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Abstract

Let G be a connected simple graphmrertices. Gallai's conjecture asserts that the edg&sazin
be decomposed intb%} paths. LetH be the subgraph induced by the vertices of even degr€e in
Lovész showed that the conjecture is trud ifontains at most one vertex. Extending Lovasz’s result,
Pyber proved that the conjecture is truélifs a forest. A forest can be regarded as a graph in which
each block is an isolated vertex or a single edge (and so each block has maximum degree at most 1).
In this paper, we show that the conjecture is trul ifan be obtained from the emptyset by a series
of so-definedx-operations. As a corollary, the conjecture is true if each blodk of a triangle-free
graph of maximum degree at most 3.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The graphs considered here are finite, undirected, and simple (no loops or multiple edges).
A graph istriangle-freeif it contains no triangle. Acut vertexis a vertex whose removal
increases the number of components. A connected grapbniseparabléf it has no cut
vertex. Ablockof a graphG is a maximum nonseparable subgrapsoT he sets of vertices
and edges o6 are denoted by (G) and E(G), respectively. The edge with engsand
y is denoted bwy. If xy € E(G), we say thaky is incidentwith x andy is a neighbor
of x. For a subgraplt of G, Ny (x) is the set of the neighbors a&fwhich are inH, and
dy(x) = |Ng(x)| is thedegreeof xin H. If B C E(G), thenG \ B is the graph obtained
from G by deleting all the edges &. Let S € V(G). G — S denotes the graph obtained
from G by deleting all the vertices db together with all the edges with at least one end
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in S (WhensS = {x}, we simplify this notation taG — x.) We say thaH is the subgraph
inducedby Sif V(H) = S andxy € E(H) if and only if xy € E(G); alternatively,
H=G—(V(G)\S). (Sis called arindependent sét £(H) = ¥.) TheE-subgraphof G
is the subgraph induced by the vertices of even degr&e in

A path-decompositionf a graphG is a sef{ P1, P», ..., P} of paths such thak (G) =
Uf.‘:lE(Pi) andE(P;) N E(P;) = @if i # j. We say thaG is decomposed intk paths if
G has a path-decompositidn with |D| = k. A trivial path is one that consists of a single
vertex. By the use of trivial paths, if a graph is decomposed into at kymeths, then it can
be decomposed into exacthpaths.

Erdds asked what is the minimum number of paths into which every connected graph on
nvertices can be decomposed. Gallai conjectured that this numpgt.igSee [4].)

Gallai’'s conjecture. If Gis a connected graph anvertices, therG can be decomposed
into [5] paths.

Toward a proof of the conjecture, Lovasz [4] made the first significant contribution by
showing that a grapl® on n vertices (not necessary to be connected) can be decomposed
into | 5] paths and circuits. Based on Lovasz’s result, Donald [2] showed3ten be
decomposed intdg%nj paths, which was improved tpénj independently by Dean and
Kouider [1] and Yan [7]. (An informative survey of the related topics was given by Pyber
[5].) As a consequence of Lovasz’s theor&man be decomposed int§ | paths ifG has at
most one vertex of even degree, that is, if ERsubgraph ofs contains at most one vertex.
Pyber [6] strengthened this result by showing Batan be decomposed intg | paths if
theE-subgraph o6 is a forest. A forest can be regarded as a graph in which each block is an
isolated vertex or a single edge. Thus, each block of a forest has maximum degree at most
1. In this paper, we show that a gra@on n vertices (not necessary to be connected) can
be decomposed intd; | paths if each block of thE-subgraph oG is a triangle-free graph
of maximum degree at most 3. Here, the requirement of triangle-free cannot be dropped.
Consider a graplt consisting of & vertex-disjoint triangles. S¢V (G)| = 3k and the
E-subgraph ofG is G itself. Since any path-decomposition of a triangle needs at least 2
paths, we see that any path-decompositio® oieeds at least2= §|V(G)| paths.

In the next section, we define a graph operation, callegeration. In Section 3, we use
Lovasz’'s path sequence technique [4] to obtain some technical lemmas, and then, in the last
section, prove a more general res@tcan be decomposed intg | paths if itsE-subgraph
can be obtained from the emptyset by a series-operations.

