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DISKS ON A TREE: ANALYSIS OF A COMBINATORIAL GAME∗

TOMÁS FEDER† AND CARLOS SUBI‡

Abstract. Anderson et al. [Amer. Math. Monthly, 96 (1989), pp. 481–493] studied a combina-
torial game on an infinite path that is started with n disks at a vertex and ends with the disks spread
between k = �n/2� vertices to the left and to the right of the initial vertex. They showed that the
number of steps the game takes to converge to the final configuration is ck2 +o(k2) for some constant
c. We generalize this game to the case of an infinite rooted tree, where each vertex has degree d + 1
and where the earlier game corresponds to the case d = 1. We determine the final configuration when
the game is started with n disks at the root and show that in this final configuration all disks are at
depth at most k = Θ(logd n) for d ≥ 2. We also show that the number of steps that the game takes
to converge to the final configuration in this case is at most O(k(1+logd k)), so that the convergence
is faster than what it was for the case d = 1. We generalize the game to the case where the vertices
at depth i in the tree have di ≥ 2 children, where the di are not necessarily the same, and show that
the convergence time in this case is at most O(k1.5 + k logdmin

dmax), where dmin and dmax are the
smallest and largest di, respectively.
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1. Introduction. In this article we study a very simple combinatorial game that
can be played with several piles of disks arranged in a tree. At each unit of time, each
pile, sitting at a vertex of degree d, is divided into d equal piles, which are moved
to the d neighbors of the vertex, leaving a remainder of at most d − 1 disks at the
original vertex.

We are interested in the case of an infinite rooted tree, where the root is at depth
zero and has d0 + 1 children, and in general each vertex at depth i has di children.
The initial configuration has n disks.

This game was studied by Anderson et al. [1] in the case where all di = 1, so that
the tree is an infinite path. They determined the final configuration and showed that
this configuration is reached in c(n/2)

2
+ o(n2) steps for some 1/3 ≤ c ≤ π2/6 − 1.

Björner, Lovász, and Shor [3] studied the related slowed-down game on an arbitary
graph with n vertices and m edges, where a single move consists of selecting a vertex
of degree d with at least d disks and moving these disks to the d neighbors. They
showed that the final configuration and the number of moves depend only on the
initial configuration and that the game is infinite if the number of disks is greater
than 2m − n, is finite if the number of disks is smaller than m, and can be finite or
infinite depending on the initial configuration if the number of disks is between m and
2m − n. Tardos [27] showed that there exist graphs with an initial configuration for
which the number of steps of this slowed-down game is Ω(n4) and that the number
of steps is always bounded by 2nmd = O(n4), where d is the diameter of the graph.

Various versions of such games on graphs have been studied as chip-firing games
and Abelian sandpile models, including the work of Goles et al. [20, 21, 22, 23, 24, 25,
26], Dhar et al. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], and others [2, 4].
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Back at the case of an infinite tree, if we denote by xri the number of disks at any
one vertex at depth i after r steps, then we obtain the recurrence xr0 = x(r−1)0 mod
(d0 + 1) + (d0 + 1)�x(r−1)1/(d1 + 1)�, and for i ≥ 1, xri = �x(r−1)(i−1)/(di−1 + 1)� +
x(r−1)i mod (di+1)+di�x(r−1)(i+1)/(di+1 +1)�. The base case is x00 = n and x0i = 0
for i ≥ 1.

We first determine the final configuration for this game. For this final configura-
tion, we denote by ni the number of disks sitting at a subtree rooted at a vertex at
depth i and by ei the number of disks sitting at a vertex at depth i. Then n0 = n,
e0 = n mod (d0 + 1), n1 = �n/(d0 + 1)�, ei = 1 + (ni − 1) mod di for 1 ≤ i ≤ k, and
ni+1 = �(ni − 1)/di� for 1 ≤ i ≤ k. Here k is the first i such that ni+1 = 0. In fact
no disk ever reaches depth k + 1.

We next study the number of steps it takes for the game to reach its final config-
uration. We focus on the case where all di = d ≥ 2. We first consider the special case
where n = (d + 1)(dk − 1)/(d− 1), so that all ei = 1 for 1 ≤ i ≤ k. For this case, we
show that the number of steps is bounded by O(k) = O(logd n). The proof is based
on a comparison with the fractional game where no remainder is left at a vertex.

For general n, repeated applications of the preceding result give a bound of
O(k(1 + logd k)) = O(logd n logd logd n) on the number of steps.

