Path decompositions and Gallai’s conjecture

Genghua Fan

Department of Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China

Received 23 August 2002
Available online 11 November 2004

Abstract

Let G be a connected simple graph on n vertices. Gallai’s conjecture asserts that the edges of G can be decomposed into $\lceil \frac{n}{2} \rceil$ paths. Let H be the subgraph induced by the vertices of even degree in G. Lovász showed that the conjecture is true if H contains at most one vertex. Extending Lovász’s result, Pyber proved that the conjecture is true if H is a forest. A forest can be regarded as a graph in which each block is an isolated vertex or a single edge (and so each block has maximum degree at most 1). In this paper, we show that the conjecture is true if H can be obtained from the emptyset by a series of so-defined α-operations. As a corollary, the conjecture is true if each block of H is a triangle-free graph of maximum degree at most 3.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Path; Decomposition; Gallai’s conjecture

1. Introduction

The graphs considered here are finite, undirected, and simple (no loops or multiple edges). A graph is triangle-free if it contains no triangle. A cut vertex is a vertex whose removal increases the number of components. A connected graph is nonseparable if it has no cut vertex. A block of a graph G is a maximum nonseparable subgraph of G. The sets of vertices and edges of G are denoted by $V(G)$ and $E(G)$, respectively. The edge with ends x and y is denoted by xy. If $xy \in E(G)$, we say that xy is incident with x and y is a neighbor of x. For a subgraph H of G, $N_H(x)$ is the set of the neighbors of x which are in H, and $d_H(x) = |N_H(x)|$ is the degree of x in H. If $B \subseteq E(G)$, then $G \setminus B$ is the graph obtained from G by deleting all the edges of B. Let $S \subseteq V(G)$. $G - S$ denotes the graph obtained from G by deleting all the vertices of S together with all the edges with at least one end.

E-mail address: fan@fzu.edu.cn (G. Fan).

0095-8956/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
in S. (When $S = \{x\}$, we simplify this notation to $G - x$.) We say that H is the subgraph induced by S if $V(H) = S$ and $xy \in E(H)$ if and only if $xy \in E(G)$; alternatively, $H = G - (V(G) \setminus S)$. ($S$ is called an independent set if $E(H) = \emptyset$.) The E-subgraph of G is the subgraph induced by the vertices of even degree in G.

A path-decomposition of a graph G is a set $\{P_1, P_2, \ldots, P_k\}$ of paths such that $E(G) = \bigcup_{i=1}^{k} E(P_i)$ and $E(P_i) \cap E(P_j) = \emptyset$ if $i \neq j$. We say that G is decomposed into k paths if G has a path-decomposition \mathcal{D} with $|\mathcal{D}| = k$. A trivial path is one that consists of a single vertex. By the use of trivial paths, if a graph is decomposed into at most k paths, then it can be decomposed into exactly k paths.

Erdős asked what is the minimum number of paths into which every connected graph on n vertices can be decomposed. Gallai conjectured that this number is $\lceil \frac{n}{2} \rceil$. (See [4].)

Gallai’s conjecture. If G is a connected graph on n vertices, then G can be decomposed into $\lceil \frac{n}{2} \rceil$ paths.

Toward a proof of the conjecture, Lovász [4] made the first significant contribution by showing that a graph G on n vertices (not necessary to be connected) can be decomposed into $\lceil \frac{n}{2} \rceil$ paths and circuits. Based on Lovász’s result, Donald [2] showed that G can be decomposed into $\lceil \frac{3}{4}n \rceil$ paths, which was improved to $\lceil \frac{3}{4}n \rceil$ independently by Dean and Kouider [1] and Yan [7]. (An informative survey of the related topics was given by Pyber [5].) As a consequence of Lovász’s theorem, G can be decomposed into $\lceil \frac{n}{2} \rceil$ paths if G has at most one vertex of even degree, that is, if the E-subgraph of G contains at most one vertex. Pyber [6] strengthened this result by showing that G can be decomposed into $\lceil \frac{n}{2} \rceil$ paths if the E-subgraph of G is a forest. A forest can be regarded as a graph in which each block is an isolated vertex or a single edge. Thus, each block of a forest has maximum degree at most 1. In this paper, we show that a graph G on n vertices (not necessary to be connected) can be decomposed into $\lceil \frac{n}{2} \rceil$ paths if each block of the E-subgraph of G is a triangle-free graph of maximum degree at most 3. Here, the requirement of triangle-free cannot be dropped. Consider a graph G consisting of $3k$ vertex-disjoint triangles. So $|V(G)| = 3k$ and the E-subgraph of G is G itself. Since any path-decomposition of a triangle needs at least 2 paths, we see that any path-decomposition of G needs at least $2k = \frac{3}{4}|V(G)|$ paths.

