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Abstract

The independence polynomial of a graph G is the polynomial
∑

A x|A|, summed over all independent
subsets A ⊆ V (G). We prove that if G is clawfree, then all the roots of its independence polynomial are
real. This extends a theorem of Heilmann and Lieb [O.J. Heilmann, E.H. Lieb, Theory of monomer–dimer
systems, Comm. Math. Phys. 25 (1972) 190–232], answering a question posed by Hamidoune [Y.O. Hami-
doune, On the numbers of independent k-sets in a clawfree graph, J. Combin. Theory Ser. B 50 (1990)
241–244] and Stanley [R.P. Stanley, Graph colorings and related symmetric functions: Ideas and applica-
tions, Discrete Math. 193 (1998) 267–286].
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

All graphs in this paper are finite and simple. An independent set in a graph is a set of pairwise
non-adjacent vertices. The independence polynomial of a graph G is the polynomial

I (G,x) =
∑

A

x|A|,

where the sum is over all independent subsets A ⊆ V (G). (See for instance [2–5,8–10,13] for
work on these polynomials.)
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Given a graph H , its line graph L(H) is the graph whose vertex set is the set of edges of H ,
and two vertices are adjacent if they share an end in H . In [12] Heilmann and Lieb proved that if
G is a line graph, then all the roots of I (G,x) are real. This property does not hold for all graphs,
since the independence polynomial of a claw is

1 + 4x + 3x2 + x3

and not all its roots are real (a claw is the graph with vertex set {v1, v2, v3, v4} and three edges
v1v2, v1v3, v1v4).

A graph G is said to be clawfree if no induced subgraph of it is a claw. The main result of
this paper is the following, answering a question of Hamidoune [11] that was later posed as a
conjecture by Stanley [15].

1.1. If G is clawfree then all roots of I (G,x) are real.

Since all line graphs are clawfree, this extends the result of [12].

2. Proof of the main result

Let f1(x), . . . , fk(x) be polynomials in one variable with real coefficients. We say they are
compatible if for all c1, . . . , ck � 0, all the roots of the polynomial

∑k
i=1 cifi(x) are real.

For v ∈ V (G) we denote by N [v] the union of {v} and the set of neighbours of v in G, and for
an induced subgraph H of G let NH [v] = N [v] ∩ V (H). For A ⊆ V (G) we denote by G \ A the
subgraph of G induced on V (G) \ A. Our proof of 1.1 is essentially by induction on the number
of vertices, making use of the following fundamental identity, the proof of which is clear:

2.1. If v is a vertex of a graph G, then I (G,x) = I (G \ {v}, x) + xI (G \ N [v], x).

When we apply this, there is a problem; while we would know inductively that all roots of
G\{v} and G\N [v] are real, how can we deduce that all roots of G are real? It is not true that the
sum of two polynomials with all roots real again has all roots real. The trick is to prove a stronger
statement inductively, that certain pairs of polynomials are compatible. Thus we would know
inductively that all pairs of the appropriate polynomials in the smaller graph are compatible; but
it seems that we have not gained anything, because when we try to apply 2.1, we find that we
need to know that all quadruples of these polynomials are compatible. But there is a general
lemma that if all pairs of certain polynomials are compatible then so are all larger subsets of
them, as we explain next.

If f1(x), . . . , fk(x) are as before, we say they are pairwise compatible if for all i, j ∈
{1, . . . , k}, the polynomials fi(x) and fj (x) are compatible. In this section we assume the truth
of the following lemma, which we prove in Section 3. (This lemma is new as far as we know, but
is closely related to a result of Bartlett, Hollot and Lin [1].)

2.2. Let f1(x), . . . , fk(x) be pairwise compatible polynomials with positive leading coefficients.
Then f1(x), . . . , fk(x) are compatible.

We start with some lemmas. A clique in G is a set of vertices all pairwise adjacent. The
following is a useful extension of 2.1 (again the proof is clear).
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2.3. Let K be a clique of a graph G. Then

I (G,x) = I (G \ K,x) +
∑

k∈K

xI
(
G \ N [k], x)

.

A clique K is simplicial if for every k ∈ K the set N [k] \ K is a clique.

2.4. Let G be a clawfree graph and let K be a simplicial clique in G. Then N [k] \ K is a
simplicial clique in G \ K for all k ∈ K .