We next consider the case where all di ≥ 2 are not necessarily equal. Again we first
consider the special case where all ei = 1 for 1 ≤ i ≤ k. For this case, we show that the
number of steps is bounded by O(logdmin

n) = O(
∑

i≤k logdmin
di) = O(k logdmin

dmax),
where dmin and dmax denote the smallest and the largest di for 1 ≤ i ≤ k.

We then obtain bounds for general n. If 2 ≤ di ≤ dj for 1 ≤ i ≤ j, then the
number of steps is bounded by O(k logdmin

(kdmax)).
If di ≥ dj for 1 ≤ i ≤ j, then the number of steps is at most 2k2.
In the general case of n arbitrary and all di ≥ 2 for i ≥ 1, the number of steps is

bounded by O(k1.5 + logdmin
n) = O(k1.5 + k logdmin

dmax).
We finally obtain a lower bound of Ω(k+max1≤i≤k

∑
i≤j≤k logdi

dj) on the num-
ber of steps if all di ≥ 2. Thus the upper bound for the case where all ei = 1
for 0 ≤ i ≤ k is tight up to constant factors, provided logdmin

d1 = O(1), that is,

d1 ≤ d
O(1)
min .

The analysis of the game in the case where some of the di for i ≥ 1 satisfy di = 1
and some satisfy di ≥ 2 remains open.

The case of a tree is thus interesting because, unlike the case of a path, the number
of steps depends only logarithmically on the number of disks, and the dependence
seems to be essentially linear in the depth of the tree reached by the final configuration.
This contrasts with the fact that in the case of a path, the dependence is quadratic in
the length of the path, which equals in that case the number of initial disks. In fact,
none of the previously studied cases in the literature shows dependence that is only
logarithmic in the number of disks or linear in the diameter of the graph.

2. The final configuration. Recall that if we denote by xri the number of
disks at any one vertex at depth i after r steps, then we obtain the recurrence
xr0 = x(r−1)0 mod (d0 + 1) + (d0 + 1)�x(r−1)1/(d1 + 1)�, and for i ≥ 1, xri =
�x(r−1)(i−1)/(di−1 + 1)�+ x(r−1)i mod (di + 1) + di�x(r−1)(i+1)/(di+1 + 1)�. The base
case is x00 = n and x0i = 0 for i ≥ 1.

Lemma 1. The combinatorial game terminates in some final configuration.
Proof. Consider the potential function φr =

∑
i trii

2, where tri is the total number
of disks at all vertices at depth i after r steps. This potential function increases at
each step: if d0 + 1 disks at depth 0 are moved to depth 1, it increases by d0 + 1; if
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di + 1 disks at depth i are moved so that one disk goes to depth i− 1 and di disks go
to depth i + 1, it increases by (i− 1)

2
+ di(i + 1)

2 − (di + 1)i2 = 2(di − 1)i + di + 1.
Consequently no configuration ever repeats. Suppose that after some number r

of steps, all depths up to depth kr have been reached by disks. The number of disks
at depth r cannot be more than n/2kr ≥ 1. Therefore kr ≤ log2 n.

Since there is a finite number of configurations that never reach depth 2n, and
no configuration ever repeats because the potential function always increases, a final
configuration must eventually be reached.

We determine the final configuration for this game. For this final configuration,
we denote by ni the number of disks sitting at a subtree rooted at a vertex a depth i
and by ei the number of disks sitting at a vertex at depth i.

Theorem 1. The final configuration is given by n0 = n, e0 = n mod (d0 + 1),
n1 = �n/(d0 + 1)�, ei = 1 + (ni − 1) mod di for 1 ≤ i ≤ k, and ni+1 = �(ni − 1)/di�
for 1 ≤ i ≤ k. Here k is the first i such that ni+1 = 0. In fact no disk ever reaches
depth k + 1.

Proof. Since the d0 + 1 subtrees rooted at depth 1 are identical, it follows that
the total number of disks remaining in such subtrees is a multiple of d0 + 1. Since
0 ≤ e0 ≤ d0, it follows that e0 = n mod (d0 + 1), and therefore n1 = �n/(d0 + 1)�.

Consider the ni disks remaining at a subtree rooted at depth i. Since a vertex
at depth i has di identical subtrees rooted at depth i + 1, it follows that the total
number of disks remaining in such subtrees is a multiple of di. Since 0 ≤ ei ≤ di, it
follows that ei = ni mod di if ni is not divisible by di, and otherwise either ei = 0
or ei = di. We shall show that ei = 0 is not possible, so in this case ei = di, and so
in general ei = 1 + (ni − 1) mod di, implying ni+1 = �(ni − 1)/di� for i ≥ 2. Since
ni+1 = 0, no disk ever reaches depth k + 1.

