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Abstract. Twenty years ago, Ajtai et al. and, independently, Leighton discovered that the
crossing number of any graph with v vertices and e > 4v edges is at least ce3/v2, where
c > 0 is an absolute constant. This result, known as the “Crossing Lemma,” has found
many important applications in discrete and computational geometry. It is tight up to a
multiplicative constant. Here we improve the best known value of the constant by showing
that the result holds with c > 1024/31827 > 0.032. The proof has two new ingredients,
interesting in their own right. We show that (1) if a graph can be drawn in the plane so that
every edge crosses at most three others, then its number of edges cannot exceed 5.5(v− 2);
and (2) the crossing number of any graph is at least 7

3 e − 25
3 (v − 2). Both bounds are tight

up to an additive constant (the latter one in the range 4v ≤ e ≤ 5v).

1. Introduction

Unless stated otherwise, the graphs considered in this paper have no loops or parallel
edges. The number of vertices and number of edges of a graph G are denoted by v(G)
and e(G), respectively. We say that G is drawn in the plane if its vertices are represented
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by distinct points and its edges by (possibly intersecting) Jordan arcs connecting the
corresponding point pairs. If it leads to no confusion, in terminology and notation we
make no distinction between the vertices of G and the corresponding points, or between
the edges and the corresponding Jordan arcs. We always assume that in a drawing (a) no
edge passes through a vertex different from its endpoints, (b) no three edges cross at
the same point, and (c) any two edges have only a finite number of interior points in
common, and at these points they properly cross, i.e., one of the edges passes from one
side of the other edge to the other side (see [P1] and [P2]). A crossing between two
edges is their common interior point (if it exists). The crossing number of G, denoted
by cr(G), is the minimum number of crossings in a drawing of G satisfying the above
conditions.

Ajtai et al. [AC+] and, independently, Leighton [L] have proved the following result,
which is usually referred to as the “Crossing Lemma.” The crossing number of any graph
with v vertices and e > 4v edges satisfies

cr(G) ≥ 1

64

e3

v2
.

This result, which is tight apart from the value of the constant, has found many ap-
plications in combinatorial geometry, convexity, number theory, and VLSI design (see
[L], [Sz], [PS], [ENR], [STT], and [PTa]). In particular, it has played a pivotal role in
obtaining the best known upper bound on the number of k-sets [D] and lower bound
on the number of distinct distances determined by n points in the plane [ST], [KT].
According to a conjecture of Erdős and Guy [ErG], which was verified in [PST], as long
as e/v→∞ and e/v2 → 0, the limit

lim
v→∞ min

v(G) = v
e(G) = e

cr(G)

e3/v2

exists. The best known upper and lower bounds for this constant (roughly 0.09 and
1/33.75 ≈ 0.029, resp.) were obtained in [PTo1].

All known proofs of the Crossing Lemma are based on the trivial inequality cr(H) ≥
e(H) − (3v(H) − 6), which is an immediate corollary of Euler’s Polyhedral Formula
(v(H) > 2). Applying this statement inductively to all small (and mostly sparse) sub-
graphs H ⊆ G or to a randomly selected one, the lemma follows. The main idea in
[PTo1] was to obtain stronger inequalities for the sparse subgraphs H , which have led
to better lower bounds on the crossing numbers of all graphs G. In this paper we follow
the same approach.

For k ≥ 0, let ek(v) denote the maximum number of edges in a graph of v ≥ 2
vertices that can be drawn in the plane so that every edge is involved in at most k
crossings. By Euler’s Formula, we have e0(v) = 3(v− 2). Pach and Tóth [PTo1] proved
that ek(v) ≤ (k + 3)(v − 2), for 0 ≤ k ≤ 3. Moreover, for 0 ≤ k ≤ 2, these bounds are
tight for infinitely many values of v. However, for k = 3, there was a gap between the
lower and upper estimates. Our first theorem, whose proof is presented in Section 2, fills
this gap.
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Theorem 1. Let G be a graph on v ≥ 3 vertices that can be drawn in the plane so that
each of its edges crosses at most three others. Then we have

e(G) ≤ 5.5(v − 2).

Consequently, the maximum number of edges over all such graphs satisfies e3(v) ≤
5.5(v − 2), and this bound is tight up to an additive constant.

As we have pointed out before, the inequality e0(v) ≤ 3(v− 2) immediately implies
that if a graph G of v vertices has more than 3(v − 2) edges, then every edge beyond
this threshold contributes at least one to cr(G). Similarly, it follows from inequality
e1(v) ≤ 4(v−2) that, if e(G) ≥ 4(v−2), then every edge beyond 4(v−2)must contribute
an additional crossing to cr(G) (i.e., altogether at least two crossings). Summarizing, we
obtain that

cr(G) ≥ (e(G)− 3 (v(G)− 2))+ (e(G)− 4 (v(G)− 2)) ≥ 2e(G)− 7 (v(G)− 2)

holds for every graph G. Both components of this inequality are tight, so one might
expect that their combination cannot be improved either, at least in the range when e(G)
is not much larger that 4(v − 2). However, this is not the case, as is shown by our next
result, proved in Section 3.

Theorem 2. The crossing number of any graph G with v(G) ≥ 3 vertices and e(G)
edges satisfies

cr(G) ≥ 7
3 e(G)− 25

3 (v(G)− 2).

This bound is tight up to an additive constant whenever 4(v(G)−2) ≤ e(G) ≤ 5(v(G)−
2).

As an application of the above two theorems, in Section 4 we establish the following
improved version of the Crossing Lemma.

Theorem 3. The crossing number of any graph G satisfies

cr(G) ≥ 1

31.1

e3(G)

v2(G)
− 1.06v(G).

If e(G) ≥ 103
16 v(G), we also have

cr(G) ≥ 1024

31827

e3(G)

v2(G)
.

Note for comparison that 1024/31827 ≈ 1/31.08 ≈ 0.032.
In the last section, we adapt the ideas of Székely [Sz] to deduce some consequences

of Theorem 3, including an improved version of the Szemerédi–Trotter theorem [SzT]
on the maximum number of incidences between n points and m lines. We also discuss
some open problems and make a few conjectures and concluding remarks.
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All drawings considered in this paper satisfy the condition that any pair of edges
have at most one point in common. This may be either an endpoint or a proper crossing.
It is well known and easy to see that every drawing of a graph G that minimizes the
number of crossings meets this requirement. Thus, in the proofs of Theorems 2 and
3, we can make this assumption without loss of generality. However, it is not so obvi-
ous whether the same restriction can be justified in the case of Theorem 1. Indeed, in
[PTo1], the bound e(G) ≤ (k + 3)(v(G) − 2) was proved only for graphs that can be
drawn with at most k ≤ 4 crossings per edge and which satisfy this extra condition.
To prove Theorem 1 in its full generality, we have to establish the following simple
statement.

Lemma 1.1. Let k ≤ 3, and let G be a graph of v vertices that can be drawn in the
plane so that each of its edges participates in at most k crossings. In any drawing with
this property that minimizes the total number of crossings, every pair of edges has at
most one point in common.

Proof. Suppose for contradiction that some pair of edges, e and f , have at least two
points in common, A and B. At least one of these points, say B, must be a proper
crossing. First, try to swap the portions of e and f between A and B, and modify the
new drawing in small neighborhoods of A and B so as to reduce the number of crossings
between the two edges. Clearly, during this process the number of crossings along any
other edge distinct from e and f remains unchanged. The only possible problem that
may arise is that after the operation either e or f (say e) will participate in more than k
crossings. In this case, before the operation there were at least two more crossings inside
the portion of f between A and B, than inside the portion of e between A and B. Since
f participated in at most three crossings (at most two, not counting B), we conclude
that in the original drawing the portion of e between A and B contained no crossing. If
this is the case, instead of swapping the two portions, replace the portion of f between
A and B by an arc that runs very close to the portion of e between A and B, without
intersecting it.

