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Abstract

LetGbe a connected simple graph onn vertices. Gallai’s conjecture asserts that the edges ofG can
be decomposed into�n2� paths. LetH be the subgraph induced by the vertices of even degree inG.
Lovász showed that the conjecture is true ifH contains at most one vertex. Extending Lovász’s result,
Pyber proved that the conjecture is true ifH is a forest. A forest can be regarded as a graph in which
each block is an isolated vertex or a single edge (and so each block has maximum degree at most 1).
In this paper, we show that the conjecture is true ifH can be obtained from the emptyset by a series
of so-defined�-operations. As a corollary, the conjecture is true if each block ofH is a triangle-free
graph of maximum degree at most 3.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Thegraphs considered here are finite, undirected, and simple (no loops ormultiple edges).
A graph istriangle-freeif it contains no triangle. Acut vertexis a vertex whose removal
increases the number of components. A connected graph isnonseparableif it has no cut
vertex.Ablockof a graphG is a maximum nonseparable subgraph ofG. The sets of vertices
and edges ofG are denoted byV (G) andE(G), respectively. The edge with endsx and
y is denoted byxy. If xy ∈ E(G), we say thatxy is incidentwith x andy is aneighbor
of x. For a subgraphH of G, NH(x) is the set of the neighbors ofx which are inH, and
dH (x) = |NH(x)| is thedegreeof x in H. If B ⊆ E(G), thenG \ B is the graph obtained
fromG by deleting all the edges ofB. Let S ⊆ V (G). G − S denotes the graph obtained
from G by deleting all the vertices ofS together with all the edges with at least one end
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in S. (WhenS = {x}, we simplify this notation toG − x.) We say thatH is the subgraph
inducedby S if V (H) = S andxy ∈ E(H) if and only if xy ∈ E(G); alternatively,
H = G− (V (G) \ S). (S is called anindependent setif E(H) = ∅.) TheE-subgraphof G
is the subgraph induced by the vertices of even degree inG.
A path-decompositionof a graphG is a set{P1, P2, . . . , Pk} of paths such thatE(G) =

∪ki=1E(Pi) andE(Pi) ∩ E(Pj ) = ∅ if i �= j . We say thatG is decomposed intok paths if
G has a path-decompositionD with |D| = k. A trivial path is one that consists of a single
vertex. By the use of trivial paths, if a graph is decomposed into at mostk paths, then it can
be decomposed into exactlyk paths.
Erdös asked what is the minimum number of paths into which every connected graph on

n vertices can be decomposed. Gallai conjectured that this number is�n2�. (See [4].)
Gallai’s conjecture. If G is a connected graph onn vertices, thenG can be decomposed
into �n2� paths.
Toward a proof of the conjecture, Lovász [4] made the first significant contribution by

showing that a graphG onn vertices (not necessary to be connected) can be decomposed
into �n2� paths and circuits. Based on Lovász’s result, Donald [2] showed thatG can be
decomposed into�34n� paths, which was improved to�23n� independently by Dean and
Kouider [1] and Yan [7]. (An informative survey of the related topics was given by Pyber
[5].)As a consequence of Lovász’s theorem,Gcan be decomposed into�n2� paths ifGhas at
most one vertex of even degree, that is, if theE-subgraph ofG contains at most one vertex.
Pyber [6] strengthened this result by showing thatG can be decomposed into�n2� paths if
theE-subgraph ofG is a forest.A forest can be regarded as a graph in which each block is an
isolated vertex or a single edge. Thus, each block of a forest has maximum degree at most
1. In this paper, we show that a graphG onn vertices (not necessary to be connected) can
be decomposed into�n2� paths if each block of theE-subgraph ofG is a triangle-free graph
of maximum degree at most 3. Here, the requirement of triangle-free cannot be dropped.
Consider a graphG consisting of 3k vertex-disjoint triangles. So|V (G)| = 3k and the
E-subgraph ofG is G itself. Since any path-decomposition of a triangle needs at least 2
paths, we see that any path-decomposition ofG needs at least 2k = 2

3|V (G)| paths.
In the next section, we define a graph operation, called�-operation. In Section 3, we use

Lovász’s path sequence technique [4] to obtain some technical lemmas, and then, in the last
section, prove a more general result:G can be decomposed into�n2� paths if itsE-subgraph
can be obtained from the emptyset by a series of�-operations.