In the next section, we define a graph operation, called α-operation. In Section 3, we use Lovász’s path sequence technique [4] to obtain some technical lemmas, and then, in the last section, prove a more general result: G can be decomposed into $\lceil \frac{n}{2} \rceil$ paths if its E-subgraph can be obtained from the emptyset by a series of α-operations.

2. α-operations and α-graphs

Definition 2.1. Let H be a graph. A pair (S, y), consisting of an independent set S and a vertex $y \in S$, is called an α-pair if the following holds: for every vertex $v \in S \setminus \{y\}$, if $d_H(v) \geq 2$, then (a) $d_H(u) \leq 3$ for all $u \in N_H(v)$ and (b) $d_H(u) = 3$ for at most two vertices $u \in N_H(v)$. (That is, all the neighbors of v have degree at most 3, at most two of which has degree exactly 3.) An α-operation on H is either (i) add an isolated vertex or (ii) pick an α-pair (S, y) and add a vertex x joined to each vertex of S, in which case the ordered triple (x, S, y) is called the α-triple of the α-operation.
Definition 2.2. An α-graph is a graph that can be obtained from the empty set via a sequence of α-operations.

Let us define the empty set to be an α-graph. Then, a graph on n vertices is an α-graph if and only if it can be obtained by an α-operation on some α-graph on $n - 1$ vertices, $n \geq 1$. It follows that if G is an α-graph on n vertices, then the vertices of G can be ordered as $x_1x_2 \ldots x_n$ such that if G_i denotes the subgraph induced by $\{x_1, x_2, \ldots, x_i\}$, then G_i is an α-graph obtained by an α-operation on G_{i-1}, where $1 \leq i \leq n$, $G_0 = \emptyset$, and $G_n = G$. Such an ordering $x_1x_2 \ldots x_n$ is called an α-ordering of G. Alternatively, a graph G is an α-graph if and only if $V(G)$ has an α-ordering. We note that by the definition, an α-graph is triangle-free.

Let G be an α-graph and H a subgraph of G. It is not difficult to see that the restriction of an α-ordering of $V(G)$ to $V(H)$ is an α-ordering of $V(H)$. This gives that

Proposition 2.3. Any subgraph of an α-graph is an α-graph.

A subdivision of a graph G is a graph obtained from G by replacing each edge of G with a path (inserting vertices into edges of G).

Proposition 2.4. Any subdivision of an α-graph is an α-graph.

Proof. It suffices to show that if H is a graph obtained from an α-graph G by replacing an edge with a path, then H is an α-graph. Suppose that $xy \in E(G)$ and H is obtained from G by replacing xy with a path $xa_1a_2 \ldots a_ky$, where $k \geq 1$. We may suppose that $v_1v_2 \ldots xv_1 \ldots v_jy \ldots v_n$ is an α-ordering of $V(G)$. Then, $v_1v_2 \ldots xv_1 \ldots v_ja_1a_2 \ldots a_ky \ldots v_n$ is an α-ordering of $V(H)$, and thus H is an α-graph. □

Proposition 2.5. Forests are α-graphs.

Proof. Let F be a forest. If $E(F) = \emptyset$, then any ordering of $V(F)$ is an α-ordering. Suppose therefore that $E(F) \neq \emptyset$. Since F is a forest, there is $x \in V(F)$ such that $d_F(x) = 1$. Let $H = F - x$. Then H is a forest. We may use induction on the number of vertices, and thus by the induction hypothesis, H is an α-graph. Let y be the unique neighbor of x in F. Then, F is obtained from H by adding x joined to y, which is an α-operation with α-triple $(x, \{y\}, y)$. So F is an α-graph. □

Let C be a circuit of length at least 4. Then C can be obtained by adding a vertex joined to the nonadjacent ends of a path P of length at least 2, which is an α-operation on P. But, by Proposition 2.5, P is an α-graph, and hence C is an α-graph. In fact, we have the following stronger result.

Proposition 2.6. If each block of G is a triangle-free graph of maximum degree at most 3, then G is an α-graph.

