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1. Introduction

Let Q denote the edge graph of the 3-dimensional cube (it has 8 vertices
and 12 edges). The Turan number of Q is the maximum number of edges
in a graph on n vertices that does not contain Q. Back in 1969, Erdős and
Simonovits [1] have shown that the Turan number of Q is O(n8/5). In this
paper, we provide an alternative simpler proof of this result. The original
proof in [1] was based on the assumption that the given graph G is regular,
and required a nontrivial technical lemma that reduces the general case to
the case of a regular graph. Our proof does not need to assume that G is
regular (and so does not use this lemma), and follows a different approach
that appears to be more powerful than the one in [1]. We demonstrate this
by applying the technique to obtain Turan numbers for more general graphs
than Q, which the method of [1] seems incapable of achieving.

2. Graphs That Do Not Contain the 3-Dimensional Cube

Certain applications of extremal graph theory involve bipartite graphs where
the sizes of the two vertex sets are different from each other. For this reason,
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we state our main result for the bipartite case; the non-bipartite case is then
an immediate corollary.

Theorem 2.1. A bipartite graph G⊆A×B, with |A|=m, |B|= n, that
does not contain Q has O(m4/5n4/5+mn1/2+nm1/2) edges.

Proof. Let E denote the number of edges of G. We define a configuration to
be a 6-tuple κ=(u,v,a,b,c,d) of distinct vertices of G, such that a,c,v∈A,
u,b,d∈B, and (v,u), (a,u), (a,b), (v,b), (c,u), (c,d), (v,d) are all edges of G;
see Figure 1. In other words, κ consists of two C4’s (cycles of length 4) with
a common edge and with no other common vertex. We say that a pair (a,b),
(c,d) of edges of G is tame if all four endpoints are distinct, and there exist
at most two pairs (u,v) such that (u,v,a,b,c,d) is a configuration. We say
that κ = (u,v,a,b,c,d) is a tame configuration if (a,b), (c,d) form a tame
pair.

a b

u

c d

v

Figure 1. A configuration in the proof of Theorem 2.1.

Let K be the set of all tame configurations. A trivial upper bound for |K|
is O(E2), because the number of pairs (a,b),(c,d) of edges of G is O(E2),
and each of them, if tame, gives rise to only two configurations in K.

We next obtain a lower bound for |K|, as follows. Fix an edge e=(v,u)
of G, with v ∈ A, u ∈ B, and let Ge denote the graph whose vertices are
the neighbors of either u or v in G, and whose edges are the edges of G
that connect pairs of these neighbors. Let Ae, Be, Ee denote the number
of vertices in A, of vertices in B, and of edges of Ge, respectively. Put
Ve=Ae+Be.

We note that the (tame or bad) configurations of the form (u,v,a,b,c,d),
for the fixed pair of vertices u,v, correspond in a 1-1 manner to the vertex-
disjoint pairs of edges of Ge. For a vertex a of Ge, let δe(a) denote the degree
of a in Ge.
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Lemma 2.2. The number Me of tame pairs of edges in Ge is at least
1
2Ee(Ee−4Ve−1).

Proof. Call any pair of edges, which is not tame, a bad pair. We wish to
bound the number of bad pairs of edges in Ge. Suppose that (a,b), (c,d) is a
bad pair. Consider any other pair (u′,v′), such that (u′,v′,a,b,c,d) is also a
configuration. If u �=u′ and v �=v′ then the 8-tuple (u,v,u′,v′,a,b,c,d) forms
a forbidden copy of Q in G, contrary to assumption; see Figure 2. Hence,
either all such pairs (u′,v′) satisfy u′=u, or all such pairs satisfy v′= v. In
the former case we say that the pair (a,b), (c,d) is a bad u-pair and in the
latter case we say that the pair (a,b), (c,d) is a bad v-pair.

By symmetry, it suffices to bound the number of bad u-pairs, and twice
this bound will serve as a bound for the number of all bad pairs in Ge.

Let a,c ∈ A be two distinct neighbors of u in Ge, and let b ∈ B be a
neighbor of a in Ge (so b is a neighbor of v in G). There is at most one edge
of Ge incident to c (namely, (c,b)) that shares a vertex with (a,b).

a b

c d

u′ v′

u v

Figure 2. A double configuration forming a cube in G.