2. a-operations anda-graphs

Definition 2.1. Let H be a graph. A paits, y), consisting of an independent sgand a
vertexy € S, is called anx-pair if the following holds: for every vertex € S\ {y}, if
dy(v) >2,then (a)Yly (u) <3forallu € Ny (v) and (b)dy (u) = 3 for at most two vertices

u € Ny (v). (Thatis, all the neighbors afhas degree at most 3, at most two of which has
degree exactly 3.) An-operationon H is either (i) add an isolated vertex or (ii) pick an
o-pair (S, y) and add a vertex joined to each vertex d, in which case the ordered triple
(x, S, y) is called thex-triple of the a-operation.
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Definition 2.2. An a-graphis a graph that can be obtained from the empty setvia a sequence
of a-operations.

Let us define the empty set to be@agraph. Then, a graph anvertices is an-graph if
and only if it can be obtained by anoperation on some-graph om — 1 verticesp > 1.
It follows that if G is ana-graph onn vertices, then the vertices & can be ordered as
x1x2...x, such that ifG; denotes the subgraph induced fay, xo, ..., x;}, thenG; is
ana-graph obtained by am-operation onG;_1, where I<i <n, Go = ¢, andG,, = G.
Such an ordering1x; . .. x, is called arx-orderingof V (G). Alternatively, a grapl@ is an
a-graph if and only ifV (G) has amx-ordering. We note that by the definition, argraph
is triangle-free.

Let G be anx-graph andH a subgraph o. It is not difficult to see that the restriction of
ano-ordering ofV(G) to V(H) is ana-ordering of V (H). This gives that

Proposition 2.3. Any subgraph of an-graph is ano-graph.

A subdivisionof a graphG is a graph obtained froi@ by replacing each edge & with
a path (inserting vertices into edges®f.

Proposition 2.4. Any subdivision of an-graph is anx-graph.

Proof. It suffices to show that iH is a graph obtained from angraphG by replacing
an edge with a path, thed is ana-graph. Suppose thaty € E(G) andH is obtained
from G by replacingxy with a pathxajaz...ary, wherek>1. We may suppose that
V1V2...XV; ... VY ...V, IS ana-ordering of V(G). Then,vyva. .. xv; ... vja1az...ary
... v, is ana-ordering ofV(H), and thudH is ana-graph. [

Proposition 2.5. Forests arex-graphs.

Proof. LetF be aforest. IfE(F) = ¢, then any ordering of (F) is ana-ordering. Suppose
therefore thate (F) # @. SinceF is a forest, there is € V(F) such that/p(x) = 1. Let

H = F — x. ThenH is a forest. We may use induction on the number of vertices, and thus
by the induction hypothesisl is ana-graph. Lely be the unique neighbor &fin F. Then,F

is obtained fronH by addingx joined toy, which is anx-operation withx-triple (x, {y}, y).

SoF is ana-graph. [

Let C be a circuit of length at least 4. Th@€xtan be obtained by adding a vertex joined to
the nonadjacent ends of a p&lof length at least 2, which is arroperation orP. But, by
Proposition2.5, P is ana-graph, and hencg is ana-graph. In fact, we have the following
stronger result.

Proposition 2.6. If each block of G is a triangle-free graph of maximum degree at iost
then G is am-graph.

Proof. We use induction ofV (G)|. Clearly, the proposition holds ¥ (G)| = 1. Suppose
that|V (G)| > 2 and the proposition holds for all’ with |V (G")| < |V (G)|.
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LetBbe an end-block a&. (An end-blocks a block that contains at most one cut vertex.)
If B = G (thatis, ifGis 2-connected), l¢ibe any vertex oB; otherwise, leb be the unique
cut vertex contained iB. Let x be a neighbor ob in B and we consider the neighbors of
X. Note thatNp(x) = Ng(x). LetS = Ng(x) andH = G — x. SinceB is triangle-free,
we have thaSis an independent set and thus not a neighbor of any vertaxe S\ {b},
and sinceB has maximum degree at mostd3; (1) <3 for allu € Ny (v). Again, sinceB
has maximum degree at most 3, we have thai (v)| <2 and thus there are at most two
u € Ny (v) withdg (u) = 3. SoGis obtained by an-operation orH with a-triple (x, S, b).
But, by the induction hypothesibl is ana-graph, and so i&. [

3. Technical lemmas

In this section, we use Lovasz’s path sequence technique [4] to prove some technical
lemmas which are needed in the next section. First, we need some additional definitions.