It remains to show that ei = 0 is not possible for 1 ≤ i ≤ k. Suppose ei = 0.
The last time disks left depth i, each vertex at depth i− 1 received at least di−1 disks
from its children, so ei−1 = di−1. Similarly, there were 0 disks at depth i − 1 before
these di−1 disks arrived from depth i; otherwise we would later get a nonzero number
of disks at depth i, so the last time disks left depth i− 1 happened before, and each
vertex at depth i − 2 received at least di−2 disks from its children, so ei−2 = di−2.
Proceeding inductively, we obtain e1 = d1, and there were 0 disks at depth 1 before
these d1 disks arrived from depth 2, so the last time disks left depth 1, the root at
depth 0 received at least d0 + 1 disks from its children. This would give e0 ≥ d0 + 1,
contrary to the fact that e0 ≤ d0. This completes the proof.

3. The case of all di = d ≥ 2. We shall study the number of steps it takes for
the game to reach its final configuration. In this section, all di have the same value
di = d ≥ 2. If we denote by xri the number of disks at a vertex at depth i after r steps,
then we obtain the recurrence xr0 = x(r−1)0 mod (d + 1) + (d + 1)�x(r−1)1/(d + 1)�,
and for i ≥ 1, xri = �x(r−1)(i−1)/(d+1)�+x(r−1)i mod (d+1)+d�x(r−1)(i+1)/(d+1)�.
The base case is x00 = n and x0i = 0 for i ≥ 1.

There is a closely related fractional game where no remainder is left at a ver-
tex. For this fractional game, we study the recurrence yri = y(r−1)(i−1)/(d + 1) +
dy(r−1)(i+1)/(d + 1). The base case is y00 = n and y0i = 0 for i �= 0. Here we are
allowing i to be negative.

Lemma 2. The solution of the recurrence is yr(2i−r) = n(1/d)
i
(d/(d + 1))

r(r
i

)
and yri = 0 for i + r odd.

Proof. Clearly yri = 0 unless r and i are either both even or both odd. Let
zr(2i−r) = diyr(2i−r). Then z(r+1)(2i−(r+1))/d = zr(2(i−1)−r)/(d+1)+ zr(2i−r)/(d+1).
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Let wr(2i−r) = ((d + 1)/d)
r
zr(2i−r). Then w(r+1)(2i−(r+1)) = wr(2(i−1)−r) +

wr(2i−r).

Then wr(2i−r) = n
(
r
i

)
. Therefore zr(2i−r) = n(d/(d + 1))

r(r
i

)
, and so yr(2i−r) =

n(1/d)
i
(d/(d + 1))

r(r
i

)
.

We shall use the concept of slowed-down versions of the combinatorial game. Here
not all disks that could be moved at a given point in time are moved, so that moving
these disks is delayed until later. This means that the slowed-down game takes longer
to reach the final configuration than the original game. See also [3, 27]. Thus in a
slowed-down game, we still move the same number of disks to each neighbor, but we
may choose a smaller number of such disks to move, so that a number larger than
the smallest possible remainder is left at each chosen vertex. This results in partially
postponing the full move that would happen at a step, so that the rest of the move
will happen later. The result is that the number of steps is increased when we go
to the slowed-down game, yet the same final configuration is eventually reached. We
also consider at times a fractional game, where fractions of disks may be moved to
all neighbors, in the same quantity to each neighbor, as opposed to moving only full
disks, which results again in postponing the move of the remaining fraction, while
eventually reaching the same final configuration.

Lemma 3. In the combinatorial game with all di = d ≥ 2 and n = (d + 1)(dk −
1)/(d − 1), so that e0 = 0 and all ei = 1 for 1 ≤ i ≤ k, depth k is reached in O(k)
steps (independently of d).

Proof. We slow down the combinatorial game by requiring that if there are at
least d disks at a vertex at depth i after r − 1 steps, then exactly d disks are left
at depth i for the rth step; if there are at most d disks at a vertex at depth i, then
none of these disks is moved. We show that this slowed-down fractional game reaches
depth k within O(k) steps. This implies that the original combinatorial game, which
is not slowed down, will reach depth k as well.

