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HAMILTONIAN KNESER GRAPHS
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The Kneser graph K(n,k) has as vertices the k-subsets of {1,2, . . .,n}. Two vertices are
adjacent if the corresponding k-subsets are disjoint. It was recently proved by the first
author [2] that Kneser graphs have Hamilton cycles for n ≥ 3k. In this note, we give a
short proof for the case when k divides n.

1. Preliminaries

Suppose that n ≥ k ≥ 1 are integers and let [n] := {1,2, . . .,n}. We denote
the set of all k-subsets of a set S by

(S
k

)
. The Kneser graph K(n,k) has

as vertices the k-subsets of [n], that is, V (K(n,k))=
([n]

k

)
. Two vertices are

adjacent if the corresponding k-subsets are disjoint. Using a rather involved
induction (on k), it was recently proved by Ya-Chen Chen that

Theorem 1 [2]. The Kneser graph K(n,k) has a Hamilton cycle for n≥3k.

The aim of this note is to present a short proof when k divides n.
It is widely conjectured that all Kneser graphs but the Petersen graph,

K(5,2), have Hamilton cycles. Lovász [3] conjectures that every (finite) con-
nected, vertex-transitive graph has a Hamilton path. For further results and
an extensive list of references see [2].
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2. Proof of Theorem when n=pk

We use some simple, new ideas for this case. First, we use Baranyai’s parti-
tion theorem to partition the vertices of the Kneser graph into subsets which
induce complete subgraphs; then we use Gray codes to join these subsets
together to obtain a Hamilton cycle.

Suppose that k divides n, and let n/k=p. Observe that
(n
k

)
=p
(n−1
k−1

)
. Let

us denote
(n−1
k−1

)
by m. A Baranyai partition of the complete hypergraph

([n]
k

)
is a family of m partitions of [n], such that for any given i (with 1≤ i≤m),
one has that A1

i ∪ . . .∪Ap
i = [n], that |A1

i | = . . . = |Ap
i | = k, and that each

k-subset of [n] occurs among the Aj
i ’s exactly once. The existence of such a

partition was proved in [1].
A Gray code, C(a,b), is a list (D1,D2, . . .,Dm) of the members of

([a]
b

)
,

such that |Di∩Di+1|= |Dm∩D1|=b−1 for 1≤ i<m, where now m :=
(a
b

)
. It

is easy to see (by induction) that Gray codes exist for all a≥b≥1 (see [4]).

Theorem. Suppose that n/k is an integer at least 3, then K(n,k) has a
Hamilton cycle.

Proof. Set n=pk and m=
(n−1
k−1

)
. Consider a Baranyai partition(

[n]
k

)
=

m⋃
i=1

{A1
i , A

2
i , . . ., A

p
i }.

We may suppose that the element n is in Ap
i , for every i with 1≤ i≤m. We

obtain that

{Ap
1 \ {n}, . . ., Ap

m \ {n}} =

(
[n − 1]
k − 1

)
.

Without loss of generality (permute the m partitions if necessary), we
may suppose that Ap

1 \{n}, Ap
2 \{n}, . . . ,Ap

m \{n} form a Gray code C(n−
1,k−1). Let xi be the element in Ap

i but not in Ap
i+1, so that {xi}=Ap

i \A
p
i+1,

for 1≤ i<m, and let {xm}=Ap
m \Ap

1.
Without loss of generality (permute the disjoint A1

i+1,A
2
i+1, . . . ,A

p−1
i+1 if

necessary, here we shall use p−1≥2), we may suppose that xi �∈A1
i+1 (and

that xm /∈A1
1). Note that Ap

i ⊂Ap
i+1∪{xi}. Since A1

i+1 is disjoint from Ap
i+1

and does not contain xi, we have that

Ap
i ∩ A1

i+1 = ∅.
Now,

A1
1, A2

1, . . . , A
p
1, A1

2, A2
2, . . . , A

p
2, . . . , Ap

m−1, A1
m, A2

m, . . ., Ap
m

form a Hamilton cycle of K(n,k).
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