

Available online at www.sciencedirect.com

Journal of Combinatorial Theory Series B

Journal of Combinatorial Theory, Series B 93 (2005) 117-125

www.elsevier.com/locate/jctb

Path decompositions and Gallai's conjecture

Genghua Fan

Department of Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China Received 23 August 2002 Available online 11 November 2004

Abstract

Let *G* be a connected simple graph on *n* vertices. Gallai's conjecture asserts that the edges of *G* can be decomposed into $\lceil \frac{n}{2} \rceil$ paths. Let *H* be the subgraph induced by the vertices of even degree in *G*. Lovász showed that the conjecture is true if *H* contains at most one vertex. Extending Lovász's result, Pyber proved that the conjecture is true if *H* is a forest. A forest can be regarded as a graph in which each block is an isolated vertex or a single edge (and so each block has maximum degree at most 1). In this paper, we show that the conjecture is true if *H* conjecture is true if *H* can be obtained from the emptyset by a series of so-defined α -operations. As a corollary, the conjecture is true if each block of *H* is a triangle-free graph of maximum degree at most 3.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Path; Decomposition; Gallai's conjecture

1. Introduction

The graphs considered here are finite, undirected, and simple (no loops or multiple edges). A graph is *triangle-free* if it contains no triangle. A *cut vertex* is a vertex whose removal increases the number of components. A connected graph is *nonseparable* if it has no cut vertex. A *block* of a graph *G* is a maximum nonseparable subgraph of *G*. The sets of vertices and edges of *G* are denoted by V(G) and E(G), respectively. The edge with ends *x* and *y* is denoted by *xy*. If $xy \in E(G)$, we say that *xy* is *incident* with *x* and *y* is a *neighbor* of *x*. For a subgraph *H* of *G*, $N_H(x)$ is the set of the neighbors of *x* which are in *H*, and $d_H(x) = |N_H(x)|$ is the *degree* of *x* in *H*. If $B \subseteq E(G)$, then $G \setminus B$ is the graph obtained from *G* by deleting all the edges of *B*. Let $S \subseteq V(G)$. G - S denotes the graph obtained from *G* by deleting all the vertices of *S* together with all the edges with at least one end

0095-8956/\$ - see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jctb.2004.09.008

E-mail address: fan@fzu.edu.cn (G. Fan).

in *S*. (When $S = \{x\}$, we simplify this notation to G - x.) We say that *H* is the subgraph *induced* by *S* if V(H) = S and $xy \in E(H)$ if and only if $xy \in E(G)$; alternatively, $H = G - (V(G) \setminus S)$. (*S* is called an *independent set* if $E(H) = \emptyset$.) The *E*-subgraph of *G* is the subgraph induced by the vertices of even degree in *G*.

A *path-decomposition* of a graph *G* is a set $\{P_1, P_2, \ldots, P_k\}$ of paths such that $E(G) = \bigcup_{i=1}^k E(P_i)$ and $E(P_i) \cap E(P_j) = \emptyset$ if $i \neq j$. We say that *G* is decomposed into *k* paths if *G* has a path-decomposition \mathcal{D} with $|\mathcal{D}| = k$. A *trivial path* is one that consists of a single vertex. By the use of trivial paths, if a graph is decomposed into at most *k* paths, then it can be decomposed into exactly *k* paths.

Erdös asked what is the minimum number of paths into which every connected graph on *n* vertices can be decomposed. Gallai conjectured that this number is $\lceil \frac{n}{2} \rceil$. (See [4].)

Gallai's conjecture. If *G* is a connected graph on *n* vertices, then *G* can be decomposed into $\lceil \frac{n}{2} \rceil$ paths.

Toward a proof of the conjecture, Lovász [4] made the first significant contribution by showing that a graph G on n vertices (not necessary to be connected) can be decomposed into $\lfloor \frac{n}{2} \rfloor$ paths and circuits. Based on Lovász's result, Donald [2] showed that G can be decomposed into $\lfloor \frac{3}{4}n \rfloor$ paths, which was improved to $\lfloor \frac{2}{3}n \rfloor$ independently by Dean and Kouider [1] and Yan [7]. (An informative survey of the related topics was given by Pyber [5].) As a consequence of Lovász's theorem, G can be decomposed into $\lfloor \frac{n}{2} \rfloor$ paths if G has at most one vertex of even degree, that is, if the *E*-subgraph of *G* contains at most one vertex. Pyber [6] strengthened this result by showing that G can be decomposed into $\lfloor \frac{n}{2} \rfloor$ paths if the E-subgraph of G is a forest. A forest can be regarded as a graph in which each block is an isolated vertex or a single edge. Thus, each block of a forest has maximum degree at most 1. In this paper, we show that a graph G on n vertices (not necessary to be connected) can be decomposed into $\lfloor \frac{n}{2} \rfloor$ paths if each block of the *E*-subgraph of *G* is a triangle-free graph of maximum degree at most 3. Here, the requirement of triangle-free cannot be dropped. Consider a graph G consisting of 3k vertex-disjoint triangles. So |V(G)| = 3k and the E-subgraph of G is G itself. Since any path-decomposition of a triangle needs at least 2paths, we see that any path-decomposition of G needs at least $2k = \frac{2}{3}|V(G)|$ paths.

