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What is the maximum possible number, f3(n), of vectors of length n over {0,1,2} such
that the Hamming distance between every two is even? What is the maximum possible
number, g3(n), of vectors in {0,1,2}n such that the Hamming distance between every two
is odd? We investigate these questions, and more general ones, by studying Xor powers
of graphs, focusing on their independence number and clique number, and by introducing
two new parameters of a graph G. Both parameters denote limits of series of either clique
numbers or independence numbers of the Xor powers of G (normalized appropriately),
and while both limits exist, one of the series grows exponentially as the power tends to
infinity, while the other grows linearly. As a special case, it follows that f3(n) = Θ(2n)
whereas g3(n)=Θ(n).

1. Introduction

The Xor product of two graphs, G= (V,E) and H = (V ′,E′), is the graph
whose vertex set is the Cartesian product V ×V ′, where two vertices (u,u′)
and (v,v′) are connected iff either uv ∈ E, u′v′ /∈ E′ or uv /∈ E, u′v′ ∈ E′,
i.e., the vertices are adjacent in precisely one of their two coordinates. This
product is commutative and associative, and it follows that for any n≥1, the
product of G1, . . . ,Gn is the graph whose vertex set is

∏
V (Gi), where two

vertices are connected iff they are adjacent in an odd number of coordinates.
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Throughout this paper, let G ·H denote the Xor product of G and H, and
let Gn denote the Xor product of n copies of G.

The Xor graph product was studied in [12], where the author used its
properties to construct edge colorings of the complete graph with two col-
ors, containing a smaller number of monochromatic copies of K4 than the
expected number of such copies in a random coloring. See also [5], [6], [13]
for more about this problem.

Examine K3, the complete graph on 3 vertices. Each vertex of Kn
3 can

be naturally represented by a vector in {0,1,2}n, and two vertices are con-
nected in Kn

3 iff their representing vectors differ in an odd number of coordi-
nates, or equivalently, have an odd Hamming distance. Thus, a set of vectors
in {0,1,2}n, in which every two vectors have an even Hamming distance, rep-
resents an independent set in Kn

3 ; similarly, a set of vectors of {0,1,2}n in
which each pair has an odd Hamming distance represents a clique in Kn

3 ,
and hence

f3(n) = α(Kn
3 ) ,

g3(n) = ω(Kn
3 ) ,

where α(G) denotes the independence number of G and ω(G) denotes the
clique number of G. Studying the series of independence numbers and the
series of clique numbers of powers of a fixed graph G provides several in-
teresting questions and results. Both series, when normalized appropriately,
converge, however one has an exponential growth while the other grows lin-
early.

In section 2 we show that the series of independence numbers, when
normalized, converges to its supremum, which we denote by xα(G):

xα(G) = lim
n→∞

n
√

α(Gn) = sup
n

n
√

α(Gn)

We calculate this parameter for several families of graphs and multi-graphs,
and study some of its properties.

In section 3 we show, this time using a linear normalization, that the
series ω(Gn)/n converges as well. We denote its limit by xω(G):

xω(G) = lim
n→∞

ω(Gn)
n

= sup
n

ω(Gn)− 2
n+ 1

Determining the value of xα and xω for K3 and for a general complete
graph Kr gives the asymptotic behavior of f3(n) and g3(n), and similarly,
of fr(n) and gr(n), defined analogously with r replacing the alphabet size
of 3. For a general G, it seems that merely approximating xα and xω can be
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extremely difficult. Both parameters are non-monotone with respect to the
addition of edges to the graph, and we use combinatorial ideas, tools from
linear algebra and spectral techniques in order to provide bounds for them
for different graphs.

2. Independence numbers of Xor powers

2.1. The independence series and xα

We begin with an immediate observation: for every two graphsG and H, and
every two independent sets I⊂V (G) and J⊂V (H), I×J is an independent
set of G ·H. Therefore, the function f(n) = α(Gn) is super-multiplicative:
f(m+ n) ≥ f(m)f(n), and by Fekete’s lemma (c.f., e.g., [10], p. 85), we
deduce that

∃ lim
n→∞

n
√

f(n) = sup
n

n
√

f(n) .

Let xα(G) denote this limit.
We note that the definition of the Xor product and of xα applies to multi-

graphs as well: indeed, since only the parity of the number of edges between
two vertices dictates their adjacency, we can assume that there are no mul-
tiple edges, however there may be (self) loops in the graph. The function
f(n)=α(Gn) remains super-multiplicative (notice that an independent set
I of Gn can never contain a vertex v= (v1, . . . ,vn) with an odd number of
coordinates {vij}, which have loops). However, in the single scenario where
every vertex of G has a loop, α(G)=0 and we cannot apply Fekete’s lemma
(indeed, in this case, f(2n+1)=0 and f(2n)≥1 for all n). In all other cases,
xα(G) is well defined. Furthermore, if we negate the adjacency matrix of G,
obtaining the multi-graph complement G (u and v are adjacent in G iff they
are disconnected in G, including the case u= v), we get xα(G)=xα(G), as
long as xα(G) is also defined. To see this fact, take the even powers 2k of
the independence series, in which two vertices are adjacent in G2k iff they
are adjacent in G

2k.

Proposition 2.1. For every multi-graph G = (V,E) satisfying α(G) > 0,
xα(G) is well defined. Furthermore, if in addition α(G)>0, where G is the
multi-graph-complement of G, then xα(G)=xα(G).