We claim that there is at most one vertex d∈B (different from b) such
that (a,b), (c,d) is a bad u-pair. Indeed, assume to the contrary that there
are at least two such neighbors of c, say d1,d2. Since (a,b), (c,d1) is a bad
u-pair, there exist at least two distinct vertices v′1,v

′′
1 ∈A, different from v,

such that (u,v′1,a,b,c,d1) and (u,v′′1 ,a,b,c,d1) are configurations. Similarly,
there exist at least two distinct vertices v′2,v

′′
2 ∈A, different from v, such that

(u,v′2,a,b,c,d2) and (u,v′′2 ,a,b,c,d2) are configurations. Clearly, there exist a
pair of vertices v1∈{v′1,v′′1}, v2∈{v′2,v′′2}, such that v1 �=v2. Then the eight
vertices (v,v1,v2, c,u,b,d1,d2) form a forbidden copy of Q in G (in fact, it is
a copy of Q plus one main diagonal (u,v)); see Figure 3.

This contradiction shows that there exist at most two ‘bad’ neighbors
of c in Ge, with respect to the fixed edge (a,b) of that graph: one of them
is b, and at most one other vertex d forms a bad u-pair (a,b), (c,d) in Ge.
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a b

c

u

v

v1

v2 d1

d2

Figure 3. Two bad pairs {(a,b),(c,d1)} and {(a,b),(c,d2)}, forming a cube in G.

Let N(u) (resp., N(v)) denote the set of neighbors of u (resp., of v); thus
Ae = |N(u)|, Be = |N(v)|. Then the number of bad u-pairs of edges (a,b),
(c,d) is at most 2AeEe. Similarly, the number of bad v-pairs of edges is
at most 2BeEe. Therefore the total number of bad pairs in Ge is at most
2Ee(Ae+Be)=2EeVe.

It follows that the number Me of tame pairs of edges in Ge satisfies

Me ≥
(
Ee

2

)
− 2EeVe =

1
2
Ee(Ee − 4Ve − 1),

as asserted.

Put

G1 = {e ∈ G | Ee ≥ 8Ve},
G2 = {e ∈ G | Ee < 8Ve}.

The total number |K| of tame configurations thus satisfies

|K| =
∑
e∈G

Me ≥
∑

e∈G1

Me ≥
∑

e∈G1

Ee(Ee − 4Ve − 1)
2

≥ 1
4

∑
e∈G1

E2
e − 1

2

∑
e∈G

Ee ≥
(∑

e∈G1
Ee
)2

4E
−
∑

e∈G Ee

2
.

Assume for the time being that
∑

e∈G2
Ee ≤ 1

2

∑
e∈GEe; the complementary

case will be treated later. Then
∑

e∈G1
Ee≥ 1

2

∑
e∈GEe, and

|K| ≥ (
∑

e∈G Ee)
2

16E
−
∑

e∈G Ee

2
.
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Note that
∑

eEe=4S, where S is the number of C4’s in G. Hence,

|K| ≥ S2

E
− 2S.

For each pair of distinct vertices u,v of G (both in A or both in B), let Wu,v

denote the number of paths of length 2 that connect u and v in G. Note
that

∑
u �=v∈AWu,v =W (A), where W (A) is the number of paths of length 2

in G whose extreme vertices are in A and whose middle vertex is in B, and
that

∑
u �=v∈A

(Wu,v

2

)
=S. Similarly,

∑
u �=v∈B Wu,v=W (B), where W (B) is the

number of paths of length 2 in G whose extreme vertices are in B and whose
middle vertex is in A, and

∑
u �=v∈B

(Wu,v

2

)
=S. Then we can lower bound S

by

S =
∑

u,v∈A

(
Wu,v

2

)
=

∑
u,v∈A

[
W 2

u,v

2
− Wu,v

2

]

≥

(∑
u,v∈A Wu,v

)2

2
(m

2

) −
∑

u,v∈A Wu,v

2
=

(W (A))2

2
(m

2

) − W (A)

2
.

Finally, we have W (A)=
∑

u∈B

(δ(u)
2

)
, where δ(u) is the degree of a vertex u

in G. Hence,

W (A) =
∑
u∈B

(
δ(u)
2

)
=
∑
u∈B

[
δ(u)2

2
− δ(u)

2

]
(1)

≥ (
∑

u∈B δ(u))2

2n
−
∑

u∈B δ(u)
2

=
E2

2n
− E

2
.