Proof. We use induction on $|V(G)|$. Clearly, the proposition holds if $|V(G)| = 1$. Suppose that $|V(G)| \geq 2$ and the proposition holds for all G' with $|V(G')| < |V(G)|$.
Let \(B \) be an end-block of \(G \). (An end-block is a block that contains at most one cut vertex.) If \(B = G \) (that is, if \(G \) is 2-connected), let \(b \) be any vertex of \(B \); otherwise, let \(b \) be the unique cut vertex contained in \(B \). Let \(x \) be a neighbor of \(b \) in \(B \) and we consider the neighbors of \(x \). Note that \(N_B(x) = N_G(x) \). Let \(S = N_G(x) \) and \(H = G - x \). Since \(B \) is triangle-free, we have that \(S \) is an independent set and thus \(b \) is not a neighbor of any vertex \(v \in S \setminus \{b\} \), and since \(B \) has maximum degree at most 3, \(d_H(u) \leq 3 \) for all \(u \in N_H(v) \). Again, since \(B \) has maximum degree at most 3, we have that \(|N_H(v)| \leq 2 \) and thus there are at most two \(u \in N_H(v) \) with \(d_H(u) = 3 \). So \(G \) is obtained by an \(x \)-operation on \(H \) with \(x \)-triple \((x, S, b)\). But, by the induction hypothesis, \(H \) is an \(x \)-graph, and so is \(G \). □

3. Technical lemmas

In this section, we use Lovász’s path sequence technique \([4]\) to prove some technical lemmas which are needed in the next section. First, we need some additional definitions.

Definition 3.1. Suppose that \(D \) is a path-decomposition of a graph \(G \). For a vertex \(v \in V(G) \), \(D(v) \) denotes the number of the nontrivial paths in \(D \) that have \(v \) as an end. (If \(x \) is a vertex of odd degree in \(G \), then \(D(x) \geq 1 \). This fact will be used frequently in the next section.)

Definition 3.2. Let \(a \) be a vertex in a graph \(G \) and let \(B \) be a set of edges incident with \(a \). Set \(H = G \setminus B \). Suppose that \(D \) is a path-decomposition of \(H \). For any \(A \subseteq B \), say \(\{ax_i: 1 \leq i \leq k\} \), we say that \(A \) is addible at \(a \) with respect to \(D \) if \(H \cup A \) has a path-decomposition \(D^* \) such that
\[(a) \quad |D^*| = |D|; \]
\[(b) \quad D^*(a) = D(a) + |A| \quad \text{and} \quad D^*(x_i) = D(x_i) - 1, 1 \leq i \leq k; \]
\[(c) \quad D^*(v) = D(v) \quad \text{for each} \quad v \in V(G) \setminus \{a, x_1, \ldots, x_k\}. \]
We call such \(D^* \) a transformation of \(D \) by adding \(A \) at \(a \) with respect to \(D \). When \(k = 1 \), we simply say that \(ax_1 \) is addible at \(a \) with respect to \(D \).

Lemmas 3.3 and 3.5 below are special cases of Lemmas 4.3 and 4.6 in [3], respectively, whose proofs are rather complicated. (A path decomposition is a special case of a path covering.) To be self-contained, we present proofs without referring to [3].

Lemma 3.3. Let \(a \) be a vertex in a graph \(G \) and let \(H = G \setminus \{ax_1, ax_2 \ldots, ax_s\} \), where \(x_i \in N_G(a) \). Suppose that \(D \) is a path-decomposition of \(H \). Then either
\[(i) \quad \text{there is} \quad x \in \{x_1, x_2, \ldots, x_s\} \quad \text{such that} \quad ax \quad \text{is addible at} \quad a \quad \text{with respect to} \quad D; \quad \text{or} \]
\[(ii) \quad \sum_{i=1}^s D(x_i) \leq |\{v \in N_H(a): D(v) = 0\}|. \]