It is interesting to note that the above argument fails for k ≥ 4, as shown in Fig. 1.

A B

e

f

Fig. 1. Two adjacent edges e and f cross, each participating in exactly four crossings.
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2. Proof of Theorem 1

We use induction on v. For v ≤ 4, the statement is trivial. Let v > 4, and suppose that
the theorem has already been proved for graphs having fewer than v vertices.

Let G denote the set of all triples (G,G ′,D) where G is a graph of v vertices, D is a
drawing of G in the plane such that every edge of G crosses at most three others (and
every pair of edges has at most one point in common), and G ′ is a planar subgraph of G
with V (G ′) = V (G) that satisfies the condition that no two arcs inD representing edges
of G ′ cross each other. Let G ′ ⊂ G consist of all elements (G,G ′,D) ∈ G for which the
number of edges of G is maximum. Finally, let G ′′ ⊂ G ′ consist of all elements of G ′ for
which the number of edges of G ′ is maximum. Fix a triple (G,G ′,D) ∈ G ′′ such that the
total number of crossings in D along all edges of G ′ is as small as possible. This triple
remains fixed throughout the whole argument. The term face, unless explicitly stated
otherwise, refers to a face of the planar drawing of G ′ induced by D. For any face� (of
G ′), let |�| denote its number of sides, i.e., the number of edges of G ′ along the boundary
of �, where every edge whose both sides belong to the interior of � is counted twice.
Notice that |�| ≥ 3 for every face �, unless G ′ consists of a single edge, in which case
v(G) ≤ 4, a contradiction.

It follows from the maximality of G ′ that every edge e of G that does not belong to
G ′ (in short, e ∈ G − G ′) crosses at least one edge of G ′. The closed portion between
an endpoint of e and the nearest crossing of e with an edge of G ′ is called a half-edge.
We orient every half-edge from its endpoint which is a vertex of G (and G ′) towards its
other end sitting in the interior of an edge of G ′. Clearly, every edge e ∈ G−G ′ has two
oriented half-edges. Every half-edge lies in a face� and contains at most two crossings
with edges of G in its interior. The extension of a half-edge is the edge of G − G ′ it
belongs to. The set of half-edges belonging to a face � is denoted by H(�).

Lemma 2.1. Let � be a face of G ′, and let g be one of its sides. Then H(�) cannot
contain two non-crossing half-edges, both of which end on g and cross two other edges
of G (that are not necessarily the same).

Proof. Let e1 and e2 denote the extensions of two non-crossing half-edges in � that
end on g. Both half-edges cross two edges of G, so their extensions cannot cross any
other edge apart from g. Removing g from G ′ and adding e1 and e2, we would obtain a
larger plane subgraph of G, contradicting the maximality of G ′ (Fig. 2).

A face � of G ′ is called simple if its boundary is connected and it does not contain
any isolated vertex of G ′ in its interior.

Lemma 2.2. The number of half-edges in any simple face � satisfies

|H(�)| ≤ 3|�| − 6.

Proof. For an induction argument to go through, it will be more convenient to prove
the lemma for more general configurations. Slightly abusing the terminology and the
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g

Fig. 2. Lemma 2.1; the edges of G ′ are drawn in bold.

notation, we prove the inequality |H(�)| ≤ 3|�| − 6, for any simple “face” � with
|�| ≥ 3 (� may have nothing to do with G or G ′) and for any set of oriented “half-
edges” H(�) contained in � that satisfy the following conditions:

(i) Every half-edge in H(�) emanates from a vertex of� and ends at an edge of�
not incident to that vertex.

(ii) The number of half-edges ending at any edge of � is at most three.
(iii) Every half-edge belonging to H(�) crosses at most two others.
(iv) If there are two non-crossing half-edges in H(�), each crossing two other ele-

ments of H(�), then they cannot end at the same edge of �.

By definition, conditions (i)–(iii) are satisfied for ‘real’ faces and half-edges associated
with the triple (G,G ′,D), while (iv) follows from Lemma 2.1.

Assume without loss of generality that the boundary of � is a simple cycle. If this is
not the case, replace each vertex of� encountered more than once during a full counter-
clockwise tour around the boundary of � by as many copies as many times it is visited,
and replace each edge of � whose sides both belong to � by two edges running very
close to it. Obviously, the number of sides of the resulting “face” will be the same as
that of the original.

We proceed by induction on s = |�|. We start with the case s = 3. Denote the
vertices of � by A, B, and C . Let a, b, and c denote the number of half-edges in �,
emanating from A, B, and C , respectively. Without loss of generality, we can assume
that a ≥ b ≥ c. By (i), every half-edge must end in the interior of the edge opposite
its starting point. Thus, by (ii), we have a ≤ 3. Every half-edge emanating from C
must cross all half-edges emanating from A and B. Hence, by (iii), if a + b > 2, we
must have c = 0. Similarly, if a = 3, then b = 0 must hold. The only set of values
satisfying the above constraints, for which we have a + b + c > 3s − 6 = 3, is
a = b = 2 and c = 0. In this case both half-edges emanating from A end in the interior
of the edge BC and both cross the two half-edges emanating from B, which contradicts
condition (iv).

Now let s > 3, and suppose that the statement has already been proved for faces with
fewer than s sides.

Given a half-edge h ∈ H(�), its endpoints divide the boundary of� into two pieces.
Consider all of these pieces over all elements of H(�), and let R be the set of those
pieces that have the smallest number of vertices in their interiors. Pick R, a minimal
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Fig. 3. Induction step in the proof of Lemma 2.2.

element ofR by containment. R is defined by a half-edge e = AE , where A is a vertex
of � and E is an interior point of an edge g of � (see Fig. 3). Let P denote the set of
all half-edges in � that start at A and end on g. Clearly, we have e ∈ P and, by (ii),
1 ≤ |P| ≤ 3. By the minimality of R, every element of P other than e ends outside R.
Let Q denote the set of half-edges in� that cross e. We claim that every element h ∈ Q
crosses all half-edges in P . Indeed, otherwise h would start at an interior vertex of R
and end at a point of g outside R. However, in this case the piece of the boundary of �
defined by h, which contains E , would have fewer interior vertices than R, contradicting
the choice of R.

Thus, if |P| = 3 then, by (iii), Q must be empty. If |P| = 2 then, by (iv), |Q| ≤ 1,
and if |P| = 1 then, by (iii), |Q| ≤ 2. Therefore, we always have |P ∪ Q| ≤ 3.

Let � denote the “face” obtained from � as follows. Replace the arc R by the half-
edge e. Remove all vertices and edges in R, and regard the union of e and the part of
g not belonging to R as a single new edge (see Fig. 3). By the definition of R, the
resulting face has s ′ ≥ 3 sides. By (i), we have s ′ < s. Consider the set of half-edges
H(�) = H(�)\(P∪Q). None of the elements of this set crosses e, so, by the minimality
of R, all of them lie in �. They meet conditions (i)–(iv), so one can apply the induction
hypothesis to conclude that

|H(�)| ≤ |H(�)| + 3 ≤ (3s ′ − 6)+ 3 ≤ 3s − 6,

as claimed.