In the next section, we define a graph operation, called α -operation. In Section 3, we use Lovász's path sequence technique [4] to obtain some technical lemmas, and then, in the last section, prove a more general result: *G* can be decomposed into $\lfloor \frac{n}{2} \rfloor$ paths if its *E*-subgraph can be obtained from the emptyset by a series of α -operations.

2. α-operations and α-graphs

Definition 2.1. Let *H* be a graph. A pair (*S*, *y*), consisting of an independent set *S* and a vertex $y \in S$, is called an α -pair if the following holds: for every vertex $v \in S \setminus \{y\}$, if $d_H(v) \ge 2$, then (a) $d_H(u) \le 3$ for all $u \in N_H(v)$ and (b) $d_H(u) = 3$ for at most two vertices $u \in N_H(v)$. (That is, all the neighbors of *v* has degree at most 3, at most two of which has degree exactly 3.) An α -operation on *H* is either (i) add an isolated vertex or (ii) pick an α -pair (*S*, *y*) and add a vertex *x* joined to each vertex of *S*, in which case the ordered triple (*x*, *S*, *y*) is called the α -triple of the α -operation.

Definition 2.2. An α -graph is a graph that can be obtained from the empty set via a sequence of α -operations.

Let us define the empty set to be an α -graph. Then, a graph on *n* vertices is an α -graph if and only if it can be obtained by an α -operation on some α -graph on n-1 vertices, $n \ge 1$. It follows that if *G* is an α -graph on *n* vertices, then the vertices of *G* can be ordered as $x_1x_2...x_n$ such that if G_i denotes the subgraph induced by $\{x_1, x_2, ..., x_i\}$, then G_i is an α -graph obtained by an α -operation on G_{i-1} , where $1 \le i \le n$, $G_0 = \emptyset$, and $G_n = G$. Such an ordering $x_1x_2...x_n$ is called an α -ordering of V(G). Alternatively, a graph *G* is an α -graph if and only if V(G) has an α -ordering. We note that by the definition, an α -graph is triangle-free.

Let *G* be an α -graph and *H* a subgraph of *G*. It is not difficult to see that the restriction of an α -ordering of V(G) to V(H) is an α -ordering of V(H). This gives that

Proposition 2.3. Any subgraph of an α -graph is an α -graph.

A subdivision of a graph G is a graph obtained from G by replacing each edge of G with a path (inserting vertices into edges of G).

Proposition 2.4. Any subdivision of an α -graph is an α -graph.

Proof. It suffices to show that if *H* is a graph obtained from an α -graph *G* by replacing an edge with a path, then *H* is an α -graph. Suppose that $xy \in E(G)$ and *H* is obtained from *G* by replacing xy with a path $xa_1a_2...a_ky$, where $k \ge 1$. We may suppose that $v_1v_2...xv_i...v_jy...v_n$ is an α -ordering of V(G). Then, $v_1v_2...xv_i...v_ja_1a_2...a_ky$ $...v_n$ is an α -ordering of V(H), and thus *H* is an α -graph. \Box

Proposition 2.5. Forests are α -graphs.

Proof. Let *F* be a forest. If $E(F) = \emptyset$, then any ordering of V(F) is an α -ordering. Suppose therefore that $E(F) \neq \emptyset$. Since *F* is a forest, there is $x \in V(F)$ such that $d_F(x) = 1$. Let H = F - x. Then *H* is a forest. We may use induction on the number of vertices, and thus by the induction hypothesis, *H* is an α -graph. Let *y* be the unique neighbor of *x* in *F*. Then, *F* is obtained from *H* by adding *x* joined to *y*, which is an α -operation with α -triple $(x, \{y\}, y)$. So *F* is an α -graph. \Box

Let *C* be a circuit of length at least 4. Then *C* can be obtained by adding a vertex joined to the nonadjacent ends of a path *P* of length at least 2, which is an α -operation on *P*. But, by Proposition 2.5, *P* is an α -graph, and hence *C* is an α -graph. In fact, we have the following stronger result.