Definition 3.1. Suppose thaD is a path-decomposition of a gra For a vertexv €
V(G), D(v) denotes the number of the nontrivial pathgirthat havev as an end. (Ik is

a vertex of odd degree i@, thenD(x) > 1. This fact will be used frequently in the next
section.)

Definition 3.2. Let a be a vertex in a grapt® and letB be a set of edges incident with
a. SetH = G \ B. Suppose thaD is a path-decomposition ¢1. For anyA C B, say
thatA = {ax; : 1<i <k}, we say tha is addibleat a with respect tdD if H U A has a
path-decompositio®* such that

(@) ID*| = |DJ;

(b) D*(a) = D(a) + |A| andD*(x;) = D(x;) — 1, 1<i <k;

(c) D*(v) = D(v) foreachv € V(G) \ {a, x1, ..., x;}.

We call suchD* atransformationof D by addingA ata. Whenk = 1, we simply say that
ax1 is addible at with respect tdD.

Lemmas3.3and3.5below are special cases of Lemmas 4.3 and 4.6 in [3], respectively,
whose proofs are rather complicated. (A path decomposition is a special case of a path
covering.) To be self-contained, we present proofs without referring to [3].

Lemma 3.3. Let a be a vertex in a graph G and &t = G \ {ax1, ax2..., ax;}, where
x; € Ng(a). Suppose thab is a path-decomposition of H. Then either
(i) thereisx € {x1, x2, ..., xs} such that ax is addible at a with respect®g or

(i) Yi_1 D) <I{v € N(a) : D(v) = 0}].
Proof. Consider the following set of pairs:
R={(x,P): x € {x1,..., x5} and P is a nontrivial path irD with endx}.

We note thaiR| = > ";_; D(x;). For each pailx, P) € R, we associatéx, P) with a
sequenceé, P1b P» . .. constructed as follows.
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(1) bp=x; PL=P.

(2) Suppose thaP; has been defined> 1. If P; does not contaim, then the sequence is
finished atP;; otherwise leb; 1 be the vertex just befoiif one goes along; starting
atp;.

(3) Suppose that; has been defined> 1. If D(b;) = 0, the sequence is finishediat
otherwise, letP; be a path irD starting ab;.

It is clear thatb; 1 is uniquely determined by the pa# (containingb;1a) and its end

b;. Such a pai(P;, b;) is unique since there is only one pathfirthat contain®; 14, and

moreover, the two ends of the path are distinct. Thusé b; if i # j, and therefore, the

sequencé; P1bo P; . . . is finite.

If the sequence is finished at a path ((2) above), letP/ = (P; \ {biy1a}) U {bia},
1<i<t —1,andP/ = P, U {b,a}. ThenD* = (D \ {P1, Py, ..., P,}) U{P], P}, ..., P[}
is a path-decomposition &f U {ax} such thalD*| = |D|, D*(a) = D(a) + 1, D*(x) =
D(x) — 1, andD*(v) = D(v) foreachv € V(G) \ {a, x}, and henceaxis addible at with
respect td.

In what follows, we assume that for each P) € R, the sequenck; P1b2 P> ... P,_1b;
associated withix, P) is finished at a vertek, (soD(b,) = 0). Let(w, P) and(z, Q) be
two distinct pairs irR, associated with sequenaesPiw2 Pz ... P,_1w; andz101z207. ..
Om—1zm, respectively, wherey = w, Py = P, z1 =z, Q1 = Q, andD(w;) = D(z,) =
0.

We claim thatw, # z,. If this is not true, suppose, without loss of generality, that
t <m. Since the path if® containingw;a (= z,,a) is unique, we have tha,_1 = Q,,_1.
Now, w;_1 is the end ofP;_; with w; betweenw,_1 anda; z,,_1 is the end ofQ,,_1
with z,,, (= w;) betweenz,,_1 anda. Such an end oP;_; (= Q,,—1) is unique. Thus,
ws—1 = Zm—1. Recursively, we have thdy = Q,,—;+1 andwi = z,,—;+1. Sincew; = w
andw € {x1,x2,...,xs}, we have thaivia ¢ E(H), that is,z,,—;+1a ¢ E(H), which
implies thatz,,_,+1 = z1, and thusn = t. It follows that P1 = Q1 andwj; = z1. This is
impossible sincéws, P1) and(zy, Q1) are two distinct pairs ifR. Thereforew; # z,,, as
claimed. Since this is true for any distinct paits, P) and(z, Q) in R, we have an injection
fromRto{x € Ny(a) : D(x) = 0}, and thus,