2.2. General bounds for xα

It is obvious that xα(G)≤|V (G)|, and this upper bound is tight, for instance,
for the edgeless graph. For the lower bound, the following simple fact holds:
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Claim 2.2 (Uniform lower bound). Let G = (V,E) be a multi-graph
satisfying α(G)>0. Then:

(1) xα(G) ≥
√

|V |

Proof. Let I ⊂ V (G2) denote the set {(v,v) | v ∈ V }. Clearly, I is an
independent set of G2 of size |V |, thus xα(G)≥|V | 12 (and similarly, for all k
we get an explicit independent set of size |V |k in G2k).

For a better understanding of the parameter xα(G), we next show several
infinite families of graphs which attain either the lower bound of (1) or the
upper bound of |V (G)|. While, trivially, the edgeless graph G on n vertices
satisfies xα(G)=n, it is interesting that complete bipartite graphs also share
this property:

Claim 2.3. LetKm,n denote the complete bipartite graph with color classes
of sizes m,n, wherem≥n. Then for every k≥1, Kk

m,n is a complete bipartite
graph with color classes W0,W1 of sizes:

|W0| =
1
2

(
(m+ n)k + (m− n)k

)
, |W1| =

1
2

(
(m+ n)k − (m− n)k

)

Therefore, xα(Km,n)=m+n.

Proof. Let G=Km,n, m≥n, and denote its color classes by U0,U1, where
|U0| = m. For every vertex v = (v1, . . . ,vk) ∈ V (Gk), define a vector wv ∈
{0,1}k, in the following manner: (wv)i = 0 iff vi ∈ U0. By the definition of
the Xor product (recall that G is a complete bipartite graph), the following
holds for every u,v∈V (Gk):

uv /∈ E(Gk) ⇐⇒ |{1 ≤ i ≤ k | (wu)i �= (wv)i}| = 0 (mod 2)

Equivalently, performing addition and dot-product over GF (2k):

(2) uv /∈ E(Gk) ⇐⇒ (wu + wv) · 1 = 0

Let W0 denote the set of all vertices in v∈V (Gk) such that the Hamming
weight of wv is even, and let W1 denote the set of all those whose correspond-
ing vectors have an odd Hamming weight. In other words, we partition the
vertices of Gk into two sets, according to the parity of the number of times
a coordinate was taken from U0. Notice that

|W0| =
�k

2
�∑

i=0

(
k

2i

)
n2imk−2i =

1
2

(
(m+ n)k + (m− n)k

)
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and similarly

|W1| =
1
2

(
(m+ n)k − (m− n)k

)
.

To see that Gk is a complete bipartite graph with color classes W0,W1,
argue as follows: take u,v∈Wi (i∈{0,1}); clearly, we have

(wu + wv) · 1 = wu · 1 + wv · 1 = i+ i = 0 ,

hence, by (2), W0 and W1 are both independent sets. Next, for every u∈W0

and v∈W1, we have

(wu + wv) · 1 = 0 + 1 = 1 ,

implying that u and v are adjacent. This completes the proof.

The previous claim shows that xα(Kn,n)=2n=nxα(K2). This is a special
case of the following property of xα:

Claim 2.4. Let G=(V,E) be a graph on the vertex set V =[n]. We define
the r-blow-up of G, G[r], as the n-partite graph whose color groups are
(V1, . . . ,Vn), where for all i, |Vi|= r, and two vertices x∈ Vi and y ∈ Vj are
connected iff ij∈E. Then:

xα(G[r]) = r · xα(G)

Furthermore, every maximum independent set of G[r]k is an r-blow-up of a
maximum independent set of Gk.

Proof. Let T : V (G[r])→ V (G) be the mapping from each vertex in G[r]
to its corresponding vertex in G (i.e., if x ∈ Vi, then T (x) = i), and define
T ◦k :V (G[r]k)→V (Gk) by

T ◦k(v1, . . . , vk) = (T (v1), . . . , T (vk)) .

Then, by the definition of G[r], T ◦k(G[r]k) is isomorphic to Gk, and further-
more, a set I is independent in G[r]k iff T ◦k(I) is independent in Gk. This
implies that every maximum independent set of G[r]k can be obtained by
taking a maximum independent set of Gk and expanding each coordinate in
each of the r possible ways. In particular:

α(G[r]k)
1
k =

(
rkα(Gk)

) 1
k = r · α(Gk)

1
k ,

and the desired result follows.

A simple algebraic consideration provides an example for a family of
multi-graphs which attain the lower bound - the Hadamard multi-graphs
(see , e.g., [10] for further information on Sylvester-Hadamard matrices):
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Claim 2.5. Let H2n be the multi-graph whose adjacency matrix is the
Sylvester-Hadamard matrix on 2n vertices: two (not necessarily distinct)
vertices u and v, represented as vectors in GF (2n), are adjacent iff their dot
product equals 1. Then xα(H2n)=2n/2.

Proof. Let H = H2n . Notice that exactly 2n−1 vertices have loops, and
in particular there is a non-empty independent set in H and xα is defined.
ExamineHk; by definition, u=(u1, . . . ,uk) and v=(v1, . . . ,vk) are adjacent in
Hk iff

∑
iui·vi=1 (mod 2). This implies, by the definition of the Hadamard

multi-graph, that
Hk

2n = H2nk .

We are thus left with showing that H=H2n satisfies α(H)≤
√

|H|, and this
follows from the fact that an independent set in H is a self-orthogonal set
of vectors in GF (2n), hence the rank of its span is at most n/2 and thus

α(H) ≤ 2n/2 =
√

|H| ,

as needed.