Proposition 2.6. *If each block of G is a triangle-free graph of maximum degree at most* 3, *then G is an* α *-graph.*

Proof. We use induction on |V(G)|. Clearly, the proposition holds if |V(G)| = 1. Suppose that $|V(G)| \ge 2$ and the proposition holds for all G' with |V(G')| < |V(G)|.

Let *B* be an end-block of *G*. (An *end-block* is a block that contains at most one cut vertex.) If B = G (that is, if *G* is 2-connected), let *b* be any vertex of *B*; otherwise, let *b* be the unique cut vertex contained in *B*. Let *x* be a neighbor of *b* in *B* and we consider the neighbors of *x*. Note that $N_B(x) = N_G(x)$. Let $S = N_G(x)$ and H = G - x. Since *B* is triangle-free, we have that *S* is an independent set and thus *b* is not a neighbor of any vertex $v \in S \setminus \{b\}$, and since *B* has maximum degree at most 3, $d_H(u) \leq 3$ for all $u \in N_H(v)$. Again, since *B* has maximum degree at most 3, we have that $|N_H(v)| \leq 2$ and thus there are at most two $u \in N_H(v)$ with $d_H(u) = 3$. So *G* is obtained by an α -operation on *H* with α -triple (x, S, b). But, by the induction hypothesis, *H* is an α -graph, and so is *G*.

3. Technical lemmas

In this section, we use Lovász's path sequence technique [4] to prove some technical lemmas which are needed in the next section. First, we need some additional definitions.

Definition 3.1. Suppose that \mathcal{D} is a path-decomposition of a graph *G*. For a vertex $v \in V(G)$, $\mathcal{D}(v)$ denotes the number of the nontrivial paths in \mathcal{D} that have v as an end. (If x is a vertex of odd degree in *G*, then $\mathcal{D}(x) \ge 1$. This fact will be used frequently in the next section.)

Definition 3.2. Let *a* be a vertex in a graph *G* and let *B* be a set of edges incident with *a*. Set $H = G \setminus B$. Suppose that \mathcal{D} is a path-decomposition of *H*. For any $A \subseteq B$, say that $A = \{ax_i : 1 \le i \le k\}$, we say that *A* is *addible* at *a* with respect to \mathcal{D} if $H \cup A$ has a path-decomposition \mathcal{D}^* such that

(a) $|\mathcal{D}^*| = |\mathcal{D}|;$

(b) $\mathcal{D}^*(a) = \mathcal{D}(a) + |A|$ and $\mathcal{D}^*(x_i) = \mathcal{D}(x_i) - 1, 1 \leq i \leq k$;

(c) $\mathcal{D}^*(v) = \mathcal{D}(v)$ for each $v \in V(G) \setminus \{a, x_1, \dots, x_k\}$.

We call such \mathcal{D}^* a *transformation* of \mathcal{D} by adding A at a. When k = 1, we simply say that ax_1 is addible at a with respect to \mathcal{D} .

Lemmas 3.3 and 3.5 below are special cases of Lemmas 4.3 and 4.6 in [3], respectively, whose proofs are rather complicated. (A path decomposition is a special case of a path covering.) To be self-contained, we present proofs without referring to [3].

Lemma 3.3. Let a be a vertex in a graph G and let $H = G \setminus \{ax_1, ax_2, ..., ax_s\}$, where $x_i \in N_G(a)$. Suppose that \mathcal{D} is a path-decomposition of H. Then either (i) there is $x \in \{x_1, x_2, ..., x_s\}$ such that ax is addible at a with respect to \mathcal{D} ; or (ii) $\sum_{i=1}^{s} \mathcal{D}(x_i) \leq |\{v \in N_H(a) : \mathcal{D}(v) = 0\}|.$

Proof. Consider the following set of pairs:

 $R = \{(x, P) : x \in \{x_1, \dots, x_s\} \text{ and } P \text{ is a nontrivial path in } \mathcal{D} \text{ with end } x\}.$

We note that $|R| = \sum_{i=1}^{s} \mathcal{D}(x_i)$. For each pair $(x, P) \in R$, we associate (x, P) with a sequence $b_1 P_1 b_2 P_2 \dots$ constructed as follows.

- (1) $b_1 = x; P_1 = P$.
- (2) Suppose that P_i has been defined, i≥1. If P_i does not contain a, then the sequence is finished at P_i; otherwise let b_{i+1} be the vertex just before a if one goes along P_i starting at b_i.
- (3) Suppose that b_i has been defined, i≥1. If D(b_i) = 0, the sequence is finished at b_i; otherwise, let P_i be a path in D starting at b_i.