Return to the proof of Theorem 1. A simple face � of G ′ is said to be triangular if
|�| = 3, otherwise it is a big face.

By Lemma 2.2 we have |H(�)| ≤ 3, for any triangular face �. A triangular face �
is called an i-triangle if |H(�)| = i (0 ≤ i ≤ 3). A 3-triangle is a 3X-triangle if one
half-edge emanates from each of its vertices. Otherwise, it is a 3Y -triangle.

If � is a 3Y -triangle, then at least two of its half-edges must end at the same side.
The face adjacent to � along this side is called the neighbor of �.
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(b) (d)(c)(a)

(f) (g) (h)(e)

(i) (k)(j)

Fig. 4. Proof of Lemma 2.3; triangles that are shaded are not 3-triangles.

An edge of G − G ′ is said to be perfect if it starts and ends in 3-triangles and all
the faces it passes through are triangular. The neighbor 
 of a 3Y -triangle � is called a
strong neighbor if either it is a 0-triangle or it is a 1-triangle and the extension of one of
the half-edges in H(�) ends in 
.

Lemma 2.3. Let� be a 3-triangle. If the extensions of at least two half-edges in H(�)
are perfect, then � is a 3Y -triangle with a strong neighbor.

Proof. If� is a 3X -triangle, then the extension of none of its half-edges is perfect (see
Fig. 4(a)). Indeed, observe that if� is a 3X -triangle, then it has three mutually crossing
half-edges, so that their extensions do not have any additional crossing and they must
end in a face adjacent to �. Moreover, no other edges of G can enter a 3X -triangle.

Therefore,� is a 3Y -triangle. It has a unique neighbor
, which, by the assumptions
in the lemma, must be a triangle. We use a tedious case analysis, illustrated by Fig. 4, to
prove that 
 is a strong neighbor. We only sketch the argument. The set of extensions
of the half-edges in H(�) is denoted by H .

Case 1: One half-edge f ∈ H(�) emanates from a different vertex than the other two.
Then the extension f ∈ H of f is not perfect (see Fig. 4(b)). We have to distinguish
further cases, depending on where the other two edges end, to conclude that at least
one of them cannot be perfect either (see Fig. 4(c),(d)). An interested reader can find a
thorough outline of this case in Appendix 1.
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(g)

A B

C D

(a) (b) (c)

(d) (e) (f)

Fig. 5. Seven different types of quadrilateral faces.

Case 2: All half-edges of H(�) emanate from the same vertex.
Subcase 2.1: Some edge e ∈ H ends in 
. Then 
 is not a 3-triangle, so e is not

perfect. If the other two edges are perfect, then 
 is a 1-triangle (see Fig. 4(e),(f)).
Subcase 2.2: None of the edges in H end in 
. Suppose 
 is not a 0-triangle. Then

some edge e ∈ H must leave
 through a different side than the other two edges f, g ∈ H
do (see Fig. 4(g)). Then e cannot be perfect (see Fig. 4(h)). We have to distinguish three
cases, depending on whether f , g, or neither of them end in the triangle next to 
. In
each of these cases, one can show that f and g cannot be perfect simultaneously (see
Fig. 4(i)–(k)).

Claim A. Suppose that 
 is a simple face of G ′ with |
| = 4 and |H(
)| = 6. Then
there are seven combinatorially different possibilities for the arrangement of 
 and the
half-edges, as shown in Fig. 5.

The proof of Claim A is a straightforward case analysis, carried out in Appendix 2.

Lemma 2.4. Let
 be a simple face of G ′ with |
| = 4 and |H(
)| = 6, and suppose
that the arrangement of half-edges in 
 is not homeomorphic with configuration (g) in
Fig. 5. Then we have

E(G) < 5.5(v(G)− 2).

Proof. Notice that one of the diagonals of �, denoted by e = AB, can be added in
the interior of � without creating any crossing with the half-edges in 
 or with other
potentially existing edges of G − G ′ that may enter �. Thus, by the maximality of G
(more precisely, by the fact that (G,G ′,D) ∈ G ′), we may assume that that A and B
are connected by an edge e′ of G. Obviously, e′ must lie entirely outside of 
. (See
Fig. 6 for an illustration.) We may also assume that e′ ∈ G ′ and that it does not cross
any edge of G, otherwise replacing e′ by e in G, we would obtain a contradiction with
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Fig. 6. Proof of Lemma 2.4.

the maximality of G ′ (more precisely, with the fact that (G,G ′,D) ∈ G ′′ and the total
number of crossings along all edges of G ′ is as small as possible).

Let G1 (resp. G2) denote the subgraph of G induced by A, B, and all vertices in the
interior (resp. exterior) of the “lens” enclosed by e and e′ (see Fig. 6). Clearly, we have
v(G) = v(G1) + v(G2) − 2 and e(G) = e(G1) + e(G2) − 1. As e′ and e run in the
exterior and in the interior of 
, resp., both v(G1) and v(G2) are strictly smaller than
v(G). Therefore, we can apply the induction hypothesis to G1 and G2 to obtain that

e(G) = e(G1)+ e(G2)− 1 ≤ 5.5(v(G1)− 2)+ 5.5(v(G2)− 2)− 1 < 5.5(v(G)− 2),

as required.

In view of the last lemma, from now on we may and will assume that in every simple
quadrilateral face that contains six half-edges, these half-edges form an arrangement
homeomorphic to configuration (g) in Fig. 5.

We define a bipartite multigraph M = (V1 ∪ V2, E) with vertex classes V1 and V2,
where V1 is the set of 3-triangles and V2 is the set of all other faces of G ′. For each vertex
(3-triangle) � ∈ V1, separately, we add to the edge set E of M some edges incident to
�, according to the following rules.

• Rule 0: Connect � to an adjacent triangular face 
 by two parallel edges if 
 is a
0-triangle.
• Rule 1: Connect � to any (not necessarily adjacent) 1-triangle 
 by two parallel

edges if there is an edge of G − G ′ that starts in � and ends in 
.
• Rule 2: Connect � to any (not necessarily adjacent) 2-triangle 
 by a single edge

if there is an edge of G − G ′ that starts in � and ends in 
.
• Rule 3: If the extension e of a half-edge in H(�) passes through or ends in a big

face, we may connect� by a single edge to the first such big face along e. However,
we use this last rule only to bring the degree of� in M up to 2. In particular, if we
have applied Rules 0 or 1, for some �, we do not apply Rule 3. Similarly, in no
case do we apply Rule 3 for all three half-edges in H(�).

Notice that, besides Rules 0 and 1, the application of Rule 3 can also yield parallel
edges if two half-edges in H(�) reach the same big face. However, we never create three
parallel edges in M .

Let d(�) denote the degree of vertex � in M .

Lemma 2.5. For any � ∈ V1, we have d(�) ≥ 2.
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Proof. We can disregard the restriction on the use of Rule 3, since it only applies if
d(�) has already reached 2. If the extension e of a half-edge in H(�) is not perfect,
then e yields a (possible) edge of M incident to � according to one of Rules 1–3. We
get two edges this way, unless the extensions of at least two of the half-edges in H(�)
are perfect. In this latter case, Lemma 2.3 applies and either Rule 0 or Rule 1 provides
two parallel edges of M connecting � to its strong neighbor.

To complete the proof of Theorem 1, we have to estimate from above the degrees of
the vertices belonging to V2 in M . If 
 ∈ V2 is a 1-triangle or a 2-triangle, we have
d(
) ≤ 2. Every 0-triangle 
 is adjacent to at most three 3-triangles, so its degree
satisfies d(
) ≤ 6. The following lemma establishes a bound for big faces.