2. �-operations and�-graphs

Definition 2.1. Let H be a graph. A pair(S, y), consisting of an independent setSand a
vertexy ∈ S, is called an�-pair if the following holds: for every vertexv ∈ S \ {y}, if
dH (v)�2, then (a)dH (u)�3 for allu ∈ NH(v) and (b)dH (u) = 3 for at most two vertices
u ∈ NH(v). (That is, all the neighbors ofv has degree at most 3, at most two of which has
degree exactly 3.) An�-operationonH is either (i) add an isolated vertex or (ii) pick an
�-pair (S, y) and add a vertexx joined to each vertex ofS, in which case the ordered triple
(x, S, y) is called the�-triple of the�-operation.
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Definition 2.2. An�-graphis a graph that canbeobtained from theempty set via a sequence
of �-operations.

Let us define the empty set to be an�-graph. Then, a graph onn vertices is an�-graph if
and only if it can be obtained by an�-operation on some�-graph onn− 1 vertices,n�1.
It follows that if G is an�-graph onn vertices, then the vertices ofG can be ordered as
x1x2 . . . xn such that ifGi denotes the subgraph induced by{x1, x2, . . . , xi}, thenGi is
an�-graph obtained by an�-operation onGi−1, where 1� i�n, G0 = ∅, andGn = G.
Such an orderingx1x2 . . . xn is called an�-orderingof V (G). Alternatively, a graphG is an
�-graph if and only ifV (G) has an�-ordering. We note that by the definition, an�-graph
is triangle-free.
LetG be an�-graph andH a subgraph ofG. It is not difficult to see that the restriction of

an�-ordering ofV (G) to V (H) is an�-ordering ofV (H). This gives that

Proposition 2.3. Any subgraph of an�-graph is an�-graph.

A subdivisionof a graphG is a graph obtained fromG by replacing each edge ofGwith
a path (inserting vertices into edges ofG).

Proposition 2.4. Any subdivision of an�-graph is an�-graph.

Proof. It suffices to show that ifH is a graph obtained from an�-graphG by replacing
an edge with a path, thenH is an�-graph. Suppose thatxy ∈ E(G) andH is obtained
from G by replacingxy with a pathxa1a2 . . . aky, wherek�1. We may suppose that
v1v2 . . . xvi . . . vj y . . . vn is an�-ordering ofV (G). Then,v1v2 . . . xvi . . . vj a1a2 . . . aky
. . . vn is an�-ordering ofV (H), and thusH is an�-graph. �

Proposition 2.5. Forests are�-graphs.

Proof. LetF be a forest. IfE(F) = ∅, then any ordering ofV (F) is an�-ordering. Suppose
therefore thatE(F) �= ∅. SinceF is a forest, there isx ∈ V (F) such thatdF (x) = 1. Let
H = F − x. ThenH is a forest. We may use induction on the number of vertices, and thus
by the induction hypothesis,H is an�-graph. Letybe the unique neighbor ofx in F. Then,F
is obtained fromH by addingx joined toy, which is an�-operation with�-triple (x, {y}, y).
SoF is an�-graph. �
LetCbe a circuit of length at least 4. ThenCcan be obtained by adding a vertex joined to

the nonadjacent ends of a pathP of length at least 2, which is an�-operation onP. But, by
Proposition2.5, P is an�-graph, and henceC is an�-graph. In fact, we have the following
stronger result.

Proposition 2.6. If each block of G is a triangle-free graph of maximum degree at most3,
then G is an�-graph.