Note that the result above is also true for multi-graphs whose adjacency
matrix is a general-type Hadamard matrix, Hn; this can be proved using
spectral analysis, in a way similar to the treatment of strongly-regular graphs
in the next subsection. As another corollary of the analysis of strongly-
regular graphs in the next subsection, we will show that the Paley graph Pq,
defined there, has q vertices and satisfies xα(Pq)≤

√
q+1, hence there exists a

family of simple graphs which roughly attain the general lower bound on xα.

2.3. Properties of xα and bounds for codes

The normalizing factor applied to the independence series when calculating
xα depends only on the current graph power, therefore restricting ourselves
to an induced subgraph of a graph G immediately gives a lower bound
for xα(G). It turns out that xα cannot drastically change with the addition
of a single vertex to the graph - each added vertex may increase xα by at
most 1. However, xα is non-monotone with respect to the addition of edges.
The next few claims summarize these facts.

Claim 2.6. Let G = (V,E) be a multi-graph, and let H be an induced
subgraph on U⊂V , satisfying α(H)>0. Then:

xα(H) ≤ xα(G) ≤ xα(H) + |V | − |U |
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Proof. The first inequality is trivial, since we can always restrict our choice
of coordinates in independent sets of Gk to vertices of U . In order to prove
the second inequality, it is enough to prove the case of |U |= |V |−1. Denote
by v the single vertex of V \U , and assume that v does not have a loop. Let
I be a maximum independent set of Gk. For every pattern of i appearances
of v in the coordinates of vertices of I, the set of all vertices of I containing
this pattern (and no other appearances of v) is an independent set. This set
remains independent in Hk−i, after omitting from each of these vertices its
i appearances of v, hence its size is at most α(Hk−i). Since xα(H) is the
supremum of n

√
α(Hn), we get the following bound for I:

|I| ≤
k∑

i=0

(
k

i

)
α(Hk−i) ≤

k∑
i=0

(
k

i

)
xα(H)k−i = (xα(H) + 1)k

Taking the k-th root gives xα(G)≤xα(H)+1.
We are left with the case where v has a loop. If H has no loops, then

every vertex of I must have an even number of appearances of v in its coor-
dinates (as an independent set cannot contain loops). Hence, every pattern
of i appearances of v in the coordinates of vertices of I still represents an
independent set in Hk−i, and the calculation above is valid. In fact, it gives
that

|I| ≤
�k

2
�∑

i=0

(
k

i

)
α(Hk−2i) =

1
2

(
(xα(H) + 1)k + (xα(H)− 1)k

)
< (xα + 1)k .

If H does contain loops, then α(H) > 0, and we can apply the previous
argument to G with respect to H and v (which does not have a loop in G),
obtaining:

xα(G) = xα(G) ≤ xα(H) + 1 = xα(H) + 1,

where the last equality holds since α(H)>0, guaranteeing that at least one
vertex of H does not have a loop.

Notice that, by the last claim, we can apply the vertex-exposure Mar-
tingale on the random graph Gn, 1

2
, and obtain a concentration result for xα

(see for example [3], Chapter 7):

Corollary 2.7. Almost surely, that is, with probability that tends to 1 as
n tends to infinity, the random graph G=Gn, 1

2
satisfies

|xα(G)− Exα(G)| ≤ O(
√
n) .
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A counterexample for edge-addition monotonicity exists already when
|V |=3, as the next claim shows.

Claim 2.8. xα is non-monotone with respect to the addition of edges.

Proof. Let G=(V,E) be the graph on three vertices V =Z3 and one edge
E = {(0,1)}. We show that xα(G) = 2, thus if we remove the single edge
(creating the empty graph on 3 vertices) or add the edge (1,2) (creating the
complete bipartite graph K1,2) we increase xα to a value of 3. In fact, up
to an automorphism of the graph G in each coordinate, there is exactly one
maximum independent set of Gk, which is {(v1, . . . ,vk) :vi∈{0,2}}.

The proof is by induction on k, stating that every maximum independent
set of Gk is the Cartesian product of either {0,2} or {1,2} in each of the
coordinates (it is obvious that this set is indeed independent). The case
k = 1 is trivial. For k > 1, let I be a maximum independent set of Gk,
and notice that by the construction of the independent set above, we have
|I| = α(Gk) ≥ 2k. Let Ai (i ∈ Z3) be the set of vertices of I whose first
coordinate is i. We denote by A′

i the set of vertices of Gk−1 formed by
omitting the first coordinate from Ai. Since Ai ⊂ I is independent, so is A′

i
for every i. However, every vertex of A′

0 is adjacent to every vertex of A′
1

(again since I is independent).
Note that, by induction, |Ai|= |A′

i| ≤ 2k−1. Clearly, this implies that if
either A0 or A1 are empty, we are done, and I is the Cartesian product of a
maximum independent set I ′⊂Gk−1 of size 2k−1, with either {0,2} or {1,2}.
Indeed, if for instance A1 is empty, then both A′

0 and A′
2 are maximum

independent sets of Gk−1 (otherwise, the size of I would be strictly less
than 2k), with the same automorphism of G in each coordinate (otherwise
I would not be independent - consider the two vertices which contain 2 in
all coordinates except the one where the automorphism is different).