Lemma 2.6. For any big face 
 ∈ V2, we have d(
) ≤ 2|
|. Moreover, if 
 is a
simple quadrilateral face with six half-edges forming an arrangement homeomorphic to
the one depicted in Fig. 5(g), we have d(
) ≤ 4.

Proof. Every edge of M incident to 
 corresponds to an edge of G − G ′ that starts
in some 3-triangle and enters 
. Different edges of M correspond to different edges of
G −G ′ (or opposite orientations of the same edge). Since any side of 
 crosses at most
three edges of G − G ′, we obtain the weaker bound d(
) ≤ 3|
|. If 
 is a simple
quadrilateral face satisfying the conditions in the second part of the lemma, then two
of its sides do not cross any edge of G − G ′, hence we have d(
) ≤ 6. The stronger
bounds stated in the lemma immediately follow from the fact that, even if some side of
a big face 
 is crossed by three edges of G − G ′, they can contribute only at most 2 to
the degree of 
.

To verify this fact, consider a fixed side g of 
, and suppose that it crosses three
edges of G − G ′. These crossings do not contribute to the degree of 
 if both sides of
g belong to the interior of 
; so we assume that this is not the case. Every edge e that
crosses g is divided by g into two pieces. If the piece incident to the exterior side of
g passes through a big face or does not end in a 3-triangle, then e does not contribute
to d(
). Therefore, we may assume that all three such edge pieces pass through only
triangular faces and end in 3-triangles (hence, excluding all but cases (a), (g), (j), and
(k) in Fig. 7). A case analysis shows that either at least one of these edge pieces ends in
a 3-triangle which has a strong neighbor (see Fig. 7(g),(j),(k)), or all of them end in the
same 3-triangle (see Fig. 7(a)). In either case, the corresponding three edges contribute
at most two to the degree of 
.

The details of the case analysis are omitted, but they can be reconstructed from Fig. 7,
where the circular arc, together with the horizontal segment, represents the boundary
of 
. Dark-shaded triangles are not 3-triangles, while light-shaded triangles are 3Y -
triangles with a strong neighbor. We omitted the cases where the three edges crossing g
leave the triangular face adjacent to g through the same other edge g′. These cases can
be handled by removing the edge g and considering the resulting big face and the three
edges crossing the side g′ of this face. Applying this reduction twice if necessary we
reduce this case to one of the other cases.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 7. Proof of Lemma 2.6; dark-shaded triangles (b)–(f), (h), (i) and light-shaded triangles (g), (j), (k).

For any face�, let t (�) and t(�) denote the number of triangles and diagonals, resp.,
in a triangulation of �. Thus, if the sum of the number of isolated vertices of G ′ that lie
in the interior of� and the number of connected components of the boundary of� is k,
we have t (�) = |�| + 2k − 4 and t(�) = |�| + 3k − 6.

We introduce the notation d(�) := −d(�) for � ∈ V1, and d(
) := d(
) for

 ∈ V2. Let V := V1 ∪ V2 denote the set of all faces of G ′. Then the fact that the sum
of degrees of the vertices must be the same on both sides of M , can be expressed by the
equation ∑

�∈V

d(�) = 0.

Lemma 2.7. For every face � ∈ V , we have

|H(�)| + 1
4 d(�) ≤ 5

2 t (�)+ 2t(�).

Proof. The proof is by straightforward case analysis, based on the previous lemmas.
If � is triangular, we have t(�) = 0, t (�) = 1, so that 5

2 t (�) + 2t(�) = 5
2 . For

a 3-triangle �, by Lemma 2.5, we have |H(�)| + 1
4 d(�) ≤ 3 + 1

4 (−2) = 5
2 . For a

2-triangle �, we have |H(�)| + 1
4 d(�) ≤ 2 + 1

4 (2) = 5
2 . For a 1-triangle �, we have

|H(�)| + 1
4 d(�) ≤ 1+ 1

4 (2) = 3
2 , and for a 0-triangle �, we have |H(�)| + 1

4 d(�) ≤
0+ 1

4 (6) = 3
2 .

If� is a simple face with |�| ≥ 5 sides, we have t (�) = |�|−2 and t(�) = |�|−3,
so that 5

2 t (�)+2t(�) = 9
2 |�|−11. It follows from Lemmas 2.2 and 2.6 that |H(�)| ≤

3|�| − 6 and d(�) = d(�) ≤ 2|�|. Thus, we have

|H(�)| + 1
4 d(�) ≤ 7

2 |�| − 6 ≤ 9
2 |�| − 11.
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If � is a simple face with |�| = 4, we have t (�) = 2, t(�) = 1, so that 5
2 t (�) +

2t(�) = 7. By Lemmas 2.2 and 2.6, we obtain |H(�)| ≤ 6 and d(�) = d(�) ≤ 8. If
|H(�)| ≤ 5, then |H(�)| + 1

4 d(�) ≤ 5 + 1
4 (8) = 7. If |H(�)| = 6, then by Lemma

2.6 d(�) = d(�) ≤ 4 and |H(�)| + 1
4 d(�) ≤ 6+ 1

4 (4) = 7.
Finally, assume that � is not a simple face, i.e., its boundary is not connected or it

contains at least one isolated vertex of G ′ in its interior. In this case we have t (�) ≥ |�|,
t(�) ≥ |�|, so that 5

2 t (�) + 2t(�) ≥ 9
2 |�|. By Lemma 2.6, we now obtain d(�) =

d(�) ≤ 2�. Lemma 2.2 does not apply here, but we have |H(�)| ≤ 3|�|, because
every half-edge in H(�) ends at an edge of �. Hence, we have |H(�)| + 1

4 d(�) ≤
3|�| + 1

4 (2|�|) = 7
2 |�|.

Now we can easily complete the proof of Theorem 1. Since every edge of G − G ′

gives rise to two half-edges, we have

e(G)− e(G ′) = 1

2

∑

�∈V

|H(�)| = 1

2

∑

�∈V

(|H(�)| + 1
4 d(�)) ≤ 5

4

∑

�∈V

t (�)+
∑

�∈V

t(�),

where the inequality holds by Lemma 2.7. We obviously have that
∑

�∈V t (�) =
2 (v(G)− 2), which is equal to the total number of faces in any triangulation of G ′.
In order to obtain such a triangulation from G ′, one needs to add

∑
�∈V t(�) edges.

Hence, we have
∑

�∈V t(�) = 3(v(G)−2)− e(G ′). Notice that triangulating each face
separately may create a triangulation of the plane containing some parallel edges, but
this has no effect on the number of triangles or the number of edges. Now the theorem
follows by simple calculation:

e(G) = e(G ′)+ (e(G)− e(G ′))≤e(G ′)+ 5
4 · 2(v(G)− 2)+ (3(v(G)− 2)− e(G ′))

= 5.5(v(G)− 2).

This completes the proof of the inequality in Theorem 1.
We close this section by presenting a construction which shows that the result is not

far from being tight.

Proposition 2.8. For every v ≡ 0 (mod 6), v ≥ 12, there exists a graph G with v
vertices and 5.5(v−2)−4 edges that can be drawn in the plane so that each of its edges
crosses at most three others. That is, for these values we have e3(v) ≥ 5.5v − 15.