Proof. We use induction on|V (G)|. Clearly, the proposition holds if|V (G)| = 1. Suppose
that|V (G)|�2 and the proposition holds for allG′ with |V (G′)| < |V (G)|.
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LetBbe an end-block ofG. (Anend-blockis a block that contains at most one cut vertex.)
If B = G (that is, ifG is 2-connected), letbbe any vertex ofB; otherwise, letbbe the unique
cut vertex contained inB. Let x be a neighbor ofb in B and we consider the neighbors of
x. Note thatNB(x) = NG(x). Let S = NG(x) andH = G − x. SinceB is triangle-free,
we have thatS is an independent set and thusb is not a neighbor of any vertexv ∈ S \ {b},
and sinceB has maximum degree at most 3,dH (u)�3 for all u ∈ NH(v). Again, sinceB
has maximum degree at most 3, we have that|NH(v)|�2 and thus there are at most two
u ∈ NH(v)with dH (u) = 3. SoG is obtained by an�-operation onHwith �-triple (x, S, b).
But, by the induction hypothesis,H is an�-graph, and so isG. �

3. Technical lemmas

In this section, we use Lovász’s path sequence technique [4] to prove some technical
lemmas which are needed in the next section. First, we need some additional definitions.

Definition 3.1. Suppose thatD is a path-decomposition of a graphG. For a vertexv ∈
V (G), D(v) denotes the number of the nontrivial paths inD that havev as an end. (Ifx is
a vertex of odd degree inG, thenD(x)�1. This fact will be used frequently in the next
section.)

Definition 3.2. Let a be a vertex in a graphG and letB be a set of edges incident with
a. SetH = G \ B. Suppose thatD is a path-decomposition ofH. For anyA ⊆ B, say
thatA = {axi : 1� i�k}, we say thatA is addibleat a with respect toD if H ∪ A has a
path-decompositionD∗ such that
(a) |D∗| = |D|;
(b) D∗(a) = D(a)+ |A| andD∗(xi) = D(xi)− 1, 1� i�k;
(c) D∗(v) = D(v) for eachv ∈ V (G) \ {a, x1, . . . , xk}.
We call suchD∗ a transformationof D by addingA ata. Whenk = 1, we simply say that
ax1 is addible atawith respect toD.

Lemmas3.3and3.5below are special cases of Lemmas 4.3 and 4.6 in [3], respectively,
whose proofs are rather complicated. (A path decomposition is a special case of a path
covering.) To be self-contained, we present proofs without referring to [3].

Lemma 3.3. Let a be a vertex in a graph G and letH = G \ {ax1, ax2 . . . , axs}, where
xi ∈ NG(a). Suppose thatD is a path-decomposition of H. Then either
(i) there isx ∈ {x1, x2, . . . , xs} such that ax is addible at a with respect toD; or
(ii)

∑s
i=1D(xi)� |{v ∈ NH(a) : D(v) = 0}|.

Proof. Consider the following set of pairs:

R = {(x, P ) : x ∈ {x1, . . . , xs} andP is a nontrivial path inD with endx}.
We note that|R| = ∑s

i=1D(xi). For each pair(x, P ) ∈ R, we associate(x, P ) with a
sequenceb1P1b2P2 . . . constructed as follows.
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(1) b1 = x; P1 = P .
(2) Suppose thatPi has been defined,i�1. If Pi does not containa, then the sequence is

finished atPi ; otherwise letbi+1 be the vertex just beforea if one goes alongPi starting
atbi .

(3) Suppose thatbi has been defined,i�1. If D(bi) = 0, the sequence is finished atbi ;
otherwise, letPi be a path inD starting atbi .

