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Graphs that triangulate a given surface
and quadrangulate another surface
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Abstract

We show that for any closed surface F with χ(F ) � −4 (or χ(F ) � −2), there exist graphs that triangu-
late the torus or the Klein bottle (or the projective plane) and that quadrangulate F . We also give a sufficient
condition for a graph triangulating a closed surface to quadrangulate some other surface.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A graph is said to triangulate a surface if it has a triangular embedding on the surface (that is,
each face of the embedding is bounded by a triangle). Similarly, we say that a graph quadran-
gulates a surface if it embeds on the surface in such a way that each face is bounded by a cycle
of length 4. For example, the graph of the octahedron triangulates the sphere but also admits a
quadrangular embedding on the torus as shown in Fig. 1.

Recently, Negami, Nakamoto, Ota and Širáň [1] discussed graphs that triangulate the sphere
and quadrangulate other closed surfaces, and established the following theorem.

Theorem 1.1. (Nakamoto, Negami, Ota and Širáň [1]) Given a closed surface F except the
sphere, there exists a graph that triangulates the sphere and quadrangulates F .

This theorem motivates us to propose the following question. We denote the Euler character-
istic of a closed surface F by χ(F ).
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Fig. 1. The octahedron on the torus.

Question. Given two closed surfaces F1 and F2 with χ(F1) > χ(F2), is there a graph that trian-
gulates F1 and quadrangulates F2?

We need some additional conditions to give an affirmative answer to this question. If there
exists such a graph G that triangulates F1, the number of its vertices and edges is restricted by
Euler’s formula as follows:

∣
∣V (G)

∣
∣ = 3χ(F1) − 2χ(F2),

∣
∣E(G)

∣
∣ = 6χ(F1) − 6χ(F2).

For example, if F1 is the projective plane, then necessarily χ(F2) � −2; otherwise, G would
have at most 5 vertices, but there is no such triangulation on the projective plane. Similarly, if
F1 is the torus or the Klein bottle, then we have χ(F2) � −4. In fact, in Section 4 we prove that
these necessary conditions are also sufficient as follows:

Theorem 1.2. There exists a graph that triangulates the projective plane and quadrangulates a
closed surface F if and only if χ(F ) � −2.

Theorem 1.3. There exists a graph that triangulates the torus and quadrangulates a closed
surface F if and only if χ(F ) � −4.

Theorem 1.4. There exists a graph that triangulates the Klein bottle and quadrangulates a closed
surface F if and only if χ(F ) � −4.

To construct concrete graphs that triangulate closed surfaces and quadrangulate other sur-
faces, we shall introduce the notions of “4-cycle double covers” and “slit-flip sum” in Sections 2
and 3, respectively. The first one corresponds to the set of cycles of length 4 bounding faces of a
quadrangular embedding of a graph G, while slit-flip sum is a method of pasting two graphs to
construct a new graph.

These methods have been already introduced in [1], but we shall refine them for our purpose.
With their help and with the help of Theorems 1.2–1.4, we will prove in Section 5 the main result
of this paper:

Theorem 1.5. Given two closed surfaces F1 and F2 with 2χ(F1) − χ(F2) � 4, then there exists
a graph that triangulates F1 and quadrangulates F2.
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2. 4-Cycle double cover

We begin with introducing a notion from [1] to present examples of graphs that triangulate a
surface and quadrangulate another surface. Let G be a graph that triangulates a closed surface and
quadrangulates another closed surface. Let C = {C1,C2, . . .} be the family of cycles of length 4 in
G each of which corresponds to the boundary cycle of a face in a fixed quadrangular embedding
of G. Then C is what is called a cycle double cover of G. That is, each edge of G is contained in
exactly two distinct cycles of C. Since each cycle in C has length 4, we call it a 4-cycle double
cover.

For example, let G be the graph that triangulates the projective plane shown in Fig. 2 (left)
where each pair of vertices with the same labels should be identified. Consider the family C of
directed cycles

1243, 1374, 1425, 1572, 2345, 2653, 2736, 3546, 4756.