Proof. Let Tq denote a hexagonal tiling of a vertical cylindrical surface with q ≥ 1
horizontal layers, each consisting of three hexagonal faces wrapped around the cylinder
(see Fig. 8). Notice that the top and the bottom face of the cylinder are also hexagonal.
Let Vq be the set of all the vertices of the tiles. To each face except the top and the bottom
one, add eight diagonals (all but one main diagonal). Finally, add all diagonals to the
top and the bottom face that do not yield parallel edges. This means adding six edges
on both the top and the bottom face, as depicted in Fig. 8. The resulting graph Gq is
drawn on the surface of the cylinder with each edge crossing at most three other edges.
We have v(Gq) = 6q + 6 and e(Gq) = 33q + 18 = 5.5v(Gq)− 15.
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Fig. 8. The vertical cylindrical surface, its layer, side-face, and top/bottom face.

3. Proof of Theorem 2

For any graph G drawn in the plane, let Gfree denote the subgraph of G on the same vertex
set, consisting of all crossing-free edges. Let �(Gfree) denote the number of triangular
faces of Gfree, containing no vertex of G in their interiors.

Lemma 3.1. Let G be a graph on v(G) ≥ 3 vertices, which is drawn in the plane so
that none of its edges crosses two others. Then the number of edges of G satisfies is

e(G) ≤ 4(v(G)− 2)− 1
2�(Gfree).

Proof. We can assume without loss of generality that Gfree is maximal in the following
sense: if two vertices, u and v, can be connected by a Jordan arc that does not cross any
edge of G, then Gfree contains an edge uv between these vertices. We can also assume
that G is 3-connected. Otherwise, we can conclude by induction on v(G), as follows. Let
G = G1∪G2 be a decomposition of G into subgraphs on fewer than v(G) vertices, where
G1 and G2 share at most two vertices. Clearly, we have (v(G1)− 2)+ (v(G2)− 2) ≤
v(G) − 2, e(G1) + e(G2) ≥ e(G), and �(Gfree

1 ) + �(Gfree
2 ) ≥ �(Gfree). Therefore,

applying the induction hypothesis to G1 and G2 separately, we obtain that the statement
of the lemma holds for G.

Observe that if two edges uv and zw cross each other, then u and z, say, can be
connected by a Jordan arc running very close to the union of the edges uv and zv,
without crossing any edge of G. Thus, it follows from the maximality of Gfree that uz,
and similarly zv, vw, and wu, are edges of Gfree. Moreover, the quadrilateral uzvw
containing the crossing pair of edges uv, zw must be a face of Gfree. To see this, it is
enough to observe that the 3-connectivity of G implies that this quadrilateral cannot
contain any vertex of G in its interior. Thus, all edges in G − Gfree are diagonals of
quadrilateral faces of Gfree. Letting q(Gfree) denote the number of quadrilateral faces of
Gfree, we obtain

e(Gfree)+ 2q(Gfree)− e(G) ≥ 0.

Let f (Gfree) denote the total number of faces of Gfree. Then we have

f (Gfree)− q(Gfree)−�(Gfree) ≥ 0



Improving the Crossing Lemma 541

and, by Euler’s formula,

v(G)+ f (Gfree)− e(Gfree)− 2 ≥ 0.

Double counting the pairs (σ, a), where σ is a face of Gfree and a is an edge of σ , we
obtain

2e(Gfree)− 4 f (Gfree)+�(Gfree) ≥ 0.

Multiplying the above four inequalities by the coefficients 1, 2, 4, and 3
2 , respectively,

and adding them, the lemma follows.

Instead of Theorem 2, we establish a slightly stronger claim.

Lemma 3.2. Let G be a graph on v(G) ≥ 3 vertices, which is drawn in the plane with
x(G) crossings. Then we have

x(G) ≥ 7
3 e(G)− 25

3 (v(G)− 2)+ 2
3�(Gfree).

Proof. We use induction on x(G)+v(G). As in the proof of Lemma 3.1, we can assume
that G is 3-connected and that Gfree is maximal in the sense that whenever the points u
and v can be connected by a Jordan arc without crossing any edge of G, the edge uv
belongs to Gfree. We distinguish four cases.

Case 1: G contains an edge that crosses at least three other edges. Let a be such an edge,
and let G0 be the subgraph of G obtained by removing a. Now we have e(G0) = e(G)−1,
x(G0) ≤ x(G)− 3, and�(Gfree

0 ) ≥ �(Gfree). Applying the induction hypothesis to G0,
we get

x(G)− 3 ≥ 7
3 (e(G)− 1)− 25

3 (v(G)− 2)+ 2
3�(Gfree),

which implies the statement of the lemma.

Case 2: Every edge in G crosses at most one other edge. Lemma 3.1 yields

4(v(G)− 2)− 1
2�(Gfree) ≥ e(G).

The statement is obtained by multiplying this inequality by 4
3 and adding to it the simple

inequality x(G) ≥ e(G)− 3 (v(G)− 2) mentioned in the Introduction.

Case 3: There exists an edge e of G that crosses two other edges, one of which does
not cross any other edge of G. Let zw be an edge that crosses e at point x and does not
participate in any other crossing. Let u denote the endpoint of e for which the piece of
e between x and u is crossing-free (Fig. 9). Notice that u can be connected to both z
and w by non-crossing Jordan arcs, without crossing any edge of G. Therefore, by the
maximality of Gfree, the edges uz and uwmust belong to Gfree. Let G0 be the subgraph of
G obtained by removing the edge e. We have e(G0) = e(G)−1 and x(G0) = x(G)−2.
Clearly, Gfree

0 contains zw and all edges in Gfree. By the 3-connectivity of G, the triangle
uzwmust be a triangular face of Gfree

0 , so that we have�(Gfree
0 ) ≥ �(Gfree)+1. Applying

the induction hypothesis to G0, we obtain

x(G) ≥ 7
3 e(G)− 25

3 (v(G)− 2)+ 2
3�(Gfree)+ 1

3 ,

which is better than what we need.
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u

z

x

w

Fig. 9. Proof of Lemma 3.2, Case 3.

Case 4: There exists an edge a of G that crosses precisely two other edges, b and c, and
each of these edges also participates in precisely two crossings.

Subcase 4.1: b and c do not cross each other. Let G0 be the subgraph of G obtained
by removing b. Clearly, we have e(G0) = e(G)−1, x(G0) = x(G)−2, and�(Gfree

0 ) ≥
�(Gfree). Notice that c is an edge of G0 that crosses two other edges; one of them is a,
which is crossed by no other edge of G0 (Fig. 10). Thus, we can apply to G0 the last
inequality in the analysis of Case 3 to conclude that

x(G)− 2 ≥ 7
3 (e(G)− 1)− 25

3 (v(G)− 2)+ 2
3�(Gfree)+ 1

3 ,

which is precisely what we need.
Subcase 4.2: b and c cross each other. The three crossing edges, a, b, and c, can

be drawn on the sphere in two topologically different ways. If the closed curve formed
by segments of the three edges separates two of the endpoints of the three edges from
the other four, then the graph is not 3-connected as the vertices on the two sides of this
closed curve are only connected by two edges (see the configuration on the left-hand
side of Fig. 11). So it is enough to consider the configuration depicted on the right-hand
side of Fig. 11. By the maximality condition, Gfree must contain the six dashed edges
in the figure. Note that a, b, and c are not crossed by any additional edges, so all other
edges of G contained in the hexagon�, formed by the dashed edges, must be contained
in one of the triangular or quadrilateral faces of the arrangement, and the existence of
such edges contradicts the 3-connectedness of G. Thus, � is a face of Gfree, and the
only edges of G inside this face are a, b, and c. Let G0 be the graph obtained from G
by removing the edges a, b, c, and inserting a new vertex in the interior of �, which is

a

b

c

Fig. 10. Proof of Lemma 3.2, Subcase 4.1.
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c

ba
a

c

b

Fig. 11. Proof of Lemma 3.2, Subcase 4.2.

connected to every vertex of� by crossing-free edges. We have v(G0) = v(G)+ 1 and
x(G0) = x(G)− 3, so that we can apply the induction hypothesis to G0. Obviously, we
have e(G0) = e(G)+ 3 and �(Gfree

0 ) = �(Gfree)+ 6. Thus, we obtain

x(G)− 3 ≥ 7
3 (e(G)+ 3)− 25

3 (v(G)− 1)+ 2
3 (�(Gfree)+ 6),

which is much stronger than the inequality in the lemma.