Proof. Consider the following set of pairs:
\[R = \{(x, P): x \in \{x_1, \ldots, x_s\} \quad \text{and} \quad P \quad \text{is a nontrivial path in} \quad D \quad \text{with end} \quad x\}. \]
We note that \(|R| = \sum_{i=1}^s D(x_i) \). For each pair \((x, P) \in R\), we associate \((x, P)\) with a sequence \(b_1 P_1 b_2 P_2 \ldots\) constructed as follows.
(1) $b_1 = x; P_1 = P$.
(2) Suppose that P_i has been defined, $i \geq 1$. If P_i does not contain a, then the sequence is finished at P_i; otherwise let b_{i+1} be the vertex just before a if one goes along P_i starting at b_i.
(3) Suppose that b_i has been defined, $i \geq 1$. If $D(b_i) = 0$, the sequence is finished at b_i; otherwise, let P_i be a path in D starting at b_i.
It is clear that b_{i+1} is uniquely determined by the path P_i (containing $b_{i+1}a$) and its end b_i. Such a pair (P_i, b_i) is unique since there is only one path in D that contains $b_{i+1}a$, and moreover, the two ends of the path are distinct. Thus, $b_i \neq b_j$ if $i \neq j$, and therefore, the sequence $b_1 P_1 b_2 P_2 \ldots$ is finite.

If the sequence is finished at a path P_i (2), let $P'_i = (P_i \setminus \{b_{i+1}a\}) \cup \{b_i a\}$, $1 \leq i \leq t - 1$, and $P' = P_i \cup \{b_i a\}$. Then $D^* = (D \setminus \{P_1, P_2, \ldots, P_t\}) \cup \{P'_1, P'_2, \ldots, P'_t\}$ is a path-decomposition of $H \cup \{ax\}$ such that $|D^*| = |D|$, $D^*(a) = D(a) + 1$, $D^*(x) = D(x) - 1$, and $D^*(v) = D(v)$ for each $v \in V(G) \setminus \{a, x\}$, and hence ax is addible at a with respect to D.

In what follows, we assume that for each $(x, P) \in R$, the sequence $b_1 P_1 b_2 P_2 \ldots b_{t-1} b_t$ associated with (x, P) is finished at a vertex b_t (so $D(b_t) = 0$). Let (w, P) and (z, Q) be two distinct pairs in R, associated with sequences $w_1 P_1 w_2 P_2 \ldots P_{t-1} w_{t}$ and $z_1 Q_1 z_2 Q_2 \ldots Q_{m-1} z_m$, respectively, where $w_1 = w, P_1 = P, z_1 = z, Q_1 = Q$, and $D(w_1) = D(z_m) = 0$.

We claim that $w_t \neq z_m$. If this is not true, suppose, without loss of generality, that $t \leq m$. Since the path in D containing $w_t a$ (= $z_m a$) is unique, we have that $P_{t-1} = Q_{m-1}$. Now, w_{t-1} is the end of P_{t-1} with w_t between w_{t-1} and a; z_{m-1} is the end of Q_{m-1} with z_m (= w_t) between z_{m-1} and a. Such an end of P_{t-1} (= Q_{m-1}) is unique. Thus, $w_{t-1} = z_{m-1}$. Recursively, we have that $P_1 = Q_{m-t+1}$ and $w_1 = z_{m-t+1}$. Since $w_1 = w$ and $w \in \{x_1, x_2, \ldots, x_s\}$, we have that $w_1 a \notin E(H)$, that is, $z_{m-t+1} a \notin E(H)$, which implies that $z_{m-t+1} = z_1$, and thus $m = t$. It follows that $P_1 = Q_1$ and $w_1 = z_1$. This is impossible since (w_1, P_1) and (z_1, Q_1) are two distinct pairs in R. Therefore, $w_t \neq z_m$, as claimed. Since this is true for any distinct pairs (w, P) and (z, Q) in R, we have an injection from R to $\{x \in N_H(a) : D(x) = 0\}$, and thus,$$
\sum_{i=1}^{s} D(x_i) = |R| \leq |\{x \in N_H(a) : D(x) = 0\}|,$$
which completes the proof. □

Lemma 3.4. Let G be a graph and $ab \in E(G)$. Suppose that D is a path-decomposition of $H = G \setminus \{ab\}$. If $D(b) > |\{v \in N_H(a) : D(v) = 0\}|$, then ab is addible at a with respect to D.

Proof. This is an immediate consequence of Lemma 3.3 with $s = 1$. □

Lemma 3.5. Let a be a vertex in a graph G and $H = G \setminus \{ax_1, ax_2, \ldots, ax_s\}$, where $x_i \in N_G(a)$. Suppose that D is a path-decomposition of H with $D(x_i) \geq 1$ for each i, $1 \leq i \leq s$. Then there is $A \subseteq \{ax_1, ax_2, \ldots, ax_s\}$ such that
(i) $|A| \geq \lceil \frac{s - r}{2} \rceil$, where $r = |\{v \in N_H(a) : D(v) = 0\}|$; and
(ii) A is addible at a with respect to D.