The numbers of disks tri for the slowed down game are upper bounded by tri ≤
d+ yri, where the yri are the quantities from the recurrence for the preceding lemma,
since disks in excess of d are moved according to fractional game defining the yri, and
so the claim follows by induction. That is, the game played above d disks always has
tri − d ≤ yri, since those excess disks satisfy the recurrence for the yri, except that
some disks may be lost if they reach a pile with fewer than d disks.

We bound the yr(2i−r) for i ≥ r/2 by

yr(2i−r) ≤ n(1/d)
i
(2d/(d + 1))

r ≤ n(4d/(d + 1)2)
r/2

.

If we let r = ck for a large constant c, then for i ≥ r/2 we have yr(2i−r) ≤ n(1/d)
c′k

for another large constant c′ depending on c.

If all vertices at depth 0 ≤ i ≤ k − 1 have d disks, then this accounts for exactly

n−1 disks. The excess yr(2i−r) ≤ n(1/d)
c′k

in the bound tri ≤ d+yri for 0 ≤ i ≤ k−1
accounts for strictly less than 1 disk if c′ is large enough. Therefore some fraction of
one disk must have reached depth k by step r = ck in the slowed-down fractional game,
so at least one disk will have reached depth k by step r = ck in the combinatorial
game.

Define a special configuration to be a configuration where the sequence xr0xr1 · · ·xrk

is given by 01∗((d + 1)d∗01∗)
∗
1 or by ((d + 1)d∗01∗)

+
1. Here x∗ denotes any nonneg-

ative number of copies of x, and x+ denotes any positive number of copies of x.
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Lemma 4. In the combinatorial game with all di = d ≥ 2 and n = (d + 1)(dk −
1)/(d − 1), so that e0 = 0 and all ei = 1 for 1 ≤ i ≤ k, after depth k is reached, we
have a special configuration.

Proof. After depth k is reached, there will be 1 disk at each vertex at depth k. A
vertex at depth k − 1 has at most 1 disk by a count on the total number of disks. If
there is 1 disk at depth k−1, then we proceed inductively on k. If there are 0 disks at
depth k−1, then the last time disks were moved from depth k−1 we obtained at least
d disks at a vertex at depth k− 2 and at most d+ 1 disks at such a vertex by a count
on the number of disks. If there are exactly d disks, then again the last time disks
were moved from depth k− 2 we obtained at least d disks at a vertex at depth k− 3,
and so on. This accounts for the sequence ending in ((d + 1)d∗01∗)1. The number of
disks accounted by such a sequence is the same as for a sequence of the same length of
the form 1∗, so we may again proceed inductively to obtain again a sequence ending in
((d + 1)d∗01∗)

2
1, and so on for a sequence ending in ((d + 1)d∗01∗)

∗
1. The resulting

number of disks for the root at depth 0 will be either d+1 or 0, giving one of the two
kinds of special configuration.

Lemma 5. A special configuration with k ≥ 2 takes at most 2k− 3 steps to reach
the configuration 01∗ with e0 = 0 and ei = 1 for 1 ≤ i ≤ k.

Proof. We show that each step decreases by at least 1 the number of xi = d,
which is at most k− 2, in some slowed-down game. To see this, if some d is preceded
by a 1, then we must in particular have a subsequence 1(d + 1)(0(d + 1))

r
d for some

r, which gives rise in one step to the subsequence (d+1)(0(d + 1))
r+1

, decreasing the
number of d’s by 1. If the first d is not preceded by a 1, then the initial sequence is
either (0(d + 1))

r
d, giving in one step (d+1)(0(d + 1))

r
, or (d+1)(0(d + 1))

r
d, giving

in one step (0(d + 1))
r+1

, again decreasing the number of d’s by 1.

Once there remain no d’s, each step increases the number of 1’s at the end
by 1, since the sequence must be of one of the two forms 01∗((d + 1)01∗)

∗
1, or

by ((d + 1)01∗)
+
1. It thus takes at most k − 1 steps to reach 01∗ for a total of

(k − 2) + (k − 1) = 2k − 3 steps.

Combining Lemmas 3, 4, and 5, we have that the combinatorial game takes O(k)
steps to reach depth k by Lemma 3, at which point we have a special configuration
by Lemma 4, and the remaining steps that take this special configuration to a final
configuration are bounded in a slowed-down game analysis of these remaining steps
by 2k − 3, for a total of O(k) steps. We thus obtain the following.