The tightness of Theorem 2 is discussed at the end of the last section.

4. Proof of Theorem 3

Our proof is based on the following consequence of Theorems 1 and 2.

Corollary 4.1. The crossing number of any graph G of at least three vertices satisfies

cr(G) ≥ 4e(G)− 103
6 (v(G)− 2).

Proof. If G has at most 5(v(G) − 2) edges, then the statement directly follows from
Theorem 2. If G has more than 5(v(G)− 2) edges, fix one of its drawings in which the
number of crossings is minimum. Delete the edges of G one by one until we obtain a graph
G0 with 5(v(G)−2) edges. At each stage, delete one of the edges that participates in the
largest number of crossings in the current drawing. Using the inequality e2(v) ≤ 5(v−2)
proved in [PTo1] and quoted in Section 1, at the time of its removal every edge has at
least three crossings. Moreover, by Theorem 1, with the possible exception of the at most
1
2 (v(G) − 2) edges deleted last, every edge has at least four crossings. Thus, the total
number of deleted crossings is at least

4(e(G)− 5(v(G)− 2))− 1
2 (v(G)− 2) = 4e(G)− 41

2 (v(G)− 2).

On the other hand, applying Theorem 2 to G0, we obtain that the number of crossings
not removed during the algorithm is at least

cr(G0) ≥ 10
3 (v(G)− 2).

Summing up these two estimates, the result follows.
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Now we can easily complete the proof of Theorem 3. Let G be a graph drawn in the
plane with cr(G) crossings, and suppose that e(G) ≥ 103

16 v(G).
Construct a random subgraph G ′ ⊆ G by selecting each vertex of G independently

with probability

p = 103

16

v(G)

e(G)
≤ 1,

and letting G ′ be the subgraph of G induced by the selected vertices. The expected
number of vertices of G ′ is E[v(G ′)] = pv(G). Similarly, E[e(G ′)] = p2e(G). The
expected number of crossings in the drawing of G ′ inherited from G is p4cr(G), and the
expected value of the crossing number of G ′ is even smaller.

By Corollary 4.1, cr(G ′) ≥ 4e(G ′) − 103
6 v(G

′) holds for every G ′. (Note that after
eliminating the constant term in Corollary 4.1, we do not have to assume any more that
v(G ′) ≥ 3; the above inequality is true for every G ′.) Taking expectations, we obtain

p4cr(G) ≥ E[cr(G ′)] ≥ 4E[e(G ′)]− 103
6 E[v(G ′)] = 4p2e(G)− 103

6 pv(G).

This implies that

cr(G) ≥ 1024

31827

e3(G)

v2(G)
≥ 1

31.1

e3(G)

v2(G)
,

provided that e(G) ≥ 103
16 v(G).

To obtain an unconditional lower bound on the crossing number of any graph G, we
need different estimates when e(G) < 103

16 v(G). Comparing the bounds in Theorem 2
and in Corollary 4.1 with the trivial estimates cr(G) ≥ 0 and cr(G) ≥ e− 3(v(G)− 2),
a case analysis shows that

1024

31827

e3(G)

v2(G)
− cr(G) ≤ 1.06v(G).

The maximum is attained for a graph G with e(G) = 4(v(G)−2) and cr(G) = v(G)−2.
In conclusion,

cr(G) ≥ 1024

31827

e3(G)

v2(G)
− 1.06v(G) ≥ 1

31.1
e3(G)v2(G)− 1.06v(G)

holds for every graph G. This completes the proof of Theorem 3.

Remark 4.2. Pach and Tóth [PTo2] introduced two variants of the crossing number.
The pairwise crossing number (resp. the odd crossing number) of G is defined as the
minimum number of pairs of non-adjacent edges that cross (resp. cross an odd number
of times) over all drawings of G. These parameters are at most as large as cr(G). It
is known that the odd crossing number is smaller than the other two for certain graphs
[PSS], but one cannot rule out the possibility that the pairwise crossing number is always
equal to cr(G). The original proofs of the Crossing Lemma readily generalize to the new
crossing numbers, and it follows that both of them are at least 1

64 (e
3(G)/v2(G)), provided

that e(G) ≥ 4v(G). We have been unable to extend our proof of Theorem 3 to these
parameters.
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5. Applications, Problems, Remarks

Every improvement of the Crossing Lemma automatically leads to improved bounds in
all of its applications. For completeness and future reference, we include some immediate
corollaries of Theorem 3 with a sketch of computations.

First, we plug Theorem 3 into Székely’s method [Sz] to improve the coefficient of
the main term in the Szemerédi–Trotter theorem [SzT], [CE+], [PTo1].

Corollary 5.1. Given m points and n lines in the Euclidean plane, the number of
incidences between them is at most 2.5m2/3n2/3 + m + n.

Proof. We can assume that every line and every point is involved in at least one inci-
dence, and that n ≥ m, by duality. Since the statement is true for m = 1, we have to
check it only for m ≥ 2.

Define a graph G drawn in the plane such that the vertex set of G is the given set of
m points, and join two points with an edge drawn as a straight-line segment if the two
points are consecutive along one of the lines. Let I denote the total number of incidences
between the given m points and n lines. Then v(G) = m and e(G) = I − n. Since
every edge belongs to one of the n lines, cr(G) ≤ (n

2

)
. Applying Theorem 2 to G, we

obtain that (1/31.1)((I − n)3/m2) − 1.06m ≤ cr(G) ≤ (n
2

)
. Using that n ≥ m ≥ 2,

easy calculation shows that

I − n ≤ 3
√

15.55m2n2 + 33m3 ≤ 3
√

15.55n2/3m2/3 + m,

which implies the statement.

It was shown in [PTo1] that Corollary 5.1 does not remain true if we replace the
constant 2.5 by 0.42.

Theorem 3 readily generalizes to multigraphs with bounded edge multiplicity, im-
proving the constant in Székely’s result [Sz].

Corollary 5.2. Let G be a multigraph with maximum edge multiplicity m. Then

cr(G) ≥ 1

31.1

e3(G)

mv2(G)
− 1.06m2v(G).

Proof. Define a random simple subgraph G ′ of G as follows. For each pair of vertices
v1, v2 of G, let e1, e2, . . . , ek be the edges connecting them. With probability 1− k/m,
G ′ will not contain any edge between v1 and v2. With probability k/m, G ′ contains
precisely one such edge, and the probability that this edge is ei is 1/m (1 ≤ i ≤ k).
Applying Theorem 3 to G ′ and taking expectations, the result follows.

Next, we state here the improvement of another result in [PTo1].

Corollary 5.3. Let G be a graph drawn in the plane so that every edge is crossed by at
most k others, for some k ≥ 1, and every pair of edges has at most one point in common.
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Then

e(G) ≤ 3.95
√

kv(G).