It is clear that b_{i+1} is uniquely determined by the path P_i (containing $b_{i+1}a$) and its end b_i . Such a pair (P_i, b_i) is unique since there is only one path in \mathcal{D} that contains $b_{i+1}a$, and moreover, the two ends of the path are distinct. Thus, $b_i \neq b_j$ if $i \neq j$, and therefore, the sequence $b_1 P_1 b_2 P_2 \dots$ is finite.

If the sequence is finished at a path P_t ((2) above), let $P'_i = (P_i \setminus \{b_{i+1}a\}) \cup \{b_ia\}, 1 \le i \le t-1, \text{ and } P'_t = P_t \cup \{b_ta\}.$ Then $\mathcal{D}^* = (\mathcal{D} \setminus \{P_1, P_2, \dots, P_t\}) \cup \{P'_1, P'_2, \dots, P'_t\}$ is a path-decomposition of $H \cup \{ax\}$ such that $|\mathcal{D}^*| = |\mathcal{D}|, \mathcal{D}^*(a) = \mathcal{D}(a) + 1, \mathcal{D}^*(x) = \mathcal{D}(x) - 1, \text{ and } \mathcal{D}^*(v) = \mathcal{D}(v)$ for each $v \in V(G) \setminus \{a, x\}$, and hence ax is addible at a with respect to \mathcal{D} .

In what follows, we assume that for each $(x, P) \in R$, the sequence $b_1 P_1 b_2 P_2 \dots P_{t-1} b_t$ associated with (x, P) is finished at a vertex b_t (so $\mathcal{D}(b_t) = 0$). Let (w, P) and (z, Q) be two distinct pairs in R, associated with sequences $w_1 P_1 w_2 P_2 \dots P_{t-1} w_t$ and $z_1 Q_1 z_2 Q_2 \dots$ $Q_{m-1} z_m$, respectively, where $w_1 = w$, $P_1 = P$, $z_1 = z$, $Q_1 = Q$, and $\mathcal{D}(w_t) = \mathcal{D}(z_m) = 0$.

We claim that $w_t \neq z_m$. If this is not true, suppose, without loss of generality, that $t \leq m$. Since the path in \mathcal{D} containing $w_t a \ (= z_m a)$ is unique, we have that $P_{t-1} = Q_{m-1}$. Now, w_{t-1} is the end of P_{t-1} with w_t between w_{t-1} and a; z_{m-1} is the end of Q_{m-1} with $z_m \ (= w_t)$ between z_{m-1} and a. Such an end of $P_{t-1} \ (= Q_{m-1})$ is unique. Thus, $w_{t-1} = z_{m-1}$. Recursively, we have that $P_1 = Q_{m-t+1}$ and $w_1 = z_{m-t+1}$. Since $w_1 = w$ and $w \in \{x_1, x_2, \dots, x_s\}$, we have that $w_1a \notin E(H)$, that is, $z_{m-t+1}a \notin E(H)$, which implies that $z_{m-t+1} = z_1$, and thus m = t. It follows that $P_1 = Q_1$ and $w_1 = z_1$. This is impossible since (w_1, P_1) and (z_1, Q_1) are two distinct pairs in R. Therefore, $w_t \neq z_m$, as claimed. Since this is true for any distinct pairs (w, P) and (z, Q) in R, we have an injection from R to $\{x \in N_H(a) : \mathcal{D}(x) = 0\}$, and thus,

$$\sum_{i=1}^{s} \mathcal{D}(x_i) = |R| \leq |\{x \in N_H(a) : \mathcal{D}(x) = 0\}|,$$

which completes the proof. \Box

Lemma 3.4. Let G be a graph and $ab \in E(G)$. Suppose that \mathcal{D} is a path-decomposition of $H = G \setminus \{ab\}$. If $\mathcal{D}(b) > |\{v \in N_H(a) : \mathcal{D}(v) = 0\}|$, then ab is addible at a with respect \mathcal{D} .

Proof. This is an immediate consequence of Lemma 3.3 with s = 1.

Lemma 3.5. Let a be a vertex in a graph G and $H = G \setminus \{ax_1, ax_2, ..., ax_s\}$, where $x_i \in N_G(a)$. Suppose that \mathcal{D} is a path-decomposition of H with $\mathcal{D}(x_i) \ge 1$ for each i, $1 \le i \le s$. Then there is $A \subseteq \{ax_1, ax_2, ..., ax_s\}$ such that

(i) $|A| \ge \lceil \frac{s-r}{2} \rceil$, where $r = |\{v \in N_H(a) : \mathcal{D}(v) = 0\}|$; and

(ii) A is addible at a with respect \mathcal{D} .