Y D(xi) = |R|<|{x € Nu(a) : D(x) = 0},
i=1

which completes the proof.[]
Lemma 3.4. Let G be agraph andb € E(G). Suppose thab is a path-decomposition of

H =G\ {ab}.If D(b) > |{v € Ny(a): D(v) = 0}|, then ab is addible at a with respect
D.

Proof. This is an immediate consequence of LenBrawith s =1. [
Lemma 3.5. Let a be a vertex in a graph G anl = G \ {ax1, axy, ..., axs}, where

x;i € Ng(a). Suppose thaD is a path-decomposition of H witlp(x;) > 1 for each |
1<i<s.ThenthereisA C {axy, axy, ..., axg} such that
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(i) 1A|>[%551, wherer = |{v € Ny(a) : D(v) = 0}|; and
(ii) Ais addible at a with resped®.

Proof. We use induction os — r. If s — r <0, then takeA = @, and the lemma holds
trivially. Suppose therefore that— r > 1 and the lemma holds for smaller values of r.
SinceD(x;) > 1 for eachi, 1<i <s, and using — r > 1, we have that

ZD(xi)>s >r+1=1{ve Ng(): Dw)=0}+1
i=1

By Lemma3.3 there isx € {x1, x2,..., x5}, SAyx = x;, such thatux; is addible ata
with respectD. Let D’ be a transformation dP by addingax, ata. Lets’ = s — 1 and
H' = HU{ax;} = G\ {ax1, axy, ...,axy}. ThenD' is a path-decomposition di’ with
D'(x;) = D(x;) =1 for eachi, 1<i<s'. Letr' = |{v € Ny (a) : D'(v) = 0}. Clearly,
r’ =r + 1orr, depending on whethd?’ (x;) = 0 or not. Thuss’ — r’ <s —r — 1. By the
induction hypothesis, there i§ C {ax1, axy, ..., axy} such that

() |A/|> 1555 > 18D — 520 — 15 and.

(iiy A’ is addible at with respect taD’.

SetA = A’ U {axg}. Then,A is addible ata with respect toD, and moreover|A| =
|A"| 4+ 1> [*5"]. This completes the proof.[]

Lemma 3.6. Leta be avertexinagraph G anfd = G \ {ax1, axa, ..., ax,}, wherex; €
Ng(a). Suppose thab is a path-decomposition of H witR(v) > 1 for all v € Ng(a).
Then foranyx € {x1, x2, ..., x3}, there isB C {ax1, axo, ..., axy}, such that

(i) ax € Band|B|>T4].
(ii) B is addible at a with respect tD.

Proof. Let W = H U {ax}. ThenH = W \ {ax}. SinceD(w)>1forallv € Ngy(a) U
{x1, x2, ..., x}, we have thaD(x) >1 and|{v € Ny (a) : D(v) = 0}| = 0. By Lemma
3.4, ax is addible ata with respect toD. Let D’ be a transformation oD by adding
ax at a. Without loss of generality, we may assume that x;,. Lets = h — 1. Then
W = G\ {ax1, ax2, ..., axgs}. Setr = |{v € Ny(a) : D'(v) = 0}|. We have that <1.
By Lemma3.5, there isA C {ax1, axa, ..., axs} such that

(i) 1A= 155> 18224 = 141 — 1; and

(i) Ais addible at with respect taD’.

Let B = A U {ax}. ThenB is addible ata with respect taD and|B| = |A| + 1> {%1, as
required by the lemma. [

Lemma 3.7. Let b be a vertex in a graph G anll = G \ {bx1, bxa, ..., bxi}, where
x; € Ng(b). If H has a path-decompositioR such thati{v € Ny (x;) : D(v) = 0}|<m
for each | 1<i <k, andD(b) >k + m, where m is a nonnegative intege¢hen G has a
path-decompositio®* with |D*| = |D].

Proof. We use induction ok. If k = 0 (H = G), there is nothing to prove. The lemma
holds withD* = D. Suppose therefore that> 1 and the lemma holds for smaller values
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of k. Consider the vertex;. By the given condition,
Db)=k+m>m+ 1> |{veNgkp): Dw)=0}|.