Assume therefore that A0,A1 �=∅. By a similar argument, A2 �=∅, other-
wise |I| ≥ 2k would imply that both A′

0 and A′
1 are maximum independent

sets in Gk−1 (of size 2k−1 each), and by induction, both contain the vector 2,
contradicting the independence of I. We therefore have:

|I| =
∑

i

|Ai| =
∑

i

|A′
i| <

(
|A′

0|+ |A′
2|

)
+

(
|A′

1|+ |A′
2|

)
≤ 2 · 2k−1 = 2k

The last inequality is by the fact that A′
2 ∩A′

0 = A′
2 ∩A′

1 = ∅, since, for
instance, all vertices in A′

0 are adjacent to all vertices in A′
1 but disconnected

from all vertices in A′
2. We therefore obtained a contradiction to the fact

that |I|≥2k.
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We next prove a general upper bound for xα of regular graphs. As a
corollary, this will determine xα(K3) and give the asymptotic behavior of
the function f3(n), mentioned in the abstract.

Theorem 2.9. Let G be a loopless nontrivial d-regular graph on n vertices,
and let d=λ1≥λ2≥·· ·≥λn denote the eigenvalues of G. Then:

xα(G) ≤ max {|n− 2d|, 2|λ2|, 2|λn|}

Proof. We use spectral analysis to bound the independence numbers of
powers of the graph G. Denote by A=AG the adjacency matrix of G, and
let B=BG=(−1)A, i.e.:

Bij
def=

{
−1 ij ∈ E(G)
1 ij /∈ E(G)

Notice that BG·H =BG⊗BH , where ⊗ denotes the tensor-product:

(BG ⊗BH)(u,v),(u′,v′) = BGu,v · BHu′,v′ =
{
−1 (u, v)(u′, v′) ∈ E(G ·H)
1 (u, v)(u′, v′) /∈ E(G ·H)

Our aim in using BG is to obtain expressions for the eigenvalues of AGk ,
and then use the following bound, proved by Hoffman: every regular graph
H with eigenvalues µ1≥·· ·≥µm satisfies

(3) α(H) ≤ −|H|µm

µ1 − µm

(see [7], [11]). Recall that the eigenvalues of A are:

λ(A) = {d = λ1, . . . , λn}

By definition, BG=Jn−2AG, where Jn is the all 1-s matrix of order n, and
fortunately, the single non-zero eigenvalue of Jn (the eigenvalue n) corre-
sponds to an eigenvector of 1, which is also an eigenvector of A (with the
eigenvalue d). Thus, if we denote the spectrum of B by Λ:

Λ = λ(B) = {n− 2d,−2λ2, . . . ,−2λn}

Define Λk = {µ1µ2 · · ·µk :µi∈Λ}. As usual with tensor-products (c.f.,
e.g., [2]), we use the fact that

λ(B⊗k) = {λi1λi2 · · ·λik | λij ∈ λ(B)} = Λk.
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Returning to AGk , we have AGk = 1
2 (Jnk −BGk), and 1 is an eigenvector of

BGk corresponding to the eigenvalue (n−2d)k. Hence, 1 is an eigenvector of
AGk with an eigenvalue of

λM =
nk − (n− 2d)k

2
.

Since this is the regularity degree of Gk, by the Perron-Frobenius theo-
rem it is also its largest eigenvalue. The remaining eigenvalues of AGk are{
−1

2µ :µ∈Λk,µ �=(n−2d)k
}
. Hence, if we define

β(k) = max
{
Λk \ {(n− 2d)k}

}
,

then the minimal eigenvalue of AGk , λm, equals −1
2β(k). Applying (3) gives:

(4) α(Gk) ≤ −nkλm

λM − λm
=

β(k)
1− (1− 2d

n )k + β(k)/nk

Examine the right-hand side of (4). The term
(
1− 2d

n

)k
tends to zero as k

tends to infinity, since G is simple and hence 1≤d≤n−1. Considering β(k),
notice that for sufficiently large values of k, in order to obtain the maximum
of Λk\{(n−2d)k}, one must choose the element of Λ whose absolute value is
maximal with plurality at least k−2 (the remaining two choices of elements
should possibly be used to correct the sign of the product, making sure the
choice made is not the one corresponding to the degree of Gk). Therefore, if
we set r=max{|n−2d|,2|λ2|,2|λn|}, we get β(k) =Θ(rk). To bound r, we
use the following simple argument, which shows that

λ = max {|λ2|, . . . , |λn|} ≤ n

2
(equality is precisely in the cases where G is complete bipartite with d= n

2 ).
Indeed, the square of the adjacency matrix A of G has the values d on its
diagonal (as G is d-regular), hence:

d2 + λ2 ≤
∑

i

λ2
i = tr(A2) = nd ,

implying that:
λ ≤

√
d(n − d) ≤ n

2
Therefore, either r=2λ≤n or r= |n−2d|<n, and in both cases we obtain
that β(k)/nk=O(1). Taking the k-th root in (4), gives:

xα(G) ≤ lim
k→∞

k
√

β(k) = r,
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as required.

Note that the above proof in fact provides upper bounds for the inde-
pendence numbers of every power k of a given regular graph G (not only
for the asymptotic behavior as k tends to infinity) by calculating β(k) and
applying (4).

Corollary 2.10. For the complete graphs K3 and K4, xα(K3)=xα(K4)=2

Proof. It is easy and well known that the eigenvalues of the complete graph
Kn on n≥2 vertices are: {n−1,−1, . . . ,−1}. By Theorem 2.9, we have, for
every n≥2:

xα(Kn) ≤ max{n − 2, 2}
For n=3, this implies xα(K3)≤2, and for n≥4 this implies xα(Kn)≤n−2.
The lower bounds for K3 and K4 follow from the fact that xα(K2)=2.