Proof. We use induction on $s - r$. If $s - r \leq 0$, then take $A = \emptyset$, and the lemma holds trivially. Suppose therefore that $s - r \geq 1$ and the lemma holds for smaller values of $s - r$.

Since $D(x_i) \geq 1$ for each i, $1 \leq i \leq s$, and using $s - r \geq 1$, we have that

$$
\sum_{i=1}^{s} D(x_i) \geq s \geq r + 1 = |\{v \in N_H(a) : D(v) = 0\}| + 1.
$$

By Lemma 3.3, there is $x \in \{x_1, x_2, \ldots, x_s\}$, say $x = x_s$, such that ax_s is addible at a with respect to D. Let D' be a transformation of D by adding ax_s at a. Let $s' = s - 1$ and $H' = H \cup \{ax_s\} = G \setminus \{ax_1, ax_2, \ldots, ax_{s'}\}$. Then D' is a path-decomposition of H' with $D'(x_i) = D(x_i) \geq 1$ for each i, $1 \leq i \leq s'$. Let $r' = |\{v \in N_{H'}(a) : D'(v) = 0\}|$. Clearly, $r' = r + 1$ or r, depending on whether $D'(x_s) = 0$ or not. Thus, $s' - r' \leq s - r - 1$. By the induction hypothesis, there is $A' \subseteq \{ax_1, ax_2, \ldots, ax_{s'}\}$ such that

(i) $|A'| \geq \lceil \frac{s' - r'}{2} \rceil \geq \lceil \frac{(s-1)-(r+1)}{2} \rceil = \lceil \frac{s - r}{2} \rceil - 1$; and

(ii) A' is addible at a with respect to D'.

Set $A = A' \cup \{ax_s\}$. Then, A is addible at a with respect to D, and moreover, $|A| = |A'| + 1 \geq \lceil \frac{s - r}{2} \rceil$. This completes the proof. □

Lemma 3.6. Let a be a vertex in a graph G and $H = G \setminus \{ax_1, ax_2, \ldots, ax_h\}$, where $x_i \in N_G(a)$. Suppose that D is a path-decomposition of H with $D(v) \geq 1$ for all $v \in N_H(a)$. Then, for any $x \in \{x_1, x_2, \ldots, x_h\}$, there is $B \subseteq \{ax_1, ax_2, \ldots, ax_h\}$, such that

(i) $ax \in B$ and $|B| \geq \lceil \frac{h}{2} \rceil$.

(ii) B is addible at a with respect to D.

Proof. Let $W = H \cup \{ax\}$. Then $H = W \setminus \{ax\}$. Since $D(v) \geq 1$ for all $v \in N_H(a) \cup \{x_1, x_2, \ldots, x_h\}$, we have that $D(x) \geq 1$ and $|\{v \in N_H(a) : D(v) = 0\}| = 0$. By Lemma 3.4, ax is addible at a with respect to D. Let D' be a transformation of D by adding ax at a. Without loss of generality, we may assume that $x = x_h$. Let $s = h - 1$. Then $W = G \setminus \{ax_1, ax_2, \ldots, ax_h\}$. Set $r = |\{v \in N_W(a) : D'(v) = 0\}|$. We have that $r \leq 1$.

By Lemma 3.5, there is $A \subseteq \{ax_1, ax_2, \ldots, ax_s\}$ such that

(i) $|A| \geq \lceil \frac{s - r}{2} \rceil \geq \lceil \frac{(h-1)-1}{2} \rceil = \lceil \frac{h}{2} \rceil - 1$; and

(ii) A is addible at a with respect to D'.

Let $B = A \cup \{ax\}$. Then B is addible at a with respect to D and $|B| = |A| + 1 \geq \lceil \frac{h}{2} \rceil$, as required by the lemma. □

Lemma 3.7. Let b be a vertex in a graph G and $H = G \setminus \{bx_1, bx_2, \ldots, bx_k\}$, where $x_i \in N_G(b)$. If H has a path-decomposition D such that $|\{v \in N_H(x_i) : D(v) = 0\}| \leq m$ for each i, $1 \leq i \leq k$, and $D(b) \geq k + m$, where m is a nonnegative integer, then G has a path-decomposition D^* with $|D^*| = |D|$.