By Lemma3.4, x;b is addible atx; with respect taD. Let D’ be a transformation oP
by addingx;b at x;. Let H = H U {bx;} = G \ {bx1, bxo, ..., bx;_1}. Noting that
D' (xx) = D(x) + 1>1, we have that for eadh1<i <k — 1,

v e N (xi) : D'(v) = 0}|<[{v € Ny(x;) 1 D(v) = 0}|<m,

while D' (b) = D(b) — 1> (k — 1) + m. SinceD’ is a path-decomposition gi’, and by
the induction hypothesi$ has a path-decompositidd* with |D*| = |D’|, which gives
that|D*| = |D| since|D’| = | D|. This completes the proof.[]

4. Main theorem

As mentioned in the introduction, Pyber [6] proved that Gallai's conjecture is true for
those graphs whode-subgraph is a forest. (Recall that tResubgraph of a grapl® is
the subgraph induced by the vertices of even degrég)i\s mentioned before, a forest
can be regarded as a graph in which each block has maximum degree at most 1. We shall
strengthen Pyber’s result by showing that Gallai’s conjecture is true for those graphs, each
block of whoseE-subgraph is a triangle-free graph of maximum degree at most 3. We first
prove the following lemma.

Lemma 4.1. Let F be the Esubgraph of a graph G. Far € V(F) and{x1, x2, ..., x5} C
Np(a), where sis odd andp (x;) <3, 2<i <s, if G\ {ax1, axz, ..., ax;} has a path de-
compositiorD such thatD(v) > 1forall v € Ng(a)U{a},then G has a path decomposition
D* with |D*| = |D|.

Proof. By Lemmag3.6, there isB C {ax1, axy, ..., axg} such that
(i) ax1 € Band|B|>[5].

(ii) Bis addible at with respect tdD.

Let D’ be a transformation dP by addingB ata. We have that

D'(a) = D(a) + |B|>|B| + 1.

Note thatsis odd. Lets = 2k + 1, and by relabelling if necessary, we may assume that
B = {ax1,axy, ... ,ax;}, wheret>[5] = k+ 1. LetH = G \ {ax;41, ax, 12, ..., axs}.
ThenD' is a path-decomposition &f such that

D)=t + 1>k +2.

Note that {ax, 1, ax;42, ..., axs}| = s—t<k.LetW = F —a. Sincedp(x;) <3,2<i <s,
we have that for any € {x;11, x;42, ..., x5}, dw(x) <2, and thusx has at most two
neighbors of even degree lth Therefore,

v e Ny(x;): D'(v) =0} <2 foreach, -+ 1<i<s.
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It follows from Lemma3.7 with m = 2 thatG has a path-decompositidd* with |D*| =
|D’| = |D|. This proves the lemma.[]

Main theorem. Let G be a graph on n vertice®ot necessarily connectedf the E-
subgraph of G is ar-graph, then G can be decomposed ing| paths.

Proof. Use induction onE(G)|. If |[E(G)| = 0, the theorem holds trivially. Suppose that
|E(G)|>1 and the theorem holds for all grapiswith |E(G’)| < |E(G)|.

Let F be theE-subgraph ofG. If E(F) = @, then it is a special case of Pyber’s result
[Theorem O, 4]. Therefore, we assume t#AF) # (. By the given conditionF is an
a-graph. Letajaz . . . a, be anx-ordering of V(F). Since an isolated vertex can be put in
any position of am-ordering, we may assume that is not an isolated vertex iR, that is,
dr(an) > 1. To simplify notation, let

a=ay,, Np(a)={x1,x2,...,x5}, and W =F —a,

wheres > 1. By definition,F is obtained from\W by addinga joined to the independent
set{x1, x2, ..., xs} with the following property: there is € {x1, x2, ..., x5}, sayy = x1,
such that ifdy (x;) > 2, thendy (1) <3 for allu € Nw (x;) and there are at most two such
u with dw (1) = 3, where Zi <s. We note that sinc€ is theE-subgraph ofG, each of
{a, x1, x2, ..., xg} has even degree 8. In what follows, we distinguish three cases.