It is clear thatbi+1 is uniquely determined by the pathPi (containingbi+1a) and its end
bi . Such a pair(Pi, bi) is unique since there is only one path inD that containsbi+1a, and
moreover, the two ends of the path are distinct. Thus,bi �= bj if i �= j , and therefore, the
sequenceb1P1b2P2 . . . is finite.
If the sequence is finished at a pathPt ((2) above), letP ′

i = (Pi \ {bi+1a}) ∪ {bia},
1� i� t − 1, andP ′

t = Pt ∪ {bta}. ThenD∗ = (D \ {P1, P2, . . . , Pt }) ∪ {P ′
1, P

′
2, . . . , P

′
t }

is a path-decomposition ofH ∪ {ax} such that|D∗| = |D|, D∗(a) = D(a) + 1,D∗(x) =
D(x)−1, andD∗(v) = D(v) for eachv ∈ V (G) \ {a, x}, and henceax is addible atawith
respect toD.
In what follows, we assume that for each(x, P ) ∈ R, the sequenceb1P1b2P2 . . . Pt−1bt

associated with(x, P ) is finished at a vertexbt (soD(bt ) = 0). Let (w, P ) and(z,Q) be
two distinct pairs inR, associated with sequencesw1P1w2P2 . . . Pt−1wt andz1Q1z2Q2 . . .
Qm−1zm, respectively, wherew1 = w, P1 = P , z1 = z,Q1 = Q, andD(wt ) = D(zm) =
0.
We claim thatwt �= zm. If this is not true, suppose, without loss of generality, that

t�m. Since the path inD containingwta (= zma) is unique, we have thatPt−1 = Qm−1.
Now, wt−1 is the end ofPt−1 with wt betweenwt−1 anda; zm−1 is the end ofQm−1
with zm (= wt) betweenzm−1 anda. Such an end ofPt−1 (= Qm−1) is unique. Thus,
wt−1 = zm−1. Recursively, we have thatP1 = Qm−t+1 andw1 = zm−t+1. Sincew1 = w
andw ∈ {x1, x2, . . . , xs}, we have thatw1a /∈ E(H), that is,zm−t+1a /∈ E(H), which
implies thatzm−t+1 = z1, and thusm = t . It follows thatP1 = Q1 andw1 = z1. This is
impossible since(w1, P1) and(z1,Q1) are two distinct pairs inR. Therefore,wt �= zm, as
claimed. Since this is true for any distinct pairs(w, P ) and(z,Q) inR, we have an injection
fromR to {x ∈ NH(a) : D(x) = 0}, and thus,

s∑

i=1
D(xi) = |R|� |{x ∈ NH(a) : D(x) = 0}|,

which completes the proof.�

Lemma 3.4. Let G be a graph andab ∈ E(G).Suppose thatD is a path-decomposition of
H = G \ {ab}. If D(b) > |{v ∈ NH(a) : D(v) = 0}|, then ab is addible at a with respect
D.

Proof. This is an immediate consequence of Lemma3.3with s = 1. �

Lemma 3.5. Let a be a vertex in a graph G andH = G \ {ax1, ax2, . . . , axs}, where
xi ∈ NG(a). Suppose thatD is a path-decomposition of H withD(xi)�1 for each i,
1� i�s. Then there isA ⊆ {ax1, ax2, . . . , axs} such that
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(i) |A|�� s−r2 �, wherer = |{v ∈ NH(a) : D(v) = 0}|; and
(ii) A is addible at a with respectD.

Proof. We use induction ons − r. If s − r�0, then takeA = ∅, and the lemma holds
trivially. Suppose therefore thats − r�1 and the lemma holds for smaller values ofs − r.
SinceD(xi)�1 for eachi, 1� i�s, and usings − r�1, we have that

s∑

i=1
D(xi)�s�r + 1= |{v ∈ NH(a) : D(v) = 0}| + 1.