Theorem 2. In the combinatorial game with all di = d ≥ 2 and n = (d+1)(dk−
1)/(d − 1), so that e0 = 0 and all ei = 1 for 1 ≤ i ≤ k, it takes O(k) steps to reach
the final configuration, independent of d.

For the rest of the section, it will be convenient to change the value of d0. This
will be justified by the following.

Lemma 6. The combinatorial game with n disks and some value of d0 is equivalent
to the game with �n/(d0 +1)� disks on a tree modified to have a degree 1 root; that is,
both games take the same number of steps. Thus there is a correspondence between
different possible values of d0 via the value d0 = 0.

Proof. In both games, the first step moves �n/(d0 + 1)� disks from the root at
depth 0 to each vertex at depth 1. In subsequent pairs of steps 2i and 2i + 1, if the
root receives r disks from each vertex at depth 1 in step 2i, then it sends r disks back
to each vertex at depth 1 in step 2i + 1.

Assume still that all di = d ≥ 2 for 1 ≤ i ≤ k but set d0 = d− 2.
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Lemma 7. A slowed-down game reaches a configuration with xri ≤ (d− 1)(k+1)
and xri ≥ xrj for i ≤ j in r = O(k) steps.

Proof. Repeatedly subtract the largest n′ ≤ n from n that can be replaced by
a sequence of the form 1l with l ≤ k by the result of Theorem 2, in O(k) steps.
Each value of l will be chosen at most d − 1 times, since the sequence dl would
give instead the sequence 1l+1. Notice that this takes a total of O(k) steps, since
a slowed-down game can simultaneously carry out the different steps that lead to
each 1l.

The result, after O(k) steps of this slowed-down game, is thus at most k + 1
sequences sll with 0 ≤ sl ≤ d − 1, for 0 ≤ l ≤ k, and these sequences together prove
the lemma.

Lemma 8. In a slowed-down game, a configuration with xri ≤ (d − 1)(k + 1)
and xri ≥ xrj for i ≤ j leads to a configuration with xri = O(d(1 + logd k)) in
O(k(1 + logd k)) steps.

Proof. Subtract from each xri at most d elements so that each xri is a multiple
of d. Now decompose the configuration of resulting x′

ri into sequences of the form dl,
and replace each such sequence by a sequence of the form 1l+1 in at most 2k steps by
an application of Lemma 5. This reduces the largest xri by a factor of d.

Performing this transformation O(1 + logd k) times, we will be left just with the
O(1+logd k) remainders of at most d elements for xr′i, so that xr′i = O(d(1+logd k))
after O(k(1 + logd k)) steps.

Lemma 9. In a slowed-down game, a configuration with xri = O(d(1 + logd k))
leads to the final configuration in O(k(1 + logd k)) steps.

Proof. There exists a special configuration vi ≤ xri such that vi = d or vi = d+1
whenever xri ≥ d+1, and if vi = 0, then xri ≤ d−1. To see this, replace any sequence
of entries xri that are at least d+ 1 by a sequence (d+ 1)dl of vri, adding some extra
vi set to d at the end for xri that are equal to d as well. Insert in between blocks
of the form 01l, noting that each vi set to 0 will then correspond to xri that are at
most d − 1, since otherwise a d would have been used for vi. This gives a special
configuration.

Such a special configuration of vi leads in 2k steps to a sequence of the form 01l

by Lemma 5, thus reducing the largest xri by at least d− 1.

Performing this transformation O(1 + logd k)) times will ensure that all resulting
xri have value at most d, and we thus have a final configuration in O(k(1 + logd k))
steps.

Combining Lemmas 6, 7, 8, and 9, we obtain the following.

Theorem 3. In the combinatorial game with all di = d ≥ 2 and arbitrary n, it
takes O(k(1 + logd k)) steps to reach the final configuration.

4. The case of arbitrary di ≥ 2. In this section, the di may have different
values, but all di ≥ 2 for 1 ≤ i ≤ k. Recall that if we denote by xri the number of disks
at a vertex at depth i after r steps, then we obtain the recurrence xr0 = x(r−1)0 mod
(d0 + 1) + (d0 + 1)�x(r−1)1/(d1 + 1)�, and for i ≥ 1, xri = �x(r−1)(i−1)/(di−1 + 1)� +
x(r−1)i mod (di+1)+di�x(r−1)(i+1)/(di+1 +1)�. The base case is x00 = n and x0i = 0
for i ≥ 1.