We note that (4) gives the following bounds on α(Kk
n) for every k≥1:

α(Kk
3 ) ≤

2k

1−
(
−1

3

)k +
(

2
3

)k
,

α(Kk
n) ≤

2(n − 2)k−1

1− (2−n
n )k + 2

n(
n−2

n )k−1
, n ≥ 4, 2 � k ,

α(Kk
n) ≤

2(n − 2)k−1

1− (2−n
n )k + 4

n2 (n−2
n )k−2

, n ≥ 4, 2 | k .

Recalling the motivation of the codes considered in the introduction, the
last claim implies that

f3(n) = Θ(2n),

f4(n) = Θ(2n).

In other words, extending the alphabet from 3 letters to 4 does not increase
the maximal asymptotic size of the required code, and both cases are asymp-
totically equivalent to using a binary alphabet. However, adding additional
letters to the alphabet does increase this asymptotic size, as it is immediate
by Claim 2.2 that f5(n) is at least Ω(

√
5

n
). Using a simple probabilistic ar-

gument (similar to the one used in [2]), we can derive an upper bound for
xα(K5) from the result on K4:

Claim 2.11. Let G be a vertex transitive graph, and let H be an induced
subgraph of G. Then:

xα(G) ≤ xα(H)
|G|
|H|
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Combining this with Corollary 2.10, we get:

Corollary 2.12. For all m<n, x(Kn)≤ xα(Km)
m n, and in particular,

√
5≤

xα(K5)≤ 5
2 .

Proof of claim. Let I be a maximum independent set of Gk, and let
σ1,σ2, . . . ,σk denote random automorphisms of G, chosen independently and
uniformly out of all the automorphisms of G. The permutation τ , which
maps v=(v1, . . . ,vk)∈Gk to (σ1(v1), . . . ,σk(vk)), is an automorphism of Gk,
and moreover, if we fix a vertex v in Gk, then τ(v) is uniformly distributed
over all the vertices of Gk. Let S be an induced copy of Hk in Gk, and notice
that by the properties of τ ,

E|τ(S) ∩ I| = |I| |S||Gk| = |I|
(
|H|
|G|

)k

.

On the other hand, I is an independent set, therefore |τ(S)∩ I| ≤α(Hk)≤
(xα(H))k. Choose an automorphism τ for which this random variable attains
at least its expected value of E|τ(S)∩I|, and it follows that

|I| ≤
(
xα(H)

|G|
|H|

)k

.

While the best upper bound we have for Kn, when n≥5, is n/2, the
last corollary, as well as some simple observations on the first few powers of
complete graphs, lead to the following conjecture:

Conjecture 2.13. For every n≥4, the complete graph on n vertices satis-
fies xα(Kn)=

√
n.

It seems possible that the Delsarte linear programming bound (c.f.,
e.g., [9]) may provide improved upper bounds for α(Kk

n) when n≥4, but
it does not seem to supply a proof of the last conjecture.

As another corollary of Theorem 2.9, we can derive bounds for xα of
strongly-regular graphs. Recall that a strongly-regular graph G with param-
eters (n,d,λ,µ) is a d-regular graph on n vertices, where the co-degree (the
number of common neighbors) of every two adjacent vertices is λ, and the
co-degree of every two non-adjacent vertices is µ. The eigenvalues of such a
graph are d and the solutions to the quadratic equation x2+(µ−λ)x+(µ−k)=0
(c.f., e.g. [4], Chapter 10). As an example, we consider the Paley graphs:

Corollary 2.14. The Paley graph Pq (where q is a prime power, q = 1
(mod 4)) satisfies

√
q≤xα(Pq)≤

√
q+1.
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Proof. Recall that Pq has a vertex set V (Pq) = GF (q) and i,j ∈ V are
connected iff i− j is a quadratic residue in GF (q). It is easy to check that
Pq is a (q, q−1

2 , q−5
4 , q−1

4 ) strongly-regular graph (c.f., e.g., [4]). Hence, its
largest eigenvalue is q−1

2 , and its remaining eigenvalues are the solutions of
the equation x2+x− q−1

4 =0, i.e., {−1±√
q

2 }. By Theorem 2.9,

xα(Pq) ≤ max{1,√q + 1} = √
q + 1 .

We conclude this section with another example of an extremal problem
on codes, which can easily be translated to the terms of xα: let f̃3(n) be
the maximum size of a set of words over Zn

3 , where for every two not neces-
sarily distinct words u,v, the Hamming weight of their sum u+v (addition
is performed modulo 3) is even. Determining f̃3(n) asymptotically becomes
relatively simple, once the problem is translated to the problem of deter-
mining xα(H) for an appropriate multi-graph H. This graph H has a vertex
set V =Z3, where 0 is connected to both 1 and −1, and there are loops on
the vertices 1,−1. It is easy to confirm that a maximum independence set in
Hn corresponds to a code of maximum size, meeting the requirements men-
tioned above. This is an induced subgraph of H4, the Hadamard graph on
4 vertices (assign the vertices {0,1,−1} the values {11,01,10} respectively),
hence xα(H)≤ xα(H4) = 2. The lower bound is immediate, and therefore,
f̃3(n)=Θ(2n).