Proof. We use induction on s - r. If $s - r \leq 0$, then take $A = \emptyset$, and the lemma holds trivially. Suppose therefore that $s - r \ge 1$ and the lemma holds for smaller values of s - r. Since $\mathcal{D}(x_i) \ge 1$ for each *i*, $1 \le i \le s$, and using $s - r \ge 1$, we have that

$$\sum_{i=1}^{s} \mathcal{D}(x_i) \ge s \ge r+1 = |\{v \in N_H(a) : \mathcal{D}(v) = 0\}| + 1.$$

By Lemma 3.3, there is $x \in \{x_1, x_2, \dots, x_s\}$, say $x = x_s$, such that ax_s is addible at a with respect \mathcal{D} . Let \mathcal{D}' be a transformation of \mathcal{D} by adding ax_s at a. Let s' = s - 1 and $H' = H \cup \{ax_s\} = G \setminus \{ax_1, ax_2, \dots, ax_{s'}\}$. Then \mathcal{D}' is a path-decomposition of H' with $\mathcal{D}'(x_i) = \mathcal{D}(x_i) \ge 1$ for each $i, 1 \le i \le s'$. Let $r' = |\{v \in N_{H'}(a) : \mathcal{D}'(v) = 0\}$. Clearly, r' = r + 1 or r, depending on whether $\mathcal{D}'(x_s) = 0$ or not. Thus, $s' - r' \leq s - r - 1$. By the induction hypothesis, there is $A' \subseteq \{ax_1, ax_2, \dots, ax_{s'}\}$ such that

(i) $|A'| \ge \lceil \frac{s'-r'}{2} \rceil \ge \lceil \frac{(s-1)-(r+1)}{2} \rceil = \lceil \frac{s-r}{2} \rceil - 1$; and.

(ii) A' is addible at a with respect to \mathcal{D}' .

Set $A = A' \cup \{ax_s\}$. Then, A is addible at a with respect to \mathcal{D} , and moreover, |A| = $|A'| + 1 \ge \lceil \frac{s-r}{2} \rceil$. This completes the proof. \Box

Lemma 3.6. Let a be a vertex in a graph G and $H = G \setminus \{ax_1, ax_2, \ldots, ax_h\}$, where $x_i \in$ $N_G(a)$. Suppose that \mathcal{D} is a path-decomposition of H with $\mathcal{D}(v) \ge 1$ for all $v \in N_G(a)$. Then, for any $x \in \{x_1, x_2, \ldots, x_h\}$, there is $B \subseteq \{ax_1, ax_2, \ldots, ax_h\}$, such that (i) $ax \in B$ and $|B| \ge \lceil \frac{h}{2} \rceil$.

(ii) *B* is addible at a with respect to \mathcal{D} .

Proof. Let $W = H \cup \{ax\}$. Then $H = W \setminus \{ax\}$. Since $\mathcal{D}(v) \ge 1$ for all $v \in N_H(a) \cup V_H(a)$ $\{x_1, x_2, \ldots, x_h\}$, we have that $\mathcal{D}(x) \ge 1$ and $|\{v \in N_H(a) : \mathcal{D}(v) = 0\}| = 0$. By Lemma 3.4, ax is addible at a with respect to \mathcal{D} . Let \mathcal{D}' be a transformation of \mathcal{D} by adding ax at a. Without loss of generality, we may assume that $x = x_h$. Let s = h - 1. Then $W = G \setminus \{ax_1, ax_2, \dots, ax_s\}$. Set $r = |\{v \in N_W(a) : \mathcal{D}'(v) = 0\}|$. We have that $r \leq 1$. By Lemma 3.5, there is $A \subseteq \{ax_1, ax_2, \dots, ax_s\}$ such that (i) $|A| \ge \lceil \frac{s-r}{2} \rceil \ge \lceil \frac{(h-1)-1}{2} \rceil = \lceil \frac{h}{2} \rceil - 1$; and

(ii) A is addible at a with respect to \mathcal{D}' .

Let $B = A \cup \{ax\}$. Then B is addible at a with respect to \mathcal{D} and $|B| = |A| + 1 \ge \lceil \frac{h}{2} \rceil$, as required by the lemma. \Box

Lemma 3.7. Let b be a vertex in a graph G and $H = G \setminus \{bx_1, bx_2, \ldots, bx_k\}$, where $x_i \in N_G(b)$. If H has a path-decomposition \mathcal{D} such that $|\{v \in N_H(x_i) : \mathcal{D}(v) = 0\}| \leq m$ for each i, $1 \leq i \leq k$, and $\mathcal{D}(b) \geq k + m$, where m is a nonnegative integer, then G has a path-decomposition \mathcal{D}^* with $|\mathcal{D}^*| = |\mathcal{D}|$.