Then C can be regarded as a 4-cycle double cover of G, since each edge is covered by exactly
two cycles in C. Further, one can check that the following conditions are satisfied:

(i) Two cycles containing an edge induce different directions on the edge.
(ii) Cycles passing through each vertex induce a rotation on edges incident with the vertex.

Clearly, these conditions imply that C corresponds to a quadrangular embedding of G on the
orientable closed surface of genus 2.

We call a cycle Ci ∈ C a rhombus if it bounds a quadrilateral region obtained as a union of
two triangular faces of the triangular embedding of G, and a rhombus cover of G if all cycles in
C are rhombi. It is clear that a rhombus cover of the triangular embedding of G corresponds to
a quadrangular embedding of G on a closed surface if and only if the rhombi incident to each
vertex v ∈ V (G) induce a cyclic order over the neighbors of v, which corresponds to the rotation
around v in the quadrangulation on the surface.

Let G be a graph that triangulates a closed surface, except K4 on the sphere. For a 4-cycle
double cover C = {C1,C2, . . .}, we define a graph RC as follows and call it the rhombus cover
graph of C. Let G∗ denote the dual of the triangular embedding of G on the surface and set
V (RC) = V (G∗). Join a pair of vertices f1 and f2 ∈ V (RC) with an edge whenever two faces
corresponding to f1 and f2 form a quadrilateral region bounded by a rhombus Ci ∈ C. Since G∗
is a 3-regular graph, each vertex of RC has degree 0, 1, 2 or 3.

Fig. 2. Triangulations with seven vertices on the projective plane.
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It is easy to see that there are two types of rhombus covers of the triangular embedding of G;
either RC consists of only vertices of degree 0 and 2, or of degree 1 and 3. We will say that the
first cover is of even type and the second one of odd type. Similarly, a rhombus cover C is said to
be of even type (or odd type) if RC is even (or odd). Furthermore, it has been shown in [1] that:

Lemma 2.1. Any rhombus cover of the triangular embedding of G of odd type corresponds to a
quadrangular embedding of G on a nonorientable closed surface.

Let K be a connected graph. A spanning subgraph F of G is called a K-factor if each compo-
nent of F is isomorphic to K . Clearly, the rhombus cover graph RC of odd type is a K1,3-factor
of the dual G∗ of a triangular embedding of G on a closed surface. The following corollary is an
immediate consequence of the above lemma.

Corollary 2.1. If the dual of a triangular embedding of G on a closed surface has a K1,3-factor,
then G admits a quadrangular embedding on a nonorientable closed surface.

For example, the right-hand side of Fig. 2 presents a graph that triangulates the projective
plane with 7 vertices. Since the dual of the triangular embedding of it has a K1,3-factor, the
graph quadrangulates the nonorientable closed surface of genus 4.

A graph G embedded on a closed surface F is said to be r-representative if any non-
contractible simple closed curve on F meets G in at least r points. (See [3] for the details on
“representativity.”)

Since any cycle of length 4 in a 5-connected and 5-representative triangulation must induce
a rhombus, we have the following theorem. This theorem presents basically the same fact as
Theorem 18 in [1]. Negami and Suzuki [2] have already given more detailed information on
such triangulations on the sphere.

Theorem 2.1. Let G be a 5-connected graph that admits a 5-representative triangulation on a
closed surface. Then, G can quadrangulate another closed surface if and only if the dual of its
triangular embedding has a K1,3-factor.

3. Slit-flip sums

Let Gi be a graph that can be embedded on closed surfaces Σi as a triangulation Ti and on Fi

as a quadrangulation Qi , and suppose that a path uiviwi in Gi forms a corner of a face in Ti and
also does in Qi for i = 1,2.