3. Clique numbers of Xor powers

3.1. The clique series and xω

In the previous section, we examined independent sets in Xor powers of
graphs; the behavior of cliques in Xor powers of graphs proves to be signifi-
cantly different.

Theorem 3.1. For every graph G=(V,E), the limit of ω(Gn)
n as n tends to

infinity exists. Let xω(G) denote this limit. Then:

0 ≤ xω(G) = sup
n

ω(Gn)− 2
n+ 1

≤ |V |

Proof. Let G and H denote two simple graphs, and let {v1, . . . ,vr} and
{u1, . . . ,us} be maximum cliques in G and H respectively. The following set
is a clique in the graph G ·H ·K2, where the vertex set of K2 is {0,1}:

(5) {v2, . . . , vr} × {u1} × {0} ∪ {v1} × {u2, . . . , us} × {1}
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Thus, the following inequality applies to every two simple graphs G and H:

(6) ω(G ·H ·K2) ≥ ω(G) + ω(H)− 2

Note that there are graphs G and H for which equation (6) is tight. For
example, take both G and H to be powers of K2. The graph Kn

2 is triangle
free (recall that by Claim 2.3, Kn

2 is bipartite), therefore, ω(Kk+l
2 ) = 2 =

ω(Kk
2 )+ω(K l

2)−2.
Consider a graph G, and define g(n) = ω(Gn). If G contains no edges,

then each of its powers is an edgeless graph, and g(n)=1 for all n. Otherwise,
it contains a copy of K2, hence equation (6) implies that for every m,n≥1:

g(m+ n+ 1) ≥ g(m) + g(n)− 2

Defining, for every n≥1,

ĝ(n) = g(n − 1)− 2

gives:

ĝ(m+ n) = g(m+ n− 1)− 2 ≥ g(m− 1) + g(n− 1)− 4 = ĝ(m) + ĝ(n)

Therefore, the function ĝ is super-additive, and by Fekete’s lemma, the limit
of the series ĝ(n)

n exists and equals its supremum. We note that this applies
for edgeless graphs as well, where this limit equals 0. Denote this limit by xω:

(7) xω(G) = lim
n→∞

ω(Gn)
n

= sup
n

ω(Gn)− 2
n+ 1

It remains to show that xω(G) ≤ |V |. We first need the following def-
inition: A function f : V → Zk

2 (for some k ≥ 1) will be called a proper
representation of G, if there is a bf ∈ {0,1}, such that for every (not nec-
essarily distinct) u,v ∈ V , uv ∈E iff f(u) ·f(v) = bf . The dimension of the
representation, dim(f), is defined to be dim(f(V )) in Zk

2 .
The upper bound for xω is given by the following lemma:

Lemma 3.2. If G = (V,E) has a proper representation f , then xω(G) ≤
dim(f).

Proof. Let x ◦ y denote the concatenation of the vectors x and y. By the
definition of the Xor product, for every two graphs G and H, if g is a proper
representation of G and h is a proper representation of H, then g◦h, which
maps each vector (u,v)∈V (G ·H) to g(u)◦h(v), is a proper representation
of G·H, with bg◦h=bg+bh+1 (mod 2). Clearly, dim(g◦h)≤dim(g)+dim(h).
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Suppose f is a proper representation of G of dimension d, and let g
denote the k-fold concatenation of f . Allowing dim(g) to be at most kd+1
we may assume that bg =0 (by adding a new coordinate of 1 to all vectors
if necessary). Let S be a maximum clique in Gk, |S|=s. We define B to be
the matrix whose s columns are {g(v) :v∈S}. Since S is a clique, and g is a
proper representation of Gk with bg=0, then BtB= I. The rank of BtB is
thus s, hence:

s = rank(BtB) ≤ rank(B) ≤ dim(g) ≤ kd+ 1

We conclude that for every k, ω(Gk)
k ≤d+ 1

k , and the result follows.

To prove that xω(G)≤|V |, it suffices to show that there exists a proper
representation for every G (the dimension of the span of n vectors can never
exceed n). Set |V |=n and |E|=m, and examine the function f : V → Zm

2 ,
which maps each vertex v to its corresponding row in the incidence matrix
of G. For every u �= v ∈ V , either uv ∈ E, in which case there is a single
index at which f(u) = f(v) = 1, or uv /∈ E and there is no such index.
Hence f(u) · f(v) = 1 iff uv ∈ E (and in particular, this applies to the dot
product in Zm

2 as well). All that remains in order to turn f into a proper
representation of G (with bf =1) is to adjust the values of f(u)·f(u) to 0 for
every u∈V . Note that f(u)·f(u) is precisely the degree of u modulo 2, hence
the vertices which requires adjusting are precisely those of odd degree. Let
S= {v1, . . . ,vs} denote the set of vertices of odd degree (clearly, s is even).
We adjust the representation as follows: add s new coordinates to all vectors.
For every u /∈S, set all of its new coordinates to 0. For vi, 1≤ i≤ s, set the
i-th new coordinate to 1 and the remaining new coordinates to 0. In this
manner, we reversed the parity of the vi vectors, while preserving the dot
product of vi and vj , guaranteeing this is a proper representation of G. This
completes the proof of Theorem 3.1.