Let d = dmin denote the mininum di for 1 ≤ i ≤ k. By Lemma 6, we may assume
d0 = dmin. We again define a closely related fractional game with no remainders,
with recurrence sri = s(r−1)(i−1)/(di−1 + 1) + dis(r−1)(i+1)/(di+1 + 1) for i ≥ 1,
sr0 = (d0 + 1)s(r−1)1/(d1 + 1). The base case is s00 = n, s0i = 0 for i ≥ 1.



DISKS ON A TREE: ANALYSIS OF A COMBINATORIAL GAME 549

Lemma 10. The solution of the recurrence has

sr(2i−r) ≤ n(d2i−r + 1)(1/d)
i
(d/(d + 1))

r

(
r

i

)

for i ≥ r/2; otherwise uri = 0.
Proof. Define uri = sri/(di+1). We obtain the recurrence uri = u(r−1)(i−1)/(di+

1) + diu(r−1)(i+1)/(di + 1) for i ≥ 1, ur0 = u(r−1)1. Setting d = dmin, it suffices to
show ur(2i−r) ≤ yr(2i−r), with yri given as in Lemma 2.

We show this by induction on r. If i > (r + 1)/2, then u(r+1)(2i−(r+1)) =
ur(2(i−1)−r)/(d2i−(r+1)+1)+d2i−(r+1)ur(2i−r)/(d2i−(r+1)+1)≤yr(2(i−1)−r)/(d2i−(r+1)+
1) + d2i−(r+1)yr(2i−r)/(d2i−(r+1) + 1) ≤ yr(2(i−1)−r)/(d + 1) + dyr(2i−r)/(d + 1) =
y(r+1)(2i−(r+1)), since yr(2(i−1)−r) ≥ yr(2i−r) by Lemma 2. If i = (r + 1)/2, then
u(r+1)(2i−(r+1)) = ur(2i−r) ≤ yr(2i−r) ≤ y(r+1)(2i−(r+1)).

Lemma 11. In the combinatorial game with all di ≥ 2, and with e0 = 0 and all
ei = 1 for 1 ≤ i ≤ k, depth k is reached in O(logdmin

n) steps.
Proof. The proof is similar to that of Lemma 3. We slow down the combinatorial

game by requiring that if there are at least di disks at a vertex at depth i after r − 1
steps, then exactly di disks are left at depth i for the rth step; if there are at most
di disks at a vertex at depth i, then none of these disks is moved. We show that this
slowed-down fractional game reaches depth k within O(k) steps. This implies that
the original combinatorial game, which is not slowed down, will reach depth k as well.

The number of disks tri for the slowed-down game are upper bounded by tri ≤
di+sri, where the sri are the quantities from the recurrence from the preceding lemma,
since disks in excess of d are moved according to the fractional game defining the sri.

We bound the sr(2i−r) for i ≥ r/2 by ss(2i−r) ≤ n(d2i−r + 1)(4d/(d + 1)
2
)
r/2

for
d = dmin. If we let r = c logd n for a large constant c, then for i ≥ r/2, we have

sr(2i−r) ≤ (1/n)
c′

for another large constant c′.
If all vertices at depth 0 ≤ i ≤ k − 1 have di disks, then this accounts for exactly

n−1 disks. The excess sr(2i−r) ≤ (1/n)
c′

in the bound tri ≤ di + sri for 0 ≤ i ≤ k−1
accounts for strictly less than 1 disk if c′ is large enough. Therefore some fraction of
one disk must have reached depth k by step r = c logd n in the slowed-down fractional
game, so at least one disk will have reached depth k by step r = c logd n in the
combinatorial game.

Define a special configuration to be a configuration where the sequence xr0xr1 · · ·xrk

is given by 01∗((di + 1)d∗i 01∗)
∗
1 or by ((di + 1)d∗i 01∗)

+
1, where the corresponding di

is chosen for position xri. The arguments of Lemmas 4 and 5 yield the following two
lemmas.

Lemma 12. In the combinatorial game with all di ≥ 2 with e0 = 0 and all ei = 1
for 1 ≤ i ≤ k, after depth k is reached, we have a special configuration.

Lemma 13. A special configuration with k ≥ 2 takes at most 2k−3 steps to reach
the configuration 01∗ with e0 = 0 and ei = 1 for 1 ≤ i ≤ k.

Combining Lemmas 11, 12, and 13 yields the following.
Theorem 4. In the combinatorial game with all di ≥ 2, and with e0 = 0 and all

ei = 1 for 1 ≤ i ≤ k, it takes O(logdmin
n) = O(

∑
i≤k logdmin

di) = O(k logdmin
dmax)

steps to reach the final configuration, where dmin and dmax denote the smallest and
the largest di for 1 ≤ i ≤ k.