Cut open the two closed surfaces Σ1 and Σ2, each including T1 and T2, along the edges u1v1
and u2v2, respectively, and paste them along the resulting boundaries so that u1 is identified
with v2 and v1 with u2. Then the union of two faces u1v1w1 and u2v2w2 forms a rectangular
region with a diagonal u1v1 = v2u2. Replace this diagonal with w1w2 to eliminate the multiple
edges between u1 and v1. Let T1 ‡ T2 denote the resulting triangulation on the closed surface Σ

obtained from the two slitted surfaces. In a similar way we can construct a new quadrangulation
Q1 ‡ Q2 on a closed surface F obtained from F1 and F2 slitted along u1v1 and u2v2.

It is clear that underlying graphs of T1 ‡ T2 and Q1 ‡ Q2 are isomorphic with the same graph,
denoted by G1 ‡G2. We say that G1 ‡G2 is obtained from G1 and G2 by slit-flip sum and call the
path u1v1w1 (or u2v2w2) in the above assumption for G1 (or G2) a useful corner at v1 (or v2).
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Lemma 3.1. Let G be a graph that triangulate a closed surface and quadrangulates another
closed surface. If G has a vertex v of degree 4 or 3, then it has a useful corner at v.

Proof. Let v be a vertex of degree 4, and let v1, v2, v3 and v4 be its neighbors lying around v

in this cyclic order in the triangular embedding of G. Then, there are only three types of 4-cycle
double covers around v corresponding to a quadrangular embedding of G. They contain:

(i) v1vv2u0, v2vv3u1, v3vv4u2 and v4vv1u3;
(ii) v1vv3u0, v2vv4u1, v1vv2u2 and v3vv4u3;

(iii) v1vv3u0, v2vv4u1, v2vv3u2 and v4vv1u3.

In each type, G has at least two useful corners at v. If v is a vertex of degree 3, then all of
three corners at v form useful corners. �
Lemma 3.2. Any graph G1 ‡ G2 obtained by a slit-flip sum has two useful corners.

Proof. Let uiviwi be a useful corner in a graph Gi and suppose that a slit-flip sum flips u1v1 =
v2u2 to w1w2 to obtain G1 ‡ G2. Then both u1w2w1 and v1w1w2 form two corners in T1 ‡ T2
and also in Q1 ‡ Q2. Thus, they are useful corners in G1 ‡ G2. �

Now we shall consider performing slit-flip sums in “two places.” If both G1 and G2 has
two disjoint useful corners, say uiviwi and u′

iv
′
iw

′
i , then we can perform the slit-flip sums at

these corners at the same time. Denote the resulting graph, triangulation and quadrangulation by
G1 ‡‡G2, T1 ‡‡T2 and Q1 ‡‡Q2, respectively. Then T1 ‡‡T2 triangulates a closed surface home-
omorphic to Σ1 # Σ2 with one handle attached while Q1 ‡‡ Q2 quadrangulates a closed surface
homeomorphic to F1 # F2 with one handle attached. It should be noticed that such surfaces may
not be orientable even if all Σi and Fi are orientable. Let Σ1 ‡‡ Σ2 and F1 ‡‡ F2 denote these
surfaces. To control their orientability, we define the “type” of a pair of useful corners as follows.

Let G be a graph that triangulates Σ and quadrangulates F and suppose that both surfaces Σ

and F are orientable. Two disjoint useful corners uvw and u′v′w′ are said to be coherent on Σ

(or F ) if they induce the same orientation over Σ1 (or F ), and incoherent otherwise. Such a pair
of useful corners is said to be of type (±,±), where “+” (or “−”) mean that they are coherent
(or incoherent) on Σ and F in that order.

Lemma 3.3. The graph of the octahedron has four pairs of disjoint useful corners of all types.

Proof. Let T and Q denote the triangulation and the quadrangulation in Fig. 1, each of which
is an embedding of the octahedron. Then the pairs {051,342}, {051,423}, {051,324} and
{051,243} are of type (+,+), (+,−), (−,+) and (−,−) in order. �

Let Gi , Ti , Qi , Σi and Fi be as above. It is clear that Σ1 ‡‡ Σ2 is orientable if and only if
both Σ1 and Σ2 are orientable and the pair of useful corners for G1 has the same coherency as
that for G2. In particular, when the triangular embedding of G2 is the octahedron, we say that
G1 ‡‡ G2 is obtained from G1 by adding a slit-flip handle. By Lemma 3.3, a slit-flip handle
decreases χ(Σ1) by 2 and χ(F1) by 4. If both Σ1 and F1 are orientable, then we can control the
orientability of Σ1 ‡‡ Σ2 and of F1 ‡‡ F2 by attaching the slit-flip handle at a suitable pair of
useful corners listed in the proof of Lemma 3.3.
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Fig. 3. The tetrahedron on the projective plane.