Casel:sis odd andly (x;) < 2 for each, 2<i <s. (We only need in fact to consider that
dw (x;) <1here, butforthe later use, we consider the more general caggthal < 2.) Let
H = G\ {ax1, axz, ...,axs}. ThenF —{a, x1, x2, ..., x4} is theE-subgraph oH, which
is ana-graph by Propositio.3. It follows from the induction hypothesis thidthas a path-
decompositiorD with |D| = | 5]. Sincesis odd, we have that each of, x1, x2, . .., x;}
has odd degree iH, and by the definition o, each vertex oNg (a) (= Ng(a) \ Nr(a))
also has odd degree i ThusD(v) >1 for allv € Ng(a) U {a}. It follows from Lemma
4.1thatG has a path-decompositio®’| = |D| = | 5], which completes Case 1.

Case2: sis even andly (x;) <2 for eachi, 2<i <s. (As before, what we need here is
to consider thatly (x;) <1, but for the later use, we consider thigt(x;) <2.)

Case 2.1dw(x;) = 0. Let H = G \ {x;a}. Note thatx, anda have odd degree iH.
Clearly, F — {x;, a} is theE-subgraph oH, which is anx-graph by Propositio2.3. By
the induction hypothesis] has a path-decompositidnwith |D| = | 5]. Butdw (x;) = 0,
which implies that each neighbor af has odd degree ikl and thusD(v)>1 for all
v € Ng(x;), and usingD(a) > 1 sincea has odd degree iH, it follows that

D(a) > [{v € Ny (x5) : D(v) =0} =0.

By Lemma3.4, x;a is addible atv; with respect tdD, which yields a path-decomposition
of Gwith | 5] paths.

Case 2.2dw (xy) = 1. Letybethe unique neighbor of inW. SetH = G\{ax1, axa, ...,
axs_1, yxs}. Since{xy, x2, ..., x,} is an independent set, we have that x;, 1<i <s,
and sinces is even, it follows that each di, x1, x2, .. ., x,, y} has odd degree iH. As
seen before, thB-subgraph oH is ana-graph, and by the induction hypothedishas a
path-decompositio® with |D| = | 5. We note thal{v € Ny (x;) : D(v) =0} =0and
D(y)>1. By Lemma3.4, x;y is addible atc; with respect tdD. Let D’ be a transformation
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of D by addingxy atx,, and setH’ = H U {x;y} = G \ {ax1, axa, ..., axs;_1}. ThenD’
is a path-decomposition @i’ with |D’| = |D|, and in particularD’ (x;) = D(x;) + 1>2.
ThereforeD’(v) >1forallv € Ng(a)U{a}. Clearly,s — 1 is odd andx1, x2, ..., xs_1} C
Nr(a). Itfollows from Lemmad.1thatG has a path-decompositi@i* with |D*| = |D'| =
|D| = |5], which proves Case 2. (Remark. The case #hyatx;) = 2 is included in Case
3 below.)

Case3: There isx € {x2,...,xs} such thatdy (x) >2. Then,dw(u)<3 for allu €
Nw (x) and there are at most two suatwith dy (1) = 3. Let Ny (x) = {u1, uo, ..., us}
and consider the s&t = Np(x) = {a, u1, uz, ..., us}. Since anx-graph is triangle-free,
we see thaSis an independent set. L&t = F —x andH = G \ {xv : v € §}. Since
dw (u;) <3 for each, 1<i <¢, we have that

dz(u;)<2 foreachi, 1<i</. 4.1)

If ¢is even, thenS| = ¢ 4+ 1is odd, and by (4.1), we have CaseZ afidx paly here the
same role a¥V anda there.) Suppose therefore thais odd. Then, sincé = dy (x) >2,
we havel > 3. But there are at most twg with dy (1z;) = 3, by relabelling if necessary,
we may assume thaly (u¢) <2, and salz (u¢) < 1. Using the arguments in Case 2 with
in place ofa and taking (4.1) into account,df; (uy) = 0, we have Case 2.1;df; (uy) = 1,
we have Case 2.2. This proves Case 3, and so completes the proof of the thediem.

We conclude the paper with the following corollary which is a combination of Proposition
2.6and the Main theorem.

Corollary. Let G be a graph on n verticgaot necessarily connectedf each block of the
E-subgraph of G is a triangle-free graph with maximum degree at Ba$ten G can be
decomposed intp5 | paths
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