Proof. For k ≤ 2, the result is weaker than the bounds given in [PTo1]. Assume that
k ≥ 3, and consider a drawing of G such that every edge crosses at most k others. Let x
denote the number of crossings in this drawing. If e(G) < 103

6 v(G), then there is nothing
to prove. If e(G) ≥ 103

6 v(G), then using Theorem 3, we obtain

1024

31827

e3(G)

v2(G)
≤ cr(G) ≤ x ≤ e(G)k

2
,

and the result follows.

Recall that ek(v) was defined as the maximum number of edges that a graph of v
vertices can have if it can be drawn in the plane with at most k crossings per edge. We
define some other closely related functions. Let e∗k (v) denote the maximum number of
edges of a graph of v vertices which has a drawing that satisfies the above requirement
and, in addition, every pair of its edges meets at most once (either at an endpoint or at a
proper crossing). We define ek(v) and e∗k(v) analogously, with the only difference that
now the maximums are taken over all triangle-free graphs with v vertices.

It was mentioned in the Introduction (see Lemma 1.1) that ek(v) = e∗k (v) for 0 ≤
k ≤ 3, and that e∗k (v) ≤ (k + 3)(v − 2) for 0 ≤ k ≤ 4 [PTo1]. For 0 ≤ k ≤ 2, the last
inequality is tight for infinitely many values of v. Our Theorem 1 shows that this is not
the case for k = 3.

Conjecture 5.4. We have ek(v) = e∗k (v) for every k and v.

Using the proof technique of Theorem 1, it is not hard to improve the bound e∗4(v) ≤
7(v − 2). In particular, in this case Lemma 2.2 holds with 3(|�| − 2) replaced by
4(|�|−2). Moreover, an easy case analysis shows that every triangular face�with four
half-edges satisfies at least one of the following two conditions:

1. The extension of at least one of the half-edges in� either ends in a triangular face
with fewer than four half-edges, or enters a big face.

2. � is adjacent to an empty triangle.

Based on this observation, one can modify the arguments in Section 2 to obtain the upper
bound e∗4(v) ≤ (7− 1

9 )v − O(1).

Conjecture 5.5. e∗4(v) ≤ 6v − O(1).

As for the other two functions, we have ek(v) = e∗k(v) for 0 ≤ k ≤ 3, and e∗k(v) ≤
(k + 2)(v − 2) for 0 ≤ k ≤ 2. If 0 ≤ k ≤ 1, these bounds are attained for infinitely
many values of v. These estimates were applied by Czabarka et al. [CS+] to obtain some
lower bounds on the so-called biplanar crossing number of complete graphs.

Given a triangle-free graph drawn in the plane so that every edge crosses at most
two others, an easy case analysis shows that each quadrilateral face that contains four



Improving the Crossing Lemma 547

Fig. 12. e2(v) ≥ 3.5v − 16.

half-edges is adjacent to a face which is either non-quadrilateral or does not have four
half-edges.1 As in the proof of Theorem 1 (before Lemma 2.5), we can use a properly
defined bipartite multigraph M to establish the bound

e2(v) ≤ (4− 1
10 )v − O(1).

Conjecture 5.6. e2(v) ≤ 3.5v − O(1).

The coefficient 3.5 in the above conjecture cannot be improved as shown by the
triangle-free (actually bipartite!) graph in Fig. 12, whose vertex set is the set of vertices
of a 4× v/4 grid.

Let cr(v, e) denote the minimal crossing number of a graph with v ≥ 3 vertices and e
edges. Clearly, we have cr(v, e) = 0, whenever e ≤ 3(v−2), and cr(v, e) = e−3(v−2)
for 3(v−2) ≤ e ≤ 4(v−2). To see that these values are indeed attained by the function,
consider the graph constructed in [PTo1], which (if v is a multiple of 4) can be obtained
from a planar graph with v vertices, 2(v − 2) edges, and v − 2 quadrilateral faces, by
adding the diagonals of the faces. If e < 4(v− 2), delete as many edges participating in
a crossing, as necessary.

In the next interval, i.e., when 4(v − 2) ≤ e ≤ 5(v − 2), Theorem 2 gives a tight
bound on cr(v, e) up to an additive constant. To see this, consider a planar graph with
only pentagonal and quadrilateral faces and add all diagonals in every face. If no two
faces of the original planar graph share more than a vertex or an edge, for the resulting
graph the inequality of Theorem 2 holds with equality. For certain values of v and e, no
such construction exists, but we only lose a constant.

If 5(v − 2) ≤ e ≤ 5.5(v − 2), the best known bound, cr(v, e) ≥ 3e − 35
3 (v − 2),

follows from Theorem 2, while for e ≥ 5.5(v − 2) the best known bound is either the
one in Corollary 4.1 or the one in Theorem 3. We do not believe that any of these bounds
are optimal.

Conjecture 5.7. cr(v, e) ≥ 25
6 e − 35

2 (v − 2).

1 This statement actually holds under the assumption that G and G ′ are maximal, in the sense described at
the beginning of Section 2.
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Note that, if true, this bound is tight up to an additive constant for 5(v − 2) ≤ e ≤
6(v− 2). To see this, consider a planar graph with only pentagonal and hexagonal faces
and add all diagonals of all faces. If no two faces of the planar graph share more than a
vertex or an edge, the resulting graph shows that Conjecture 5.7 cannot be improved. As
a first step toward settling this conjecture, we can show the following statement, similar
to Lemma 3.1.

Lemma 5.8. Let G be a graph on v(G) ≥ 3 vertices drawn in the plane so that every
edge is involved in at most two crossings. Then

e(G) ≤ 5(v(G)− 2)−�(Gfree).

Appendix 1. Case 1 in the Proof of Lemma 2.3

Our proof will be a straightforward case analysis. Recall that� is a 3Y -triangle with the
unique neighbor 
, which is also a triangle. Let A, B, and C be the vertices of �, and
let f , g, and h denote the half-edges in H(�). Here, g and h emanate from vertex A,
while f starts at vertex B. Next, we introduce a new notation: given a vertex V in a face
ϒ of G ′, let dϒ(V ) denote the number of half-edges in H(ϒ) that emanate from V .

Let� denote the face of G ′ that is adjacent to� along side AC . First, we claim that the
extension f ∈ H of f is not perfect. Indeed, otherwise� is a triangle and edge f , having
crossed half-edges g and h, as well as side AC , must end in D, the vertex of� opposite to
AC . Since f = B D cannot be crossed by any other edge, we have d�(A) = d�(C) = 0.
Aside from f , the extension of any half-edge in H(�), that emanates from vertex D,
has to exit � through side AC and enter �. It cannot exit � through side AB (it would
cross four edges AC , h, g, and AB, in this order), nor can it end at vertex B (there are no
parallel edges). Hence, it must exit � through side BC , which is already crossed by the
extensions of g and h (see Fig. 13(i)). Therefore, d�(D) ≤ 2, and � is not a 3-triangle,
contradicting the assumption that f is perfect.

Next, suppose that the extensions g and h of g and h, respectively, are perfect. We
distinguish two cases, based on where these two edges end.

Subcase 1.1: h ends in E , the vertex of
 opposite to BC (see Fig. 13(ii)). Since there
are no parallel edges, g has to exit � across the side B E . Having already crossed three
other edges, g must end in �, the face of G ′ adjacent to
 along B E . By the assumption
that g is perfect, we conclude that � is a triangle, and we let F be the vertex of �, where
g ends. Since g cannot be crossed by any other edge, then d�(B) = d�(E) = 0.