Proof. We use induction on k. If k = 0 (H = G), there is nothing to prove. The lemma holds with $\mathcal{D}^* = \mathcal{D}$. Suppose therefore that $k \ge 1$ and the lemma holds for smaller values

122

of k. Consider the vertex x_k . By the given condition,

$$\mathcal{D}(b) \ge k + m \ge m + 1 > |\{v \in N_H(x_k) : \mathcal{D}(v) = 0\}|.$$

By Lemma 3.4, $x_k b$ is addible at x_k with respect to \mathcal{D} . Let \mathcal{D}' be a transformation of \mathcal{D} by adding $x_k b$ at x_k . Let $H' = H \cup \{bx_k\} = G \setminus \{bx_1, bx_2, \dots, bx_{k-1}\}$. Noting that $\mathcal{D}'(x_k) = \mathcal{D}(x_k) + 1 \ge 1$, we have that for each $i, 1 \le i \le k - 1$,

$$|\{v \in N_{H'}(x_i) : \mathcal{D}'(v) = 0\}| \leq |\{v \in N_H(x_i) : \mathcal{D}(v) = 0\}| \leq m,$$

while $\mathcal{D}'(b) = \mathcal{D}(b) - 1 \ge (k - 1) + m$. Since \mathcal{D}' is a path-decomposition of H', and by the induction hypothesis, G has a path-decomposition \mathcal{D}^* with $|\mathcal{D}^*| = |\mathcal{D}'|$, which gives that $|\mathcal{D}^*| = |\mathcal{D}|$ since $|\mathcal{D}'| = |\mathcal{D}|$. This completes the proof. \Box

4. Main theorem

As mentioned in the introduction, Pyber [6] proved that Gallai's conjecture is true for those graphs whose *E*-subgraph is a forest. (Recall that the *E*-subgraph of a graph *G* is the subgraph induced by the vertices of even degree in *G*.) As mentioned before, a forest can be regarded as a graph in which each block has maximum degree at most 1. We shall strengthen Pyber's result by showing that Gallai's conjecture is true for those graphs, each block of whose *E*-subgraph is a triangle-free graph of maximum degree at most 3. We first prove the following lemma.

Lemma 4.1. Let *F* be the *E*-subgraph of a graph *G*. For $a \in V(F)$ and $\{x_1, x_2, \ldots, x_s\} \subseteq N_F(a)$, where *s* is odd and $d_F(x_i) \leq 3, 2 \leq i \leq s$, if $G \setminus \{ax_1, ax_2, \ldots, ax_s\}$ has a path decomposition \mathcal{D} such that $\mathcal{D}(v) \geq 1$ for all $v \in N_G(a) \cup \{a\}$, then *G* has a path decomposition \mathcal{D}^* with $|\mathcal{D}^*| = |\mathcal{D}|$.

Proof. By Lemma 3.6, there is $B \subseteq \{ax_1, ax_2, \dots, ax_s\}$ such that

(i) $ax_1 \in B$ and $|B| \ge \lceil \frac{s}{2} \rceil$.

(ii) *B* is addible at *a* with respect to \mathcal{D} .

Let \mathcal{D}' be a transformation of \mathcal{D} by adding *B* at *a*. We have that

 $\mathcal{D}'(a) = \mathcal{D}(a) + |B| \ge |B| + 1.$

Note that *s* is odd. Let s = 2k + 1, and by relabelling if necessary, we may assume that $B = \{ax_1, ax_2, \ldots, ax_t\}$, where $t \ge \lceil \frac{s}{2} \rceil = k + 1$. Let $H = G \setminus \{ax_{t+1}, ax_{t+2}, \ldots, ax_s\}$. Then \mathcal{D}' is a path-decomposition of *H* such that

$$\mathcal{D}'(a) \ge t + 1 \ge k + 2.$$

Note that $|\{ax_{t+1}, ax_{t+2}, \dots, ax_s\}| = s - t \leq k$. Let W = F - a. Since $d_F(x_i) \leq 3, 2 \leq i \leq s$, we have that for any $x \in \{x_{t+1}, x_{t+2}, \dots, x_s\}$, $d_W(x) \leq 2$, and thus x has at most two neighbors of even degree in H. Therefore,

$$|\{v \in N_H(x_i) : \mathcal{D}'(v) = 0\}| \leq 2 \text{ for each } i, t+1 \leq i \leq s.$$

It follows from Lemma 3.7 with m = 2 that *G* has a path-decomposition \mathcal{D}^* with $|\mathcal{D}^*| = |\mathcal{D}'| = |\mathcal{D}|$. This proves the lemma. \Box

Main theorem. Let G be a graph on n vertices (not necessarily connected). If the E-subgraph of G is an α -graph, then G can be decomposed into $\lfloor \frac{n}{2} \rfloor$ paths.