We next assume that W (A)≥2
(m

2

)
, which implies that S≥ (W (A))2

4(m
2 )

. Finally,

we assume that E ≥ 2n, which implies that W (A) ≥ E2

4n . Putting it all to-
gether, we obtain

2S + |K| = Ω

(
S2

E

)
= Ω

(
(W (A))4

m4E

)
= Ω

(
E7

m4n4

)
.

Combining this with the upper bound for |K|, which also holds trivially for
S, we obtain

E7

m4n4
= O(E2),

or E=O(m4/5n4/5).
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It remains to handle the cases that we have ignored so far. First, if E≤2n,
then clearly E satisfies the asserted bound. Next, suppose that W (A)≤2

(m
2

)
.

Since W (A)=
∑

u∈B

(δ(u)
2

)
, we obtain

E =
∑
u∈B

δ(u) ≤ n+
∑

u∈B, δ(u)≥1

(δ(u) − 1) = O

[
n+

(∑
u∈B

(
δ(u)
2

))1/2

· n1/2

]

= O(mn1/2 + n).

Note that by interchanging the roles of A and B, we may also assume that
E≥m and that W (B)≥2

(n
2

)
. Otherwise we get, as above, E=O(nm1/2+m).

Finally, assume that neither of these inequalities hold but that∑
e∈G2

Ee >
1
2

∑
e∈G

Ee = 2S.

We have∑
e∈G2

Ee < 8
∑

e∈G2

(Ae +Be) ≤ 8
∑
e∈G

(Ae +Be) = 16
(
W (A) +W (B)),

where the last equality is easily verified. Hence, S<8(W (A)+W (B)). Suppose,
without loss of generality, that W (B)≤W (A), so S<16W (A). This implies

∑
u,v∈A

[
W 2

u,v

2
− Wu,v

2

]
=

∑
u,v∈A

(
Wu,v

2

)
= S ≤

∑
u,v∈A

16Wu,v .

In other words, we have ∑
u,v∈A

W 2
u,v = O(W (A)),

which, using the Cauchy–Schwarz inequality, implies that

W (A) =
∑

u,v∈A

Wu,v ≤
(
m

2

)1/2

·


 ∑

u,v∈A

W 2
u,v




1/2

= O
(
m
(
W (A))1/2)

,

or W (A) = O(m2). Since we assume that E ≥ 2n, we have, using (1),
W (A)≥ E2

4n , implying that E=O(mn1/2). The complementary case W (A) ≤
W (B) yields, in a fully symmetric manner, E=O(m1/2n).

We have thus completed the proof of Theorem 2.1.

The general case is now a straightforward corollary:

Corollary 2.3. A graph with n vertices that does not contain Q has
O(n8/5) edges.
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3. A Generalization

In this section we generalize the method presented in Section 2 to bound
the Turan number of more general families of graphs.

Let k≤m be positive integers. Let A1,A2,B1,B2 be four pairwise disjoint
sets, so that |A1|= |B1|=k and |A2|= |B2|=m. Define Qk,m to be a bipartite
graph whose set of edges is (A1 ×B2)∪ (A2 ×B1)∪M1 ∪M2, where Mi is
a perfect bipartite matching in Ai ×Bi, for i = 1,2. It is easily checked
that Q2,2 =Q. The following theorem bounds the Turan number of Qk,m,
but only for graphs that satisfy an additional assumption (for simplicity of
presentation, we do not consider the bipartite version of this case):

Theorem 3.1. Let 2≤k≤m be positive integers, and let G be a graph on
n vertices which does not contain a copy of Qk,m, and also does not contain

a copy of Kk+1,k+1. Then G has at most O(n
4k

2k+1 ) edges.

Proof. Note first that the number of edges of a graph that satisfies only
the second assumption of the theorem is O(n2− 1

k+1 ), and that this bound
strictly dominates the bound asserted in the theorem, so the first assumption
is non-redundant for the asserted bound.

Again, we assume without loss of generality that G is a bipartite graph.
We define a configuration to be a (2k+2)-tuple (u,v,a1, . . . ,ak, b1, . . . , bk) of
distinct vertices of G, so that (u,v), and (ai, bi), (ai,u), (bi,v), for i=1, . . . ,k,
are all edges of G.