Figure 3 presents two embeddings of K4. The left-hand side exhibits a tetrahedron, which
is the minimal triangulation on the sphere, and identifying antipodal points on the hexagon in
the right-hand side yields a quadrangulation on the projective plane. It is easy to check that all
corners in the tetrahedron are useful corners. A slit-flip sum with this K4 adds one crosscap to
F1, not changing the homeomorphism type of Σ1. On the other hand, a slit-flip sum with the
graph of the octahedron adds one orientable handle to F1. We call these slit-flip sums simply
adding a crosscap and a handle.

4. Individual cases

The necessity parts of Theorems 1.2–1.4 have been shown in the introduction. In this section
we present constructions of graphs that triangulate the projective plane, the torus and the Klein
bottle and quadrangulate other closed surfaces.

Proof of Theorem 1.2. First, we shall construct a graph that triangulates the projective plane
and quadrangulates the orientable closed surface of genus g � 2. We have already obtained such
a graph for g = 2, say P0, the triangular embedding of which is in the left part of Fig. 2. There
are many useful corners in P0 and hence we can carry out a slit-flip sum with the graph that
triangulates the sphere as the octahedron and quadrangulates the torus. The resulting graph that
triangulates the projective plane quadrangulates the orientable closed surface of genus 3. By
Lemma 3.2, we can repeat slit-flip sums to obtain the desired genus of the quadrangulated surface
as we want.

To construct a graph that triangulates the projective plane and quadrangulates the nonori-
entable closed surface of genus k � 4, it suffices to use the right one of Fig. 2 as P0 and the
tetrahedron, instead of the octahedron. Slit-flip sums with the graph of the tetrahedron increase
the number of crosscaps on the quadrangulated surface by any amount we want. �

Since the same argument works for the torus and the Klein bottle with little change, we shall
prove Theorems 1.3 and 1.4 simultaneously.

Proof of Theorems 1.3 and 1.4. First take n copies of the graph of the octahedron, say
G1, . . . ,Gn with n � 2 and carry out a slit-flip sum using the useful corner 342 in Gi and 015 in
Gi+1 for i = 1, . . . , n − 1. This results in a graph G1 ‡ · · · ‡ Gn that triangulates the sphere and
quadrangulates the orientable closed surface of genus n. The pair of 015 in G1 and 342 (or 324)
in Gn is of type (+,+) while the pair of 015 in G1 and 423 (or 243) in Gn is of type (+,−).
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Performing the same deformation at these corners as in a slit-flip sum, we obtain two triangula-
tions Tn and T̃n on the torus (or the Klein bottle), the graphs of them quadrangulate the orientable
closed surface of genus n+ 1 and the nonorientable closed surface of genus 2(n+ 1). Both these
surfaces have Euler characteristic 2 − 2(n + 1) � 4. We can add a crosscap to decrease the Euler
characteristic by 1 since G1 ‡ · · · ‡ Gn has useful corners by Lemma 3.2. �
5. General cases

We divide Theorem 1.5 into four statements depending on the orientability of two closed
surfaces that a graph triangulates and quadrangulates.

Theorem 5.1. Given two orientable closed surfaces F1 and F2 with 2χ(F1) − χ(F2) � 4, there
exists a graph that triangulates F1 and quadrangulates F2.