Remark. Lemma 3.2 can give better upper bounds for various graphs, by
constructing proper representations of dimension strictly smaller than |V |.
For instance, for every Eulerian graph G= (V,E), the incidence matrix is
a proper representation of G (there is no need to modify the parity of any
of the vertices, since the degrees are all even). Since each column has pre-
cisely two occurrences of the value 1, the sum of all rows is 0 in GF (2),
hence the rank of the matrix is at most |V |−1. More generally, if G has k
Eulerian connected components, then xω(G)≤|V |−k (by creating a depen-
dency in each set of rows corresponding to an Eulerian component). Finally,
since the matrix whose rows are the vectors of the proper representation, B,
satisfies either BBt =A or BBt =A+J (operating over GF (2)), where A
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is the adjacency matrix of G), then every proper representation f satisfies
dim(f) ≥ min{rank(A),rank(A+ J)} over GF (2). In particular, if both A
and A+ J are of full rank over GF (2), then there cannot exist a proper
representation which gives a better bound than |V |.

We now wish to extend our definition of xω to multi-graphs. Recall that
without loss of generality, there are no parallel edges, hence a clique in
a multi-graph G is a set where every two distinct vertices are adjacent,
however, it contains no loops. We note that if we were to examine sets in G,
where each two vertices are adjacent, and in addition, each vertex has a loop,
then this notion would be equivalent to independent sets in the multi-graph
complement G, and would thus be treated by the results in the previous
section.

Notice that equation (6) remains valid, by the same argument, when
G and H are multi-graphs. It therefore follows that if a graph G satis-
fies ω(G)≥2, or equivalently, if there are two adjacent vertices in G, each of
which does not have a loop, then xω is well defined and satisfies equation (7).

If ω(G)=0, then every vertex of G has a loop, hence ω(G2n+1)=0 and
yet ω(G2n) ≥ 1 for every n, thus the series g(n)

n alternates between zero
and non zero values. Indeed, it is easy to come up with examples for such
graphs where this series does not converge (the disjoint union of 3 loops is an
example: the second power, which is exactly the square lattice graph L2(3),
contains a copy of K3, hence the subseries of even indices does not converge
to 0).

If ω(G)=1, then either the graph is simple (and hence edgeless), or there
exist two vertices a and b, such that a has a loop and b does not. In this case,
we can modify the clique in (5) to use the induced graph on {a,b} instead
of a copy of K2:

(8) {v2, . . . , vr} × {u1} × {aba} ∪ {v1} × {u2, . . . , us} × {aab}

We can therefore slightly modify the argument used on simple graphs, and
obtain a similar result. The function g(n) now satisfies the inequality

g(m+ n+ 3) ≥ g(m) + g(n)− 2 ,

hence we can define ĝ as

ĝ(n) = g(n− 3)− 2 ,

and obtain the following definition for xω:

(9) xω(G) = lim
n→∞

ω(Gn)
n

= sup
n

ω(Gn)− 2
n+ 3
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Altogether, we have shown that xω, the limit of g(n)
n , exists for every

multi-graph G satisfying ω(G)> 0. Examining the even powers of G, it is
clear that two possibly equal vertices u and v are adjacent in G2n iff they are
adjacent in G

2n (where G is the multi-graph complement of G, as defined in
the previous section). Hence, we obtain the following proposition, analogous
to Proposition 2.1:

Proposition 3.3. For every multi-graph G = (V,E) satisfying ω(G) > 0,
xω(G) is well defined. Furthermore, if in addition ω(G)>0, where G is the
multi-graph-complement of G, then xω(G)=xω(G).

We note that the upper bound of |V | in Theorem 3.1 applies to multi-
graphs as well: Lemma 3.2 does not rely on the fact that G has no loops,
and in the constructions of proper representations for G, we have already
dealt with the scenario of having to modify the value of f(ui) ·f(ui) for a
subset of the vertices {ui} ⊂ V . The loops merely effect the choice of the
vertices whose parity we need to modify.

3.2. Properties of xω and bounds for codes

While defining xω in the previous section, we commented that the lower
bound of 0 is trivially tight for edgeless graphs. It is interesting to state that
xω(G) may be 0 even if the graph G is quite dense: recall that the powers
of complete bipartite graphs are complete bipartite (Claim 2.3). Therefore,
for every k≥1, ω(Kk

m,n)=2, and xω(Km,n)=0.
It is now natural to ask whether xω(G)=0 holds for every (not necessarily

complete) bipartite graph. This is false, as the following example shows:
take P4, the path on 4 vertices, w−x−y−z. The set {(w,x),(y,y),(z,y)} is
a triangle in P 2

4 , hence (7) implies that xω(P4)≥ 1
3 >0. However, adding the

edge (w,z) completes P4 into a cycle C4=K2,2, which satisfies xω(K2,2)=0
by the discussion above. This proves the following property of xω:

Claim 3.4. xω is non-monotone with respect to the addition of edges.

Recall the motivation of examining g3(n), the maximal number of vectors
in {0,1,2}n such that the Hamming distance between every two is odd. We
already noted in the introduction that g3(n)=ω(Kn

3 ); it is now clear from
the lower and upper bounds we have presented for xω that g3(n) = Θ(n),
and more generally, that when the alphabet is {0, . . . ,r−1} for some fixed r,
gr(n)=Θ(n). The following holds for general complete graphs:
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Theorem 3.5. The complete graph Kr (r≥3) satisfies

xω(G) = (1− o(1)) r ,

where the o(1)-term tends to 0 as r tends to infinity.