Proof. Use induction on |E(G)|. If |E(G)| = 0, the theorem holds trivially. Suppose that $|E(G)| \ge 1$ and the theorem holds for all graphs G' with |E(G')| < |E(G)|.

Let *F* be the *E*-subgraph of *G*. If $E(F) = \emptyset$, then it is a special case of Pyber's result [Theorem 0, 4]. Therefore, we assume that $E(F) \neq \emptyset$. By the given condition, *F* is an α -graph. Let $a_1a_2 \ldots a_m$ be an α -ordering of V(F). Since an isolated vertex can be put in any position of an α -ordering, we may assume that a_m is not an isolated vertex in *F*, that is, $d_F(a_m) \ge 1$. To simplify notation, let

$$a = a_m$$
, $N_F(a) = \{x_1, x_2, \dots, x_s\}$, and $W = F - a$,

where $s \ge 1$. By definition, *F* is obtained from *W* by adding *a* joined to the independent set $\{x_1, x_2, \ldots, x_s\}$ with the following property: there is $y \in \{x_1, x_2, \ldots, x_s\}$, say $y = x_1$, such that if $d_W(x_i) \ge 2$, then $d_W(u) \le 3$ for all $u \in N_W(x_i)$ and there are at most two such *u* with $d_W(u) = 3$, where $2 \le i \le s$. We note that since *F* is the *E*-subgraph of *G*, each of $\{a, x_1, x_2, \ldots, x_s\}$ has even degree in *G*. In what follows, we distinguish three cases.

Case 1: *s* is odd and $d_W(x_i) \leq 2$ for each *i*, $2 \leq i \leq s$. (We only need in fact to consider that $d_W(x_i) \leq 1$ here, but for the later use, we consider the more general case that $d_W(x_i) \leq 2$.) Let $H = G \setminus \{ax_1, ax_2, \ldots, ax_s\}$. Then $F - \{a, x_1, x_2, \ldots, x_s\}$ is the *E*-subgraph of *H*, which is an α -graph by Proposition 2.3. It follows from the induction hypothesis that *H* has a path-decomposition \mathcal{D} with $|\mathcal{D}| = \lfloor \frac{n}{2} \rfloor$. Since *s* is odd, we have that each of $\{a, x_1, x_2, \ldots, x_s\}$ has odd degree in *H*, and by the definition of *F*, each vertex of $N_H(a) (= N_G(a) \setminus N_F(a))$ also has odd degree in *H*. Thus $\mathcal{D}(v) \geq 1$ for all $v \in N_G(a) \cup \{a\}$. It follows from Lemma 4.1 that *G* has a path-decomposition $|\mathcal{D}'| = |\mathcal{D}| = \lfloor \frac{n}{2} \rfloor$, which completes Case 1.

Case 2: *s* is even and $d_W(x_i) \leq 2$ for each *i*, $2 \leq i \leq s$. (As before, what we need here is to consider that $d_W(x_i) \leq 1$, but for the later use, we consider that $d_W(x_i) \leq 2$.)

Case 2.1. $d_W(x_s) = 0$. Let $H = G \setminus \{x_s a\}$. Note that x_s and a have odd degree in H. Clearly, $F - \{x_s, a\}$ is the *E*-subgraph of H, which is an α -graph by Proposition 2.3. By the induction hypothesis, H has a path-decomposition \mathcal{D} with $|\mathcal{D}| = \lfloor \frac{n}{2} \rfloor$. But $d_W(x_s) = 0$, which implies that each neighbor of x_s has odd degree in H and thus $\mathcal{D}(v) \ge 1$ for all $v \in N_H(x_s)$, and using $\mathcal{D}(a) \ge 1$ since a has odd degree in H, it follows that

$$\mathcal{D}(a) > |\{v \in N_H(x_s) : \mathcal{D}(v) = 0\}| = 0.$$

By Lemma 3.4, $x_s a$ is addible at x_s with respect to \mathcal{D} , which yields a path-decomposition of *G* with $\lfloor \frac{n}{2} \rfloor$ paths.