Proof. We use the triangulation T2 on the torus constructed in the proof of Theorem 1.3. This
graph quadrangulates the orientable closed surface of genus 3 and has two useful corners. By
Lemma 3.2, we can repeat adding slit-flip handles as we like. Repeating this g1 − 1 times, we
obtain the triangulated closed surface F1 of genus g1 while the corresponding quadrangulated
surface has genus 2(g1 −1)+3 = 2g1 +1. Since the genus of the latter can be increased by adding
handles, we can construct a quadrangulation on any closed surface F2 of genus g2 � 2g1 + 1.
This inequality follows from 2χ(F1) − χ(F2) � 4. �
Theorem 5.2. Given an orientable closed surface F1 and a nonorientable closed surface F2 with
2χ(F1) − χ(F2) � 4, then there exists a graph that triangulates F1 and quadrangulates F2.

Proof. This time we use the triangulation T̃2 of the torus constructed in the proof of Theorem 1.3.
This graph quadrangulates the nonorientable closed surface of genus 6. Applying the slit-flip
handle addition to this embedding g1 − 1 times yields a triangulated orientable closed surface
F1 of genus g1 and a quadrangulated nonorientable closed surface F2 of genus 4(g1 − 1) + 6 =
4g1 + 2. By further addition of crosscaps we may increase the genus of F1 to any value k2 >

4g1 + 2. This inequality is equivalent to 2χ(F1) − χ(F2) � 4. �
Theorem 5.3. Given two nonorientable closed surfaces Ḟ1 and Ḟ2 with 2χ(Ḟ1) − χ(Ḟ2) � 4,
then there exists a graph that triangulates Ḟ1 and quadrangulates Ḟ2.

Proof. Let k1 and k2 be the genus of Ḟ1 and Ḟ2, respectively. First suppose that k1 = 2g1 + 1
with g1 � 0. Adding a slit-flip handle to the right-hand side in Fig. 2 g1 times, we obtain a
triangulated nonorientable closed surface of genus 2g1 + 1 and a quadrangulated one of genus
4g1 + 4 = 2k1 + 2. Adding crosscaps, we can increase the genus of the latter to be any value
k2 � 2k1 + 2. This inequality is equivalent to

2χ(Ḟ1) − χ(Ḟ2) � 4.

Now suppose that k1 = 2g1 > 0. By Theorem 1.4, we have a triangulation T̃2 on the Klein
bottle the graph of which quadrangulates the nonorientable closed surface of genus 6. Adding
slit-flip handles g1 − 1 times, we obtain a triangulation on the nonorientable closed surface Ḟ1
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of genus k1 and a quadrangulation on Ḟ2 of genus 2(g1 − 1)+ 6 = k1 + 4. Adding crosscaps, we
can increase the genus of Ḟ2 to be any value k2 � k1 + 4. This inequality is equivalent to

χ(Ḟ1) − χ(Ḟ2) � 4.

Since this inequality is implied by the one given in the previous case, the theorem follows. �
Theorem 5.4. Given a nonorientable closed surface Ḟ1 and an orientable closed surface Ḟ2 with
2χ(Ḟ1) − χ(Ḟ2) � 4, then there exists a graph that triangulates Ḟ1 and quadrangulates Ḟ2.

Proof. Let k1 and g2 be the genus of Ḟ1 and Ḟ2, respectively. If k1 = 2g1 + 1 � 1, then we apply
adding slit-flip handle g1 times to the triangulation on the projective plane given in Fig. 2 and
obtain a triangulation on Ḟ1 of genus k1 and a quadrangulation on Ḟ2 of genus 2g1 + 2 = k1 + 1.
Adding handles, we can increase the genus of Ḟ2 to be any value g2 � k1 + 1. Thus, we have
2χ(Ḟ1) − χ(Ḟ2) � 4.

If k1 = 2g1 � 2, then we use the triangulation T2 on the Klein bottle, constructed in the proof
of Theorem 1.4 so that its graph quadrangulates the orientable closed surface of genus 3. Adding
slit-flip handles g1 − 1 times and then adding handles, we obtain a triangulation on Ḟ1 of genus
k1 and a quadrangulation on Ḟ2 of genus g2 � 2(g1 − 1) + 3 = k1 + 1. Thus, we have the same
inequality as in the previous case. �
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