Proof. Since K is a simplicial clique, N [k] \ K is a clique for all k ∈ K . Suppose for some
k ∈ K and some n ∈ N [k] \ K , the set N [n] \ (K ∪ N [k]) is not a clique. Let x, y be two non-
adjacent vertices in N [n] \ (K ∪ N [k]). Then {n, k, x, y} induces a claw in G, a contradiction.
This proves 2.4. �

Let us say a graph G is real-rooted if for every induced subgraph H of G, all roots of I (H,x)

are real. We wish to prove that every clawfree graph is real-rooted, and we need some lemmas
about real-rooted graphs.

2.5. Let G be a real-rooted clawfree graph. Then:

(1) for every two simplicial cliques K,L in G, the polynomials I (G \K,x) and I (G \L,x) are
compatible,

(2) for every simplicial clique K , the polynomials I (G,x) and xI (G \ K,x) are compatible.

Proof. We prove both statements simultaneously by induction on |V (G)|. First we prove 2.5(1).
Since G is real-rooted, we may assume that K ∪ L �= ∅. Write H = G \ (K ∪ L). By 2.3 applied
to G \ L and K \ L, we have

I (G \ L,x) = I (H,x) +
∑

v∈K\L
xI

(
H \ NH [v], x)

and similarly

I (G \ K,x) = I (H,x) +
∑

v∈L\K
xI

(
H \ NH [v], x)

.

By 2.2, in order to prove that I (G \ K,x) and I (G \ L,x) are compatible, it is enough to show
that the polynomials

I (H,x), xI
(
H \ NH [v], x)

, xI
(
H \ NH [u], x)

are pairwise compatible for all u,v ∈ K ∪ L, since they all have positive leading coefficients.
Since |V (H)| < |V (G)| and by 2.4, it follows inductively from 2.5(2) that I (H,x) is compatible
with xI (H \ NH [v], x) for v ∈ K ∪ L; and from 2.5(1) that xI (H \ NH [u], x) and xI (H \
NH [v], x) are compatible for all u,v ∈ K ∪ L. This proves 2.5(1).

To prove 2.5(2), let K be a simplicial clique in G. Since G is real-rooted, we may assume that
K �= ∅. By 2.3,

I (G,x) = I (G \ K,x) + x
∑

I
(
G \ N [k], x)

.

k∈K
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By 2.2, to prove that I (G,x) and xI (G \ K,x) are compatible, it is enough to prove that the
polynomials

xI (G \ K,x), I (G \ K,x), xI
(
G \ N [k], x)

, xI
(
G \ N [k′], x)

are pairwise compatible for all k, k′ ∈ K , since they all have positive leading coefficients.
Since G is real-rooted, it follows that the roots of I (G \ K,x) are real, so xI (G \ K,x)

and I (G \ K,x) are compatible. By 2.4 and 2.5(2) (applied inductively to G \ K), I (G \ K,x)

and xI (G \ N [k], x) are compatible for all k ∈ K , and by 2.5(1) with L = ∅, xI (G \ K,x)

and xI (G \ N [k], x) are compatible for all k ∈ K . Inductively by 2.5(1), xI (G \ N [k], x) and
xI (G \ N [k′], x) are compatible for all k, k′ ∈ K . This proves that

xI (G \ K,x), I (G \ K,x), xI
(
G \ N [k], x)

, xI
(
G \ N [k′], x)

are pairwise compatible for all k, k′ ∈ K , and so completes the proof of 2.5(2) and therefore
of 2.5. �

We use 2.5 to prove the following.

2.6. Let G be a clawfree graph, and let v ∈ V (G) such that G \ v is real-rooted. Then the
polynomials I (G \ v, x) and xI (G \ N [v], x) are compatible.

Proof. The proof is by induction on |V (G)|. If v has no neighbours, then by 2.1 I (G\N [v], x) =
I (G \ v, x), and since G \ v is real-rooted, it follows that I (G \ v, x) and xI (G \ N [v], x) are
compatible. We may therefore assume that there is a vertex u adjacent to v. Let H = G\ (N [u]∩
N [v]).

(1) NH [u] and NH [v] are both simplicial cliques in H .

For NH [u] is a clique, since {u,v, x, y} does not induce a claw for x, y ∈ NH [u]. Suppose that for
some w ∈ NH [u] there exist two non-adjacent vertices s, t ∈ NH [w] \ NH [u]. Then {w,u, s, t}
induces a claw in G, a contradiction. So NH [u], and similarly NH [v], is a simplicial clique in H .
This proves (1