We say that a 2k-tuple (a1, . . . ,ak, b1, . . . , bk) of distinct vertices is tame
if (a1, b1), . . . ,(ak, bk) are all edges of G, and there are at most 2km edges
(u,v) in G such that (u,v,a1, . . . ,ak, b1, . . . , bk) is a configuration. Every such
configuration will be called a tame configuration. The proof proceeds along
the same lines as in the proof of Theorem 2.1, but is actually simpler because
of the second assumption of the theorem. It proceeds by effectively showing
that all configurations are tame.

Let E denote the number of edges of G, and let N denote the number of
tame configurations. An easy upper bound for N is 2kmEk=O(Ek).

We next obtain a lower bound for N . We fix an edge (u,v) of G and
define Ge exactly as in Section 2, namely, its vertices are the neighbors of u
and the neighbors of v in G, and its edges are the edges of G that connect
the neighbors of u to the neighbors of v. Define, as above, Ve and Ee to be
the number of vertices and edges of Ge, respectively.

We claim that any matching of size k in Ge gives rise to a tame configu-
ration. Indeed, let (a1, b1), . . . ,(ak, bk) be such a matching, and consider all
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the edges (ui,vi) (including (u,v)), so that (ui,vi,a1, . . . ,ak, b1, . . . , bk) is a
configuration; note that the edges (aj , bj) are distinct and vertex-disjoint.

Among the edges (ui,vi) one cannot find a matching of size m, because
such a matching would have induced a copy of Qk,m in G. On the other
hand, there can be at most k indices i with a common vi, and at most k
indices with a common ui. Indeed, assume, without loss of generality, that
v1 = · · · = vk+1. Then A = {u1, . . . ,uk+1} and B = {b1, . . . , bk,v1} induce
a copy of Kk+1,k+1 in G, contrary to assumption. Now take a maximum
matching among the edges (ui,vi); its size is at most m− 1, and we may
write it as (u1,v1), . . . ,(uj ,vj), for some j≤m−1. Any other edge (ui,vi)
must be incident to one of the 2j vertices u1, . . . ,uj ,v1, . . . ,vj , and each of
these vertices is incident to at most (k−1) such additional edges, for a total
of at most j+2j(k− 1)≤ (m− 1)(2k− 1)< 2km. In other words, we have
shown that, for any choice of a matching of size k from Ge, the corresponding
configuration (u,v,a1, . . . ,ak, b1, . . . , bk) is tame.

The number of ways to pick k distinct and vertex-disjoint edges from Ge

is at least

Ee(Ee − Ve)(Ee − 2Ve) · · · (Ee − (k − 1)Ve)
k!

>
(Ee − (k − 1)Ve)k

k!
,

assuming that Ee≥(k−1)Ve.
The total number N of tame configurations satisfies, using Hölder’s in-

equality,

N ≥ 1
k!

∑
e|Ee>(k−1)Ve

(Ee − (k − 1)Ve)k ≥

(∑
e|Ee>(k−1)Ve

(Ee − (k − 1)Ve)
)k

k!Ek−1
.

Arguing as before, one has
∑

eEe=4S, where S is the number of C4’s in G,
and

∑
eVe=2W , where W is the number of paths of length 2 in G. Let us

assume that S≥(k−1)W . Then we have∑
e|Ee>(k−1)Ve

(Ee − (k − 1)Ve) ≥
∑
e

(Ee − (k − 1)Ve) = 4S − 2(k − 1)W ≥ 2S,

and thus

N ≥ (2S)k

k!Ek−1
.

Using the analysis in the previous section we obtain, assuming E ≥ n and
W ≥ 2

(n
2

)
, that S = Ω(E4/n4). Thus, N = Ω(E3k+1/n4k). Combining this

with the upper bound O(Ek), we get E=O(n
4k

2k+1 ).
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The remaining cases E<n, W <2
(n
2

)
, or S<(k−1)W , are analyzed in a

manner similar to that in Section 2. (Recall that these cases yield the bound
E = O(n3/2), which is dominated by the bound asserted in the theorem,
provided that k≥2.)

Remarks. (1) We do not know whether Theorem 3.1 also holds without
the assumption that G does not contain Kk+1,k+1.
(2) The approach of [1] seems incapable of obtaining this bound.
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