Proof. We use induction on k. If $k = 0$ ($H = G$), there is nothing to prove. The lemma holds with $D^* = D$. Suppose therefore that $k \geq 1$ and the lemma holds for smaller values
of \(k \). Consider the vertex \(x_k \). By the given condition,
\[
\mathcal{D}(b) \geq k + m \geq m + 1 > |\{v \in N_H(x_k) : \mathcal{D}(v) = 0\}|.
\]
By Lemma 3.4, \(x_kb \) is addible at \(x_k \) with respect to \(\mathcal{D} \). Let \(\mathcal{D}' \) be a transformation of \(\mathcal{D} \) by adding \(x_kb \) at \(x_k \). Let \(H' = H \cup \{bx_k\} = G \setminus \{bx_1, bx_2, \ldots, bx_{k-1}\} \). Noting that \(\mathcal{D}'(x_k) = \mathcal{D}(x_k) + 1 \geq 1 \), we have that for each \(i \), \(1 \leq i \leq k - 1 \),
\[
|\{v \in N_{H'}(x_i) : \mathcal{D}'(v) = 0\}| \leq |\{v \in N_H(x_i) : \mathcal{D}(v) = 0\}| \leq m,
\]
while \(\mathcal{D}'(b) = \mathcal{D}(b) - 1 \geq (k - 1) + m \). Since \(\mathcal{D}' \) is a path-decomposition of \(H' \), and by the induction hypothesis, \(G \) has a path-decomposition \(\mathcal{D}^* \) with \(|\mathcal{D}^*| = |\mathcal{D}'| \), which gives that \(|\mathcal{D}^*| = |\mathcal{D}| \) since \(|\mathcal{D}'| = |\mathcal{D}| \). This completes the proof. \(\square \)

4. Main theorem

As mentioned in the introduction, Pyber [6] proved that Gallai’s conjecture is true for those graphs whose E-subgraph is a forest. (Recall that the E-subgraph of a graph \(G \) is the subgraph induced by the vertices of even degree in \(G \).) As mentioned before, a forest can be regarded as a graph in which each block has maximum degree at most 1. We shall strengthen Pyber’s result by showing that Gallai’s conjecture is true for those graphs, each block of whose E-subgraph is a triangle-free graph of maximum degree at most 3. We first prove the following lemma.

Lemma 4.1. Let \(F \) be the E-subgraph of a graph \(G \). For \(a \in V(F) \) and \(\{x_1, x_2, \ldots, x_s\} \subseteq N_F(a) \), where \(s \) is odd and \(d_F(x_i) \leq 3 \), \(2 \leq i \leq s \), if \(G \setminus \{ax_1, ax_2, \ldots, ax_s\} \) has a path decomposition \(\mathcal{D} \) such that \(\mathcal{D}(v) \geq 1 \) for all \(v \in N_G(a) \cup \{a\} \), then \(G \) has a path decomposition \(\mathcal{D}' \) with \(|\mathcal{D}'| = |\mathcal{D}| \).

Proof. By Lemma 3.6, there is \(B \subseteq \{ax_1, ax_2, \ldots, ax_s\} \) such that
(i) \(ax_1 \in B \) and \(|B| \geq \lceil \frac{s}{2} \rceil \).
(ii) \(B \) is addible at \(a \) with respect to \(\mathcal{D} \).

Let \(\mathcal{D}' \) be a transformation of \(\mathcal{D} \) by adding \(B \) at \(a \). We have that
\[
\mathcal{D}'(a) = \mathcal{D}(a) + |B| \geq |B| + 1.
\]
Note that \(s \) is odd. Let \(s = 2k + 1 \), and by relabelling if necessary, we may assume that \(B = \{ax_1, ax_2, \ldots, ax_t\} \), where \(t \geq \lceil \frac{s}{2} \rceil = k + 1 \). Let \(H = G \setminus \{ax_{t+1}, ax_{t+2}, \ldots, ax_s\} \). Then \(\mathcal{D}' \) is a path-decomposition of \(H \) such that
\[
\mathcal{D}'(a) \geq t + 1 \geq k + 2.
\]
Note that \(|\{ax_{t+1}, ax_{t+2}, \ldots, ax_s\}| = s - t \leq k \). Let \(W = F - a \). Since \(d_F(x_i) \leq 3 \), \(2 \leq i \leq s \), we have that for any \(x \in \{x_{t+1}, x_{t+2}, \ldots, x_s\} \), \(d_W(x) \leq 2 \), and thus \(x \) has at most two neighbors of even degree in \(H \). Therefore,
\[
|\{v \in N_H(x_i) : \mathcal{D}'(v) = 0\}| \leq 2 \text{ for each } i, \ 1 \leq i \leq s.
\]
It follows from Lemma 3.7 with $m = 2$ that G has a path-decomposition \mathcal{D}^* with $|\mathcal{D}^*| = |\mathcal{D}'| = |\mathcal{D}|$. This proves the lemma. □

Main theorem. Let G be a graph on n vertices. If the E-subgraph of G is an x-graph, then G can be decomposed into $\left\lfloor \frac{n}{2} \right\rfloor$ paths.

Proof. Use induction on $|E(G)|$. If $|E(G)| = 0$, the theorem holds trivially. Suppose that $|E(G)| \geq 1$ and the theorem holds for all graphs G' with $|E(G')| < |E(G)|$.

Let F be the E-subgraph of G. If $E(F) = \emptyset$, then it is a special case of Pyber’s result [Theorem 0, 4]. Therefore, we assume that $E(F) \neq \emptyset$. By the given condition, F is an x-graph. Let $a_1a_2 \ldots a_m$ be an x-ordering of $V(F)$. Since an isolated vertex can be put in any position of an x-ordering, we may assume that a_m is not an isolated vertex in F, that is, $d_F(a_m) \geq 1$. To simplify notation, let

$$a = a_m, \quad N_F(a) = \{x_1, x_2, \ldots, x_s\}, \quad \text{and} \quad W = F - a,$$

where $s \geq 1$. By definition, F is obtained from W by adding a joined to the independent set $\{x_1, x_2, \ldots, x_s\}$ with the following property: there is $y \in \{x_1, x_2, \ldots, x_s\}$, say $y = x_1$, such that if $d_W(x_i) \geq 2$, then $d_W(u) \leq 3$ for all $u \in N_W(x_i)$ and there are at most two such u with $d_W(u) = 3$, where $2 \leq i \leq s$. We note that since F is the E-subgraph of G, each of $\{a, x_1, x_2, \ldots, x_s\}$ has even degree in G. In what follows, we distinguish three cases.

Case 1: s is odd and $d_W(x_i) \leq 2$ for each $i, 2 \leq i \leq s$. (We only need in fact to consider that $d_W(x_i) \leq 1$ here, but for the later use, we consider the more general case that $d_W(x_i) \leq 2$.) Let $H = G \setminus \{ax_1, ax_2, \ldots, ax_s\}$. Then $F - \{a, x_1, x_2, \ldots, x_s\}$ is the E-subgraph of H, which is an x-graph by Proposition 2.3. It follows from the induction hypothesis that H has a path-decomposition \mathcal{D} with $|\mathcal{D}| = \left\lfloor \frac{n}{2} \right\rfloor$. Since s is odd, we have that each of $\{a, x_1, x_2, \ldots, x_s\}$ has odd degree in H, and by the definition of F, each vertex of $N_H(a) (= N_G(a) \setminus N_F(a))$ also has odd degree in H. Thus $\mathcal{D}(v) \geq 1$ for all $v \in N_G(a) \cup \{a\}$. It follows from Lemma 4.1 that G has a path-decomposition $|\mathcal{D}'| = |\mathcal{D}| = \left\lfloor \frac{n}{2} \right\rfloor$, which completes Case 1.

Case 2: s is even and $d_W(x_i) \leq 2$ for each $i, 2 \leq i \leq s$. (As before, what we need here is to consider that $d_W(x_i) \leq 1$, but for the later use, we consider that $d_W(x_i) \leq 2$.)

Case 2.1. $d_W(x_s) = 0$. Let $H = G \setminus \{x_s, a\}$. Note that x_s and a have odd degree in H. Clearly, $F - \{x_s, a\}$ is the E-subgraph of H, which is an x-graph by Proposition 2.3. By the induction hypothesis, H has a path-decomposition \mathcal{D} with $|\mathcal{D}| = \left\lfloor \frac{n}{2} \right\rfloor$. But $d_W(x_s) = 0$, which implies that each neighbor of x_s has odd degree in H and thus $\mathcal{D}(v) \geq 1$ for all $v \in N_H(x_s)$, and using $\mathcal{D}(a) \geq 1$ since a has odd degree in H, it follows that

$$\mathcal{D}(a) > |\{v \in N_H(x_s) : \mathcal{D}(v) = 0\}| = 0.$$

By Lemma 3.4, x_s is admissible at x_s with respect to \mathcal{D}, which yields a path-decomposition of G with $\left\lfloor \frac{n}{2} \right\rfloor$ paths.

Case 2.2. $d_W(x_s) = 1$. Let y be the unique neighbor of x_s in W. Set $H = G \setminus \{ax_1, ax_2, \ldots, ax_{s-1}, yx_s\}$. Since $\{x_1, x_2, \ldots, x_s\}$ is an independent set, we have that $y \neq x_i, 1 \leq i \leq s$, and since s is even, it follows that each of $\{a, x_1, x_2, \ldots, x_s, y\}$ has odd degree in H. As seen before, the E-subgraph of H is an x-graph, and by the induction hypothesis, H has a path-decomposition \mathcal{D} with $|\mathcal{D}| = \left\lfloor \frac{n}{2} \right\rfloor$. We note that $|\{v \in N_H(x_s) : \mathcal{D}(v) = 0\}| = 0$ and $\mathcal{D}(y) \geq 1$. By Lemma 3.4, x_s is admissible at x_s with respect to \mathcal{D}. Let \mathcal{D}' be a transformation
of \(\mathcal{D} \) by adding \(x_s y \) at \(x_s \), and set \(H' = H \cup \{x_s y\} = G \setminus \{ax_1, ax_2, \ldots, ax_{s-1}\} \). Then \(\mathcal{D}' \)

is a path-decomposition of \(H' \) with \(|\mathcal{D}'| = |\mathcal{D}|\), and in particular, \(\mathcal{D}'(x_s) = \mathcal{D}(x_s) + 1 \geq 2 \). Therefore \(\mathcal{D}'(v) \geq 1 \) for all \(v \in N_G(a) \cup \{a\} \). Clearly, \(s - 1 \) is odd and \(\{x_1, x_2, \ldots, x_{s-1}\} \subseteq N_F(a) \). It follows from Lemma 4.1 that \(G \) has a path-decomposition \(\mathcal{D}^* \) with \(|\mathcal{D}^*| = |\mathcal{D}'| = |\mathcal{D}| = \left\lfloor \frac{n}{2} \right\rfloor \), which proves Case 2. (Remark. The case that \(d_W(x_s) = 2 \) is included in Case 3 below.)

Case 3: There is \(x \in \{x_2, \ldots, x_s\} \) such that \(d_W(x) \geq 2 \). Then, \(d_W(u) \leq 3 \) for all \(u \in N_W(x) \) and there are at most two such \(u \) with \(d_W(u) = 3 \). Let \(N_W(x) = \{u_1, u_2, \ldots, u_\ell\} \) and consider the set \(S = N_F(x) = \{a, u_1, u_2, \ldots, u_\ell\} \). Since an \(\alpha \)-graph is triangle-free, we see that \(S \) is an independent set. Let \(Z = F - x \) and \(H = G \setminus \{xv : v \in S\} \). Since \(d_W(u_i) \leq 3 \) for each \(i, 1 \leq i \leq \ell \), we have that

\[
d_Z(u_i) \leq 2 \quad \text{for each } i, \quad 1 \leq i \leq \ell. \tag{4.1}
\]

If \(\ell \) is even, then \(|S| = \ell + 1 \) is odd, and by (4.1), we have Case 1. (\(Z \) and \(x \) play here the same role as \(W \) and \(a \) there.) Suppose therefore that \(\ell \) is odd. Then, since \(\ell = d_W(x) \geq 2 \), we have \(\ell \geq 3 \). But there are at most two \(u_i \) with \(d_W(u_i) = 3 \), by relabelling if necessary, we may assume that \(d_W(u_\ell) \leq 3 \), and so \(d_Z(u_\ell) \leq 1 \). Using the arguments in Case 2 with \(x \) in place of \(a \) and taking (4.1) into account, if \(d_Z(u_\ell) = 0 \), we have Case 2.1; if \(d_Z(u_\ell) = 1 \), we have Case 2.2. This proves Case 3, and so completes the proof of the theorem.

We conclude the paper with the following corollary which is a combination of Proposition 2.6 and the Main theorem.

Corollary. Let \(G \) be a graph on \(n \) vertices (not necessarily connected). If each block of the \(E \)-subgraph of \(G \) is a triangle-free graph with maximum degree at most 3, then \(G \) can be decomposed into \(\left\lfloor \frac{n}{2} \right\rfloor \) paths.

References