We now consider cases with arbitrary n. By Lemma 6, we may set d0 = dmin − 2.
Lemma 14. A slowed-down game reaches a configuration with xri ≤ (dmax −

1)(k + 1) and xri ≥ xrj for i ≥ j in O(logdmin
n) steps.
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Proof. The proof is as in Lemma 7. Repeatedly subtract the largest n′ ≤ n from n
that can be replaced by a sequence of the form 1l with r ≤ k by the result of Theorem
4 in O(logdmin

n) steps. Each value of l will be chosen at most dmax − 1 times, since
the sequence (d0 + 2)d1 · · · dl would give instead the sequence 1l+1.

The result, after O(logdmin
n) steps of this slowed-down game, is thus at most

k+1 sequences sll with 0 ≤ sl ≤ dmax −1, for 0 ≤ l ≤ k, and these sequences together
prove the lemma.

Lemma 15. Suppose 2 ≤ di ≤ dj for 1 ≤ i ≤ j. A configuration with xri ≤
(dmax − 1)(k + 1) and xri ≥ xrj for i ≤ j leads to a configuration with xr′i =
O((di + 1) logdmin

(kdmax)) in O(k logdmin
(kdmax)) steps.

Proof. The proof is as in Lemma 8. Subtract from each xri at most di elements so
that each xri is a multiple of di; for xr0, subtract at most d0 + 1 elements so that xr0

is a multiple of d0 + 2. Note that if xri < di, then xr(i+1) < di+1, since xr(i+1) ≤ xri

and di ≤ di+1. Now decompose the configuration of resulting x′
ri into sequences of

the form (d0 + 2)d1 · · · dl and replace each such sequence by a sequence of the form
1l+1 in at most 2k steps by an application of Lemma 13. This reduces the largest xri

by a factor of dmin.

Performing this transformation O(logdmin
(kdmax)) times, we will be left just with

the O(logdmin
(kdmax)) remainders of at most di elements for xr′i or d0+1 elements for

xr′0, so that xr′i = O((di + 1) logdmin
(kdmax)) after O(k logdmin

(kdmax)) steps.

Lemma 16. For any value V , a configuration with xr′i = O((di + 1)V ) leads to
the final configuration in O(kV ) steps.

Proof. The proof is as in Lemma 9. There exists a special configuration vi ≤ xri

such that vi = di or vi = di +1 whenever xri ≥ di +1, and if vi = 0, then xri ≤ di−1.
To see this, note that any xri = 0 will be preceded by a sequence (di + 1)dli, and
blocks of the form (di + 1)dli can be separated by blocks of the form 01l, thus giving
a special configuration.

Such a special configuration of vi leads in 2k steps to a sequence of the form 01l

by Lemma 13, thus reducing each xri ≥ di + 1 by at least di − 1.

Performing this transformation O(V ) times will ensure that all resulting xri have
value at most di, and we thus have a final configuration in O(kV ) steps.

Combining Lemmas 6, 14, 15, and 16, we obtain the following.

Theorem 5. If 2 ≤ di ≤ dj for 1 ≤ i ≤ j, then the number of steps is bounded
by O(k logdmin

(kdmax)).

Theorem 6. If di ≥ dj for 1 ≤ i ≤ j, then the number of steps is at most 2k2.

Proof. We may assume d0 = dmax by Lemma 6. We wish to reach the con-
figuration xi = ei. Suppose more generally we wish to reach a configuration x0 =
e0+(d0+1)u, xi = ei+(di−1)u for 1 ≤ i ≤ k. This configuration can be reached from
x′

0 = e0+(d0+1)(u+1+(dk−1)u), x′
i = ei+(di−1)(u+1+(dk−1)u) for 1 ≤ i ≤ k−1,

x′
k = ek − 1 in 2k− 1 steps by Lemma 13 that transforms (d0 +1)d1 · · · dk−1 into 01k.

The configuration x′
i can in turn be reached from x′

0 = e0+(d0+1)(u+ek+(dk−1)u),
x′
i = ei + (di − 1)(u + ek + (dk − 1)u) for 1 ≤ i ≤ k − 1, x′

k = 0 in 2k − 1 steps by
Lemma 13 again.

