sizes of the representations of f.

Language of learning and complexity

- The points in P (resp., N) are called positive (resp., negative) prototypes.
- The size of the representation is $|P \cup N|$.
- The nearest neighbor complexity, $N N(f)$, of f is the minimum of the sizes of the representations of f.
- A nearest neighbor representation is Boolean if $P \cup N \subseteq\{0,1\}^{n}$, i.e., if the prototypes are Boolean vectors.

Language of learning and complexity

- The points in P (resp., N) are called positive (resp., negative) prototypes.
- The size of the representation is $|P \cup N|$.
- The nearest neighbor complexity, $N N(f)$, of f is the minimum of the sizes of the representations of f.
- A nearest neighbor representation is Boolean if $P \cup N \subseteq\{0,1\}^{n}$, i.e., if the prototypes are Boolean vectors.
- The minimum of the sizes of the Boolean nearest neighbor representations is denoted by $\operatorname{BNN}(f)$.

Symmetric functions and their complexity

Symmetric functions and their complexity

Definition

A Boolean function is symmetric if its value depends only on the weight of its input.

Symmetric functions and their complexity

Definition

A Boolean function is symmetric if its value depends only on the weight of its input.

- A symmetric function f can be specified by a set $I_{f} \subseteq\{0, \ldots, n\}$ such that $f(a)=1$ iff $|a| \in I_{f}$.

Symmetric functions and their complexity

Definition

A Boolean function is symmetric if its value depends only on the weight of its input.

- A symmetric function f can be specified by a set $I_{f} \subseteq\{0, \ldots, n\}$ such that $f(a)=1$ iff $|a| \in I_{f}$.

Proposition

a) For every n-variable symmetric function f it holds that $N N(f) \leq n+1$.
b) $\operatorname{BNN}\left(x_{1} \oplus x_{2} \oplus \ldots \oplus x_{n}\right)=2^{n}$.

Threshold functions

Threshold functions

Definition

A Boolean function f is a threshold function if there are weights $w_{1}, \ldots, w_{n} \in \mathbb{R}$ and a threshold $t \in \mathbb{R}$ such that for every $x \in\{0,1\}^{n}$ it holds that $f(x)=1$ iff $w_{1} x_{1}+\ldots+w_{n} x_{n} \geq t$.

Threshold functions

Definition

A Boolean function f is a threshold function if there are weights $w_{1}, \ldots, w_{n} \in \mathbb{R}$ and a threshold $t \in \mathbb{R}$ such that for every $x \in\{0,1\}^{n}$ it holds that $f(x)=1$ iff $w_{1} x_{1}+\ldots+w_{n} x_{n} \geq t$.

- The special case when $w_{1}=\ldots=w_{n}=1$ is denoted by $T H_{n}^{t}$.

Threshold functions

Definition

A Boolean function f is a threshold function if there are weights $w_{1}, \ldots, w_{n} \in \mathbb{R}$ and a threshold $t \in \mathbb{R}$ such that for every $x \in\{0,1\}^{n}$ it holds that $f(x)=1$ iff $w_{1} x_{1}+\ldots+w_{n} x_{n} \geq t$.

- The special case when $w_{1}=\ldots=w_{n}=1$ is denoted by $T H_{n}^{t}$.
- In particular, when $t=\frac{n}{2}$, we get the n-variable majority function $M A J_{n}(x)$.

Complexity of threshold functions

Complexity of threshold functions

Theorem

a) For every threshold function f it holds that $N N(f)=2$.
b) If n is odd then $B N N\left(M A J_{n}\right)=2$ and if n is even then $B N N\left(M A J_{n}\right) \leq \frac{n}{2}+2$.
c) $B N N\left(T H_{n}^{\lfloor n / 3\rfloor}\right)=2^{\Omega(n)}$.

Upper bound for an arbitrary function

Upper bound for an arbitrary function

Theorem

For every n-variable Boolean function it holds that

$$
N N(f) \leq(1+o(1)) \frac{2^{n+2}}{n}
$$

Lower bound for a generic function

Lower bound for a generic function

Theorem

For almost all n-variable Boolean functions

$$
N N(f)>\frac{2^{n / 2}}{n} .
$$

Explicit functions

Explicit functions

The mod 2 inner product function of $2 n$ variables is defined by

$$
I P_{n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\left(x_{1} \wedge y_{1}\right) \oplus \ldots \oplus\left(x_{n} \wedge y_{n}\right)
$$

Explicit functions

The mod 2 inner product function of $2 n$ variables is defined by

$$
I P_{n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\left(x_{1} \wedge y_{1}\right) \oplus \ldots \oplus\left(x_{n} \wedge y_{n}\right)
$$

Theorem

a) $N N\left(I P_{n}\right) \geq 2^{n / 2}$.
b) $N N\left(x_{1} \oplus \cdots \oplus x_{n}\right) \geq n+1$.

Nearest neighbor problem and sign-representation of Boolean functions

Nearest neighbor problem and sign-representation of Boolean functions

Lemma

If a Boolean function has a nearest neighbor representation with m prototypes then it has a sign-representation over $\{1,2\}$ having m terms.

Sign-representation

Sign-representation

Definition

A multivariate polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ is a sign-representation of a Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ if for every $x=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ it holds that $p(x) \geq 0$ iff $f(x)=1$.

Sign-representation

Definition

A multivariate polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ is a sign-representation of a Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ if for every $x=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ it holds that $p(x) \geq 0$ iff $f(x)=1$.

Definition

A multivariate polynomial $p\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)$ is a $\{1,2\}$-sign-representation of a Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ if for every $\tilde{x}=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right) \in\{1,2\}^{n}$ it holds that $p(\tilde{x}) \geq 0$ iff $\tilde{f}(\tilde{x})=f(x)=1$.

k-nearest neighbor representation

k-nearest neighbor representation

A k-nearest neighbor ($k-N N$) representation of f is a pair of disjoint subsets (P, N) of \mathbb{R}^{n}, such that for every $a \in\{0,1\}^{n}$ it holds that

k-nearest neighbor representation

A k-nearest neighbor ($k-N N$) representation of f is a pair of disjoint subsets (P, N) of \mathbb{R}^{n}, such that for every $a \in\{0,1\}^{n}$ it holds that

- a is positive iff at least $\frac{k}{2}$ of the k points in $P \cup N$ closest to a belong to P.

k-nearest neighbor representation

A k-nearest neighbor ($k-N N$) representation of f is a pair of disjoint subsets (P, N) of \mathbb{R}^{n}, such that for every $a \in\{0,1\}^{n}$ it holds that

- a is positive iff at least $\frac{k}{2}$ of the k points in $P \cup N$ closest to a belong to P.

It is assumed that for every a, the k smallest distances of a from the prototypes are all smaller than the other $|P \cup N|-k$ distances from the prototypes. Thus the case $k=1$ is the same as the nearest neighbor representation. The size of the representation is again $|P \cup N|$. The k-nearest neighbor complexity, $k-N N(f)$, of f is the minimum of the sizes of the k-nearest neighbor representations of f.

Nearest neighbor problem and linear decision trees

Nearest neighbor problem and linear decision trees

Lemma
For every k and every Boolean function f it holds that $\operatorname{LDT}(f) \leq(3+o(1)) \cdot k-N N(f)$.

Bounds

Bounds

Theorem

For every k it holds that

$$
k-N N\left(I P_{n}\right) \geq \frac{n}{6+o(1)}
$$

Thank you for your attention!