Proof. We first prove the following lemma, addressing the case of r being
a prime power:

Lemma 3.6. Let r=pk for some prime p≥3 and k≥1. Then:

r − 1− r

r + 2
≤ xω(Kr) ≤ r − 1

Proof. The upper bound of r − 1 is derived from the remark following
Theorem 3.1 (r is odd and hence Kr is Eulerian). For the lower bound,
argue as follows: let L denote the set of all lines with finite slopes in the
affine plane GF (pk). Let {x1, . . . ,xpk} denote the elements of GF (pk), and
represent each such line 8∈L, 8=ax+b by the vector:

f(8) = (a, ax1 + b, ax2 + b, . . . , axpk + b)

(i.e., represent 8 by its slope followed by the y-coordinates of its set of points).
Every two distinct lines 81, 82 ∈ L are either parallel (a1 = a2 and b1 �= b2)
or intersect in precisely one point (x= (b1 − b2)(a2 −a1)−1). In both cases,
precisely one coordinate in f(81),f(82) is equal, hence the Hamming distance
between them is pk. Since p is odd, the above set of vectors forms a clique
of size |L|=p2k in Kpk+1

pk . Equation (7) yields:

xω(Kpk) ≥ p2k − 2
(pk + 1) + 1

= pk − 1− pk

pk + 2
,

as required.

There exists a 1
2 < Θ < 1 such that for every sufficiently large n, the

interval [n−nΘ,n] contains a prime number (see, e.g., [8] for Θ = 23/42).
Combining this fact with the lower bound of the above lemma immediately
implies the asymptotic result for every sufficiently large r.

Remark. Lemma 3.6 gives a lower bound of 1.4 for xω(K3). Using a com-
puter search, we improved this lower bound to 1.7 (compared to the upper
bound of 2), by finding a clique of size 19 in K9

3 .
It is not difficult to see that the upper bounds of proper representations,

given for cliques, can be extended to complete r-partite graphs, by assigning
the same vector to all the vertices in a given color class. This is a special
case of the following property, analogous to Claim 2.4:
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Claim 3.7. Let G = (V,E) be a graph on the vertex set V = [n]. The r-
blow-up of G, G[r] (see Claim 2.4 for the definition) satisfies

xω(G[r]) = xω(G) .

Furthermore, every maximum clique of G[r]k corresponds to a maximum
clique of the same size of Gk.

Proof. Define the pattern of a vertex v=(v1, . . . ,vk)∈G[r]k to be the vector
wv = (w1, . . . ,wk) ∈Gk, such that every coordinate of v belongs in G[r] to
the color class of the corresponding coordinate of wv in G (i.e., vi belongs
to the independent set of size r which corresponds to wi in G[r]). Let S be a
maximum clique of G[r]k; then every vertex v∈S has a unique pattern in S
(by definition, two vertices sharing the same pattern are disconnected in
every coordinate). Thus, we can fix a vertex in each color class of G[r] (note
that this is an induced copy of G in G[r]), and without loss of generality,
we can assume that these are the only vertices used in every v ∈ S. This
completes the proof of the claim.

Corollary 3.8. Every complete r-partite graph G satisfies r
2−1≤xω(G)≤r,

and in addition, xω(G) = (1−o(1))r, where the o(1)-term tends to 0 as r
tends to infinity.

We have so far seen that for every graph G on n vertices and a maxi-
mum clique of size r, Ω(r)≤ xω(G)≤O(n). For complete graphs, xω(G) =
(1−o(1))r, and one might suspect that xω(G) cannot be significantly larger
than r. The following claim settles this issue, by examining self complemen-
tary Ramsey graphs (following the ideas of [1]):

Claim 3.9. For every n ∈ N there is a graph G on n vertices, such that
ω(G)<2�log2(n)� and yet xω(G)≥ n−5

3 .

Proof. In section 2.2 of [1], the authors prove the following lemma:

Lemma 3.10 ([1]). For every n such that 4 |n there is a self-complementary
graph G on n vertices satisfying α(G)<2�log2(n)�.

Set n = 4m+ r (0 ≤ r ≤ 3), and let G be the disjoint union of a self-
complementary graph H on 4m vertices, and r isolated vertices. By the
lemma,

ω(G) < 2�log2(n)�.
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Furthermore, if τ is an isomorphism mapping H to its complement, the set
{(v,τ(v)) : v ∈ V (H)} is a clique of size 4m in G2, since for every u �=v,
uv∈E(G) iff τ(u)τ(v) /∈E(G). Hence

xω(G) ≥ ω(G2)− 2
3

≥ n− r − 2
3

≥ n− 5
3

.

We note that a slightly weaker result can be proved rather easily and
without using the lemma on self-complementary Ramsey graphs, by taking
the disjoint union of a Ramsey graph and its complement. The lower bound
on xω is again derived from a clique in G2 of the form {(v, ṽ)} where ṽ is the
vertex corresponding to v in the complement graph. This construction gives,
for every even n ∈ N, a graph G on n vertices, satisfying ω(G)≤ 2log2(n)
and yet xω(G)≥ n/2−2

3 = n−4
6 .

4. Open problems

We conclude with several open problems related to xα and xω:

Question 4.1. Does every complete graph on n ≥ 4 vertices, Kn, satisfy
xα(Kn)=

√
n?

Question 4.2. What is the expected value of xα for the random graph Gn, 1
2
?

What is the expected value of xω for the random graph Gn, 1
2
?

Question 4.3. What is the precise value of xω(Kn) for n≥3?

Question 4.4. Is the problem of deciding whether xα(G)> k, for a given
graph G and a given value k, decidable? Is the problem of deciding whether
xω(G)>k, for a given graph G and a given value k, decidable?
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