We have thus obtained a configuration x′
0 = e0 + (d0 + 1)v, xi = ei + (di − 1)v

for 1 ≤ i ≤ k − 1 in 2(2k − 1) steps, and this configuration has x′
k = 0. Repeatedly

applying the same argument, we may set x′′
k−1 = 0, x′′′

k−2 = 0, . . . in turn, until the
initial configuration is reached. The number of steps is 2(2k − 1) + 2(2(k − 1) − 1) +
2(2(k − 3) − 1) + · · · = 2k2.
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Theorem 7. In the general case of n arbitrary and all di ≥ 2 for i ≥ 1, the
number of steps is bounded by O(k1.5 + logdmin

n) = O(k1.5 + k logdmin
dmax).

Proof. Consider the slowed-down fractional game of Lemma 11 that reaches depth
k within O(logdmin

n) = O(k logdmin
dmax) steps. At the end of this fractional game,

we have tri ≤ di + sri as before, and the excesses sri account for strictly less than
one disk as before. The di for i < j together with the extra disk coming from the
sri account for less than one disk that is in the subtree rooted at a vertex at depth
j in the final solution. The reason is that a sequence (d0 + 1)d1d2 · · · dl can at most
transform to 01l+1, with one disk moving to a subtree rooted at depth l + 1.

In the extreme case, suppose each subtree is missing one disk from its parent. If
a leaf at depth k is going to receive 1 disk from its parent, then the parent at depth
k − 1 must also send 1 disk to its parent and thus receive a total of 2 disks from its
parent; then the parent at depth k − 2 must also send 2 disks to its parent and thus
receive a total of 3 disks from its parent. In general, a vertex at depth k− i will send
at most i disks to its parent and receive at most i + 1 disks from its parent.

Consequently, in the combinatorial game, after the initial

O(logdmin
n) = O(k logdmin

dmax)

steps follows a second phase during which each vertex sends at most k disks to each of
its neighbors, for a total of k2 disks when adding over all depths i. As long as a vertex
at some depth i has at least

√
k(di + 1) disks, such a vertex will send

√
k disks simul-

taneously to each of its neighbors; this can happen for at most k2/
√
k = k1.5 steps.

Once the vertices at each depth i have at most
√
k(di + 1) disks, a final configu-

ration can be reached in O(k1.5) steps by Lemma 16, completing the proof.
Theorem 8. Assume that dk = ek. If di ≥ 2 for i ≥ 1, then there is a lower

bound of Ω(k + max1≤i≤k

∑
i≤j≤k logdi

dj) on the number of steps. Thus the upper
bound of Theorem 4 is tight up to constant factors, provided logdmin

d1 = O(1), that

is, d1 ≤ d
O(1)
min (since in that case O(

∑
i≤k logdmin

di) = O(
∑

i≤k logd1
di)).

Proof. There is an immediate lower bound of Ω(k) to reach depth k. Consider
the ni disks that may reach depth i. Only a fraction di/(di + 1) of these disks will be
moved from a vertex at depth i to depth i+ 1 at one time, since a fraction 1/(di + 1)
must be moved to depth i − 1. Thus after one step, we are still left with at least
(ni − ei)/(di + 1) disks that have not yet reached depth i + 1; after two steps we

are still left with at least (ni − ei)/(di + 1)
2

disks that have not yet reached depth
i + 1; and after r steps we are still left with at least (ni − ei)/(di + 1)

r
disks that

have not yet reached depth i + 1. It will thus take at least r = logdi+1(ni − ei) steps
to move the ni − ei disks to depth i + 1. The result follows from the bound ni ≥
didi+1 · · · dk.

5. Conclusion. We have analyzed a combinatorial game played on an infinite
rooted tree where all the vertices at depth i have the same number of children di. The
analysis determines the final configuration in the general case and bounds the number
of steps needed to reach this final configuration when di ≥ 2 for i ≥ 1. The case where
all di = 1 for i ≥ 1 was previously studied by Anderson et al. [1]. It remains open
to analyze the combinatorial game when some of the di for i ≥ 1 satisfy di = 1 and
some satisfy di ≥ 2.

The fact that the dependence of the number of steps depends essentially linearly
on the depth of the tree and logarithmically in the number of disks, instead of being
quadratic as in the case of a path, indicates that the particular structure of each graph



552 TOMÁS FEDER AND CARLOS SUBI

under consideration greatly affects the number of steps that the game takes. It thus
seems that trees are the graphs for which the convergence to the final configuration
is fastest, as it is in many cases only linear in the diameter reached by the game.
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