Case 2.2. $d_W(x_s) = 1$. Let *y* be the unique neighbor of x_s in *W*. Set $H = G \setminus \{ax_1, ax_2, \ldots, ax_{s-1}, yx_s\}$. Since $\{x_1, x_2, \ldots, x_s\}$ is an independent set, we have that $y \neq x_i, 1 \leq i \leq s$, and since *s* is even, it follows that each of $\{a, x_1, x_2, \ldots, x_s, y\}$ has odd degree in *H*. As seen before, the *E*-subgraph of *H* is an α -graph, and by the induction hypothesis, *H* has a path-decomposition \mathcal{D} with $|\mathcal{D}| = \lfloor \frac{n}{2} \rfloor$. We note that $|\{v \in N_H(x_s) : \mathcal{D}(v) = 0\}| = 0$ and $\mathcal{D}(y) \geq 1$. By Lemma 3.4, $x_s y$ is addible at x_s with respect to \mathcal{D} . Let \mathcal{D}' be a transformation

of \mathcal{D} by adding $x_s y$ at x_s , and set $H' = H \cup \{x_s y\} = G \setminus \{ax_1, ax_2, \dots, ax_{s-1}\}$. Then \mathcal{D}' is a path-decomposition of H' with $|\mathcal{D}'| = |\mathcal{D}|$, and in particular, $\mathcal{D}'(x_s) = \mathcal{D}(x_s) + 1 \ge 2$. Therefore $\mathcal{D}'(v) \ge 1$ for all $v \in N_G(a) \cup \{a\}$. Clearly, s - 1 is odd and $\{x_1, x_2, \dots, x_{s-1}\} \subseteq N_F(a)$. It follows from Lemma 4.1 that *G* has a path-decomposition \mathcal{D}^* with $|\mathcal{D}^*| = |\mathcal{D}'| = |\mathcal{D}| = \lfloor \frac{n}{2} \rfloor$, which proves Case 2. (Remark. The case that $d_W(x_s) = 2$ is included in Case 3 below.)

Case 3: There is $x \in \{x_2, ..., x_s\}$ such that $d_W(x) \ge 2$. Then, $d_W(u) \le 3$ for all $u \in N_W(x)$ and there are at most two such u with $d_W(u) = 3$. Let $N_W(x) = \{u_1, u_2, ..., u_\ell\}$ and consider the set $S = N_F(x) = \{a, u_1, u_2, ..., u_\ell\}$. Since an α -graph is triangle-free, we see that S is an independent set. Let Z = F - x and $H = G \setminus \{xv : v \in S\}$. Since $d_W(u_i) \le 3$ for each $i, 1 \le i \le \ell$, we have that

$$d_Z(u_i) \leqslant 2 \text{ for each } i, \ 1 \leqslant i \leqslant \ell.$$
 (4.1)

If ℓ is even, then $|S| = \ell + 1$ is odd, and by (4.1), we have Case 1. (*Z* and *x* paly here the same role as *W* and *a* there.) Suppose therefore that ℓ is odd. Then, since $\ell = d_W(x) \ge 2$, we have $\ell \ge 3$. But there are at most two u_i with $d_W(u_i) = 3$, by relabelling if necessary, we may assume that $d_W(u_\ell) \le 2$, and so $d_Z(u_\ell) \le 1$. Using the arguments in Case 2 with *x* in place of *a* and taking (4.1) into account, if $d_Z(u_\ell) = 0$, we have Case 2.1; if $d_Z(u_\ell) = 1$, we have Case 2.2. This proves Case 3, and so completes the proof of the theorem. \Box

We conclude the paper with the following corollary which is a combination of Proposition 2.6 and the Main theorem.

Corollary. Let G be a graph on n vertices (not necessarily connected). If each block of the *E*-subgraph of G is a triangle-free graph with maximum degree at most 3, then G can be decomposed into $\lfloor \frac{n}{2} \rfloor$ paths.

References

- [1] N. Dean, M. Kouider, Gallai's conjecture for disconnected graphs, Discrete Math. 213 (2000) 43-54.
- [2] A. Donald, An upper bound for the path number of a graph, J. Graph Theory 4 (1980) 189–201.
- [3] G. Fan, Subgraph coverings and edge-switchings, J. Combin. Theory Ser. B 84 (2002) 54-83.
- [4] L. Lovász, On covering of graphs, in: P. Erdös, G. Katona (Eds.), Theory of Graphs, Academic Press, New York, 1968, pp. 231–236.
- [5] L. Pyber, Covering the edges of a graph by ..., Colloq. Math. Soc. János Bolyai 60 (1991) 583-610.
- [6] L. Pyber, Covering the edges of a connected graph by paths, J. Combin. Theory Ser. B 66 (1996) 152–159.
- [7] L. Yan, On path decompositions of graphs, Ph.D. Thesis, Arizona State University, 1998.