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Hall ratio of the Mycielski graphs
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Abstract

Let n(G) denote the number of vertices of a graph G and let �(G) be the independence number of G, the maximum number of
pairwise nonadjacent vertices of G. The Hall ratio of a graph G is defined by

�(G) = max

{
n(H)

�(H)
: H ⊆ G

}
,

where the maximum is taken over all induced subgraphs H of G. It is obvious that every graph G satisfies �(G)��(G)��(G)

where � and � denote the clique number and the chromatic number of G, respectively. We show that the interval [�(G), �(G)] can
be arbitrary large by estimating the Hall ratio of the Mycielski graphs.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The chromatic number of a graph G, �(G), is certainly at least the number of vertices of G, n(G), divided by its
independence number, �(G). Therefore

�(G) = max

{
n(H)

�(H)
: H ⊆ G

}
,

the Hall ratio of G , is a natural lower bound for �(G). The Hall ratio is so named because of its connection with
Hall’s condition, which is of interest in the study of list-colorings; see [2,4–6]. It is immediate that �(G)��(G) where
�(G) is the clique number, the maximum number of pairwise adjacent vertices in G. The Hall ratio is also related to a
well-known parameter, �f(G), the fractional chromatic number that has many equivalent definitions; see [10], where
one can implicitly find the inequality �(G)��f(G). Thus we have

�(G)��(G)��f(G)��(G). (1)
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The interval [�(G), �(G)] can be arbitrary large. In fact it follows from the discussions in [10] (Chapter 3) concerning
the Kneser graphs that for every � > 0 and integer k�2 there is a Kneser graph G with �(G) = k and �(G) < 2 + �.
However, the interval [�(G), �(G)] is bounded for all Kneser graphs G, because �(G) = �f(G)��(G) + 1.

In this paper we show that for the well known sequence of the Mycielski graphs, Mk , the length of both intervals
[�(Mk), �(Mk)] and [�(Mk), �(Mk)] tends to infinity with k. For the second interval this follows from a result of
Larson et al. [8] (see also in [10]) establishing the recurrence

�f(Mk) = �f(Mk−1) + 1

�f(Mk−1)
. (2)

The recurrence (2) implies that �f(Mk) is �(
√

k); actually the bounds
√

2k < �f(Mk) <

√
2k + 1

2 log k are derived in
[9] (Problem 60). Because �(Mk) = k and �(Mk)��f(Mk), the length of [�(Mk), �(Mk)] tends to infinity with k.

To see that the intervals [�(Mk), �(Mk)] are getting large as well, we shall prove here a simple but perhaps surprising
property of the Mycielski graphs in Theorem 1. This result combined with the lower bounds on the Ramsey number
R(3, m) will give an estimate of �(Mk) in Theorem 2.

2. The Hall ratio of the Mycielski graphs

The Mycielski graphs Mk form a sequence of triangle-free k-chromatic graphs defined recursively starting with
M2 = K2 and Mk is obtained from Mk−1 by adding an independent set of vertices of size n(Mk−1) that twin those
in Mk−1 (i.e., their neighbors are exactly the neighbors of their mate in Mk−1), then adding one further vertex, vk,

which is adjacent to each of the vertices in the added independent set. We observe the following remarkable property
of Mycielski graphs [1].

Theorem 1. Every connected triangle-free graph with n vertices is an induced subgraph of the Mycielski graph Mn.

Proof. Let G be a connected triangle-free graph of order n. We shall prove the existence of an embedding of G into Mn

by induction on n. Clearly the result holds for n= 2 when G=K2. Assume that any connected triangle-free graph with
n−1 vertices has an embedding into Mn−1 and so into Mn. Let v be a vertex of G such that G−v is still connected. By
the induction hypothesis, Mn−1 has an induced subgraph isomorphic to G− v, thus there is an embedding G′ of G− v

into Mn. Begin replacing each vertex of G′ in the neighborhood set of v by its twin in Mn. Since G is triangle-free, the
neighbors of v form an independent set, so the resulting subgraph of Mn is isomorphic to G− v as well. The additional
vertex vn of Mn is adjacent to each of the twins, thus by identifying vn with v we obtain a required embedding of G
into Mn. �

Let G be a Ramsey graph, more precisely a connected triangle-free graph with �(G)�m − 1 whose order is one
less than the Ramsey number R(3, m). (R(3, m) is the smallest integer s for which every graph of s vertices contains
either a triangle or a set of m independent vertices, see [3].) It follows from Theorem 1 that G is an induced subgraph of
Mk for k = R(3, m) − 1. A well-known result of Kim [7] is the lower bound R(3, m)�cm2/ log m for some constant
c (upper bound of the same order of magnitude was known before). This implies �(Mk)��(G)�(R(3, m) − 1)/

(m−1)�cm/ log m for m sufficiently large. Combining this with the fact that the asymptotic of �f(Mk) is
√

2k we obtain

Theorem 2. Assume that k = R(3, m) − 1(=�(m2/ log m)). Then c1m/ log m��(Mk)�c2m/
√

log m (where c1, c2
are constants).

Since �(Mk) = 2, Theorem 2 implies that the length of the interval [�(Mk), �(Mk)] tends to infinity with k.
We know very little about exact values. It is easy to verify that �(M2)=2, �(M3)= 5

2 . The subgraphs of M4 achieving
its Hall ratio, �(M4) = 8

3 , are Ramsey graphs (eight-vertex triangle-free graphs with independence number 3). The
graph M5 has at least two non-isomorphic subgraphs that achieve its Hall ratio, �(M5) = 15

5 = 18
6 .

From (2) �f(M4) = 29
10 and �f(M5) = 941

290 , these graphs yield examples where the fractional chromatic number and
Hall ratio are unequal. But how unequal can they be? Even the more modest question is unanswered, a favorite of Pete
Johnson’s (personal communication): Is �f(G)/�(G) bounded?
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