By Lemma3.3, there isx ∈ {x1, x2, . . . , xs}, sayx = xs , such thataxs is addible ata
with respectD. LetD′ be a transformation ofD by addingaxs at a. Let s′ = s − 1 and
H ′ = H ∪ {axs} = G \ {ax1, ax2, . . . , axs′ }. ThenD′ is a path-decomposition ofH ′ with
D′(xi) = D(xi)�1 for eachi, 1� i�s′. Let r ′ = |{v ∈ NH ′(a) : D′(v) = 0}. Clearly,
r ′ = r + 1 or r, depending on whetherD′(xs) = 0 or not. Thus,s′ − r ′ �s − r − 1. By the
induction hypothesis, there isA′ ⊆ {ax1, ax2, . . . , axs′ } such that
(i) |A′|�� s′−r ′2 ��� (s−1)−(r+1)2 � = � s−r2 � − 1; and.
(ii) A′ is addible atawith respect toD′.
SetA = A′ ∪ {axs}. Then,A is addible ata with respect toD, and moreover,|A| =
|A′| + 1�� s−r2 �. This completes the proof.�

Lemma 3.6. Let a be a vertex in a graph G andH = G \ {ax1, ax2, . . . , axh},wherexi ∈
NG(a). Suppose thatD is a path-decomposition of H withD(v)� 1 for all v ∈ NG(a).
Then, for anyx ∈ {x1, x2, . . . , xh}, there isB ⊆ {ax1, ax2, . . . , axh}, such that
(i) ax ∈ B and|B|��h2�.
(ii) B is addible at a with respect toD.

Proof. LetW = H ∪ {ax}. ThenH = W \ {ax}. SinceD(v)�1 for all v ∈ NH(a) ∪
{x1, x2, . . . , xh}, we have thatD(x)�1 and|{v ∈ NH(a) : D(v) = 0}| = 0. By Lemma
3.4, ax is addible ata with respect toD. Let D′ be a transformation ofD by adding
ax at a. Without loss of generality, we may assume thatx = xh. Let s = h − 1. Then
W = G \ {ax1, ax2, . . . , axs}. Setr = |{v ∈ NW(a) : D′(v) = 0}|. We have thatr�1.
By Lemma3.5, there isA ⊆ {ax1, ax2, . . . , axs} such that
(i) |A|�� s−r2 ��� (h−1)−12 � = �h2� − 1; and
(ii) A is addible atawith respect toD′.
Let B = A ∪ {ax}. ThenB is addible ata with respect toD and|B| = |A| + 1��h2�, as
required by the lemma.�

Lemma 3.7. Let b be a vertex in a graph G andH = G \ {bx1, bx2, . . . , bxk}, where
xi ∈ NG(b). If H has a path-decompositionD such that|{v ∈ NH(xi) : D(v) = 0}|�m
for each i, 1� i�k, andD(b)�k + m, where m is a nonnegative integer, then G has a
path-decompositionD∗ with |D∗| = |D|.

Proof. We use induction onk. If k = 0 (H = G), there is nothing to prove. The lemma
holds withD∗ = D. Suppose therefore thatk�1 and the lemma holds for smaller values
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of k. Consider the vertexxk. By the given condition,

D(b)�k +m�m+ 1> |{v ∈ NH(xk) : D(v) = 0}|.
By Lemma3.4, xkb is addible atxk with respect toD. Let D′ be a transformation ofD
by addingxkb at xk. Let H ′ = H ∪ {bxk} = G \ {bx1, bx2, . . . , bxk−1}. Noting that
D′(xk) = D(xk)+ 1�1, we have that for eachi, 1� i�k − 1,

|{v ∈ NH ′(xi) : D′(v) = 0}|� |{v ∈ NH(xi) : D(v) = 0}|�m,
whileD′(b) = D(b) − 1�(k − 1) + m. SinceD′ is a path-decomposition ofH ′, and by
the induction hypothesis,G has a path-decompositionD∗ with |D∗| = |D′|, which gives
that|D∗| = |D| since|D′| = |D|. This completes the proof.�

4. Main theorem

As mentioned in the introduction, Pyber [6] proved that Gallai’s conjecture is true for
those graphs whoseE-subgraph is a forest. (Recall that theE-subgraph of a graphG is
the subgraph induced by the vertices of even degree inG.) As mentioned before, a forest
can be regarded as a graph in which each block has maximum degree at most 1. We shall
strengthen Pyber’s result by showing that Gallai’s conjecture is true for those graphs, each
block of whoseE-subgraph is a triangle-free graph of maximum degree at most 3. We first
prove the following lemma.