Aside from g, the extension of any half-edge in H(�), that emanates from vertex
F , exits � through side B E and enters 
. It cannot exit 
 through side BC , since f
already crosses three other edges. Thus, it has to cross h, that is already crossed by f
and BC (see Fig. 13(ii)). Therefore, d�(F) ≤ 2, and � is not a 3-triangle, contradicting
the assumption that g is perfect.

The symmetric case, when g ends in E (and h exits 
 through side C E), can be
handled similarly.

Subcase 1.2: g exits
 through B E and h exits
 through C E (see Fig. 13(iii)). Both
of these edges already cross three other edges, so g ends in �, the face of G ′ adjacent
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Fig. 13. Proof of Lemma 2.3, Case 1. (A more detailed version of Fig. 4(b)–(d).)

to 
 along B E , and h ends in �, the face of G ′ adjacent to 
 along C E . Both � and
� are triangles by assumption. Let F and G denote the vertices of � and �, where g
and h end, respectively. As before, we easily conclude that d�(B) = d�(E) = 0 and
d�(C) = d�(E) = 0. Since h is perfect, then � is a 3-triangle and d�(G) = 3. Let
e1 and e2 denote the extensions of the half-edges contributing to d�(G) (other than h).
These edges exit � through C E and enter 
. Neither of them can exit 
 through BC
or end in B, since f , g, and h already cross three other edges. Hence, e1 and e2 exit 

through B E and enter �. Now, there are only two possibilities: either e1 and e2 both exit
� through F E ; or one of them ends in vertex F , while the other exits � through F E
(see Fig. 13(iii)). In both cases B E is crossed by three edges (e1, e2, g), and d�(F) ≤ 2.
Therefore, � is not a 3-triangle, contradicting the assumption that g is perfect.

Appendix 2. Proof of Claim A

Recall that 
 is a simple face of G ′ with |
| = 4 and |H(
)| = 6. Next, we introduce
some notation. Let A, B, C , and D denote the vertices of 
, and let dV be the degree
of V ∈ {A, B,C, D} in 
, that is, the number of half-edges in H(
) incident to vertex
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V . Encode each half-edge by its type, consisting of the initial vertex and the side of 

where it ends. So, for example, a half-edge of type A(BC) connects vertex A with the
side BC . Finally, let � denote the maximum degree of all the vertices of 
.

Case 1:� = 6. Suppose that dA = �. Since at most three half-edges can exit
 through
the same side, there is only one possibility, depicted in Fig. 5(a).

Case 2: � = 5. Let A be the vertex of degree 5. Three of the half-edges incident to
A exit through the same side, say BC , and two through the side C D. The remaining
half-edge of H(
) cannot have its endpoint on AB or on BC , and it cannot emanate
from B. Therefore, it has to be of type C(AD) (see Fig. 5(b)).

Case 3: � = 4. Let dA = �. There are two possibilities:
Case 3.1: Two of the half-edges incident to A exit
 through side BC , while the other

two exit through side C D. If there is a half-edge incident to B, it should exit through
C D. However, then the remaining half-edge cannot be drawn: clearly, it cannot start at
C or D, and if it starts at B, then the two half-edges incident to B have to be of type
B(C D), forcing at least four crossings on C D. Similarly, no half-edge can be incident
to D. Therefore, the remaining two half-edges both emanate from C . By Lemma 2.1,
they should exit 
 through different sides, giving Fig. 5(c).

Case 3.2: There are three half-edges in H(
) of type A(C D) and one of type A(BC).
Then the remaining two half-edges cannot have their endpoints on AD, C D, or in D.
So, they are both of type C(AB) (see Fig. 5(d)).

Case 4: � = 3. Let A be a vertex of degree 3. Again, there are two possibilities (up to
symmetry).

Case 4.1: All three half-edges incident to A are of the same type, say A(BC). The
remaining three half-edges of H(
) cannot have their endpoints on AB, on BC , or in
B. Therefore, all of them are of type C(AD), as shown in Fig. 5(e).

Case 4.2: Two half-edges incident to A are of type A(BC), while the remaining one is
of type A(C D). If there is a half-edge incident to B, it can only be of type B(C D), Then,
by Lemma 2.1, there are no more half-edges emanating from B. Moreover, no half-edge
is incident to C ; otherwise, any half-edge from C would cross the existing half-edge of
type B(C D), whose extension already crosses three other edges. Similarly, at most one
half-edge emanates from D (extensions of the half-edges of type A(BC) already cross
two other edges). This contradicts |H(
)| = 6.

If there is a half-edge incident to D, it can only be of type D(BC), and it has to be the
unique half-edge of this type. The remaining two half-edges of H(
) must be incident
to C . None of them can exit 
 through AB, so they are both of type C(AD). However,
then the extension of the existing half-edge of type A(C D) crosses four other edges.

Therefore, we can assume that there are two half-edges of type A(BC), one of type
A(C D), and the other three half-edges are incident to C . It is impossible that all three
are of type C(AD), since they would all cross the half-edge of type A(C D). Moreover,
by Lemma 2.1, at most one can be of type C(AB). Therefore, one is of type C(AB) and
two are of type C(AD), see Fig. 5(f).

Case 5:� = 2. First, suppose that for every vertex of degree 2 the two half-edges incident
to it exit
 through different sides. Also, assume that dA = 2, i.e., there is a half-edge of
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type A(BC) and a half-edge of type A(C D). If B is of degree 2, then there is a half-edge
of type B(C D) and a half-edge of type B(AD). Now, it is easy to see that at most one
further half-edge can be added, either of type C(AD) or of type D(BC), contradicting
|H(
)| = 6. If C is of degree 2, for each of the four types, A(BC), A(C D), C(AB),
C(AD), there is a unique half-edge of this type, whose extension is already crossed by
two edges. Any additional half-edge emanating from either B or D would have to cross
three of the above mentioned half-edges before reaching a side of 
. Hence, if dC = 2,
then dB = dD = 0, contradicting |H(
)| = 6.

Now, we can assume that there is a vertex (say, A) of degree 2, such that both half-
edges incident to it have the same type, say A(C D). It follows from Lemma 2.1 that
dD ≤ 1. If dD = 0, then |H(
)| = 6 implies dB = dC = 2. Let us consider the two
half-edges emanating from B. At most one of them is of type B(C D). Furthermore, by
Lemma 2.1, at most one of them is of type B(AD). So, we have exactly one half-edge
of type B(C D) and one half-edge of type B(AD). Any half-edge incident to C would
either have to cross three half-edges before reaching AD, or cross the existing half-edge
of type B(AD), whose extension already crosses three other edges. Therefore, we obtain
dC = 0, a contradiction.

We are left with the case when there are two half-edges of type A(C D), and dD = 1.
If the half-edge incident to D is of type D(BC), then dC = 0, which, together with
dB ≤ 2, gives |H(
)| ≤ 5, a contradiction. Therefore, the half-edge incident to D has
type D(AB). In this case the half-edges incident to B or C cannot end on AD, so the
possible types are B(C D) and C(AB). Since C D is already crossed by two edges, there
is at most one half-edge of type B(C D). So there are two half-edges of type C(AB), see
Fig. 5(g). This concludes the proof of Claim A.
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Mathematics 12 (1982), 9–12.

[CE+] K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl, Combinatorial complexity bounds
for arrangements of curves and surfaces, Discrete & Computational Geometry 5 (1990), 99–160.
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