Lemma 4.1. Let F be the E-subgraph of a graph G. Fora ∈ V (F) and{x1, x2, . . . , xs} ⊆
NF (a), where s is odd anddF (xi)�3, 2� i�s, if G \ {ax1, ax2, . . . , axs} has a path de-
compositionD such thatD(v)�1 for all v ∈ NG(a)∪{a}, thenG has a path decomposition
D∗ with |D∗| = |D|.

Proof. By Lemma3.6, there isB ⊆ {ax1, ax2, . . . , axs} such that
(i) ax1 ∈ B and|B|�� s2�.
(ii) B is addible atawith respect toD.
LetD′ be a transformation ofD by addingB ata. We have that

D′(a) = D(a)+ |B|� |B| + 1.

Note thats is odd. Lets = 2k + 1, and by relabelling if necessary, we may assume that
B = {ax1, ax2, . . . , axt }, wheret�� s2� = k + 1. LetH = G \ {axt+1, axt+2, . . . , axs}.
ThenD′ is a path-decomposition ofH such that

D′(a)� t + 1�k + 2.

Note that|{axt+1, axt+2, . . . , axs}| = s−t�k. LetW = F−a. SincedF (xi)�3, 2� i�s,
we have that for anyx ∈ {xt+1, xt+2, . . . , xs}, dW (x)�2, and thusx has at most two
neighbors of even degree inH. Therefore,

|{v ∈ NH(xi) : D′(v) = 0}|�2 for eachi, t + 1� i�s.
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It follows from Lemma3.7with m = 2 thatG has a path-decompositionD∗ with |D∗| =
|D′| = |D|. This proves the lemma.�
Main theorem. Let G be a graph on n vertices(not necessarily connected). If the E-
subgraph of G is an�-graph, then G can be decomposed into�n2� paths.
Proof. Use induction on|E(G)|. If |E(G)| = 0, the theorem holds trivially. Suppose that
|E(G)|�1 and the theorem holds for all graphsG′ with |E(G′)| < |E(G)|.
Let F be theE-subgraph ofG. If E(F) = ∅, then it is a special case of Pyber’s result

[Theorem 0, 4]. Therefore, we assume thatE(F) �= ∅. By the given condition,F is an
�-graph. Leta1a2 . . . am be an�-ordering ofV (F). Since an isolated vertex can be put in
any position of an�-ordering, we may assume thatam is not an isolated vertex inF, that is,
dF (am)�1. To simplify notation, let

a = am, NF (a) = {x1, x2, . . . , xs}, and W = F − a,
wheres�1. By definition,F is obtained fromW by addinga joined to the independent
set{x1, x2, . . . , xs} with the following property: there isy ∈ {x1, x2, . . . , xs}, sayy = x1,
such that ifdW (xi)�2, thendW (u)�3 for all u ∈ NW(xi) and there are at most two such
u with dW (u) = 3, where 2� i�s. We note that sinceF is theE-subgraph ofG, each of
{a, x1, x2, . . . , xs} has even degree inG. In what follows, we distinguish three cases.
Case1:s is odd anddW (xi)�2 for eachi, 2� i�s. (We only need in fact to consider that

dW (xi)�1here, but for the later use,weconsider themoregeneral case thatdW (xi)�2.) Let
H = G \ {ax1, ax2, . . . , axs}. ThenF − {a, x1, x2, . . . , xs} is theE-subgraph ofH, which
is an�-graph by Proposition2.3. It follows from the induction hypothesis thatH has a path-
decompositionD with |D| = �n2�. Sinces is odd, we have that each of{a, x1, x2, . . . , xs}
has odd degree inH, and by the definition ofF, each vertex ofNH(a) (= NG(a) \NF (a))
also has odd degree inH. ThusD(v)�1 for all v ∈ NG(a) ∪ {a}. It follows from Lemma
4.1thatG has a path-decomposition|D′| = |D| = �n2�, which completes Case 1.
Case2: s is even anddW (xi)�2 for eachi, 2� i�s. (As before, what we need here is

to consider thatdW (xi)�1, but for the later use, we consider thatdW (xi)�2.)
Case 2.1.dW (xs) = 0. LetH = G \ {xsa}. Note thatxs anda have odd degree inH.

Clearly,F − {xs, a} is theE-subgraph ofH, which is an�-graph by Proposition2.3. By
the induction hypothesis,H has a path-decompositionD with |D| = �n2�. ButdW (xs) = 0,
which implies that each neighbor ofxs has odd degree inH and thusD(v)�1 for all
v ∈ NH(xs), and usingD(a)�1 sincea has odd degree inH, it follows that

D(a) > |{v ∈ NH(xs) : D(v) = 0}| = 0.

By Lemma3.4, xsa is addible atxs with respect toD, which yields a path-decomposition
of Gwith �n2� paths.
Case2.2.dW (xs) = 1.Letybe theuniqueneighborofxs inW.SetH = G\{ax1, ax2, . . . ,

axs−1, yxs}. Since{x1, x2, . . . , xs} is an independent set, we have thaty �= xi , 1� i�s,
and sinces is even, it follows that each of{a, x1, x2, . . . , xs, y} has odd degree inH. As
seen before, theE-subgraph ofH is an�-graph, and by the induction hypothesis,H has a
path-decompositionD with |D| = �n2�. We note that|{v ∈ NH(xs) : D(v) = 0}| = 0 and
D(y)�1. By Lemma3.4, xsy is addible atxs with respect toD. LetD′ be a transformation
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of D by addingxsy atxs , and setH ′ = H ∪ {xsy} = G \ {ax1, ax2, . . . , axs−1}. ThenD′
is a path-decomposition ofH ′ with |D′| = |D|, and in particular,D′(xs) = D(xs)+ 1�2.
ThereforeD′(v)�1 for all v ∈ NG(a)∪{a}. Clearly,s−1 is odd and{x1, x2, . . . , xs−1} ⊆
NF (a). It follows from Lemma4.1thatGhas a path-decompositionD∗ with |D∗| = |D′| =
|D| = �n2�, which proves Case 2. (Remark. The case thatdW (xs) = 2 is included in Case
3 below.)
Case3: There isx ∈ {x2, . . . , xs} such thatdW (x)�2. Then,dW (u)�3 for all u ∈

NW(x) and there are at most two suchu with dW (u) = 3. LetNW(x) = {u1, u2, . . . , u'}
and consider the setS = NF (x) = {a, u1, u2, . . . , u'}. Since an�-graph is triangle-free,
we see thatS is an independent set. LetZ = F − x andH = G \ {xv : v ∈ S}. Since
dW (ui)�3 for eachi, 1� i�', we have that

dZ(ui)�2 for eachi, 1� i�'. (4.1)

If ' is even, then|S| = ' + 1 is odd, and by (4.1), we have Case 1. (Z andx paly here the
same role asW anda there.) Suppose therefore that' is odd. Then, since' = dW (x)�2,
we have'�3. But there are at most twoui with dW (ui) = 3, by relabelling if necessary,
we may assume thatdW (u')�2, and sodZ(u')�1. Using the arguments in Case 2 withx
in place ofaand taking (4.1) into account, ifdZ(u') = 0, we have Case 2.1; ifdZ(u') = 1,
we have Case 2.2. This proves Case 3, and so completes the proof of the theorem.�

Weconclude the paperwith the following corollarywhich is a combination of Proposition
2.6and the Main theorem.

Corollary. Let G be a graph on n vertices(not necessarily connected). If each block of the
E-subgraph of G is a triangle-free graph with maximum degree at most3, then G can be
decomposed into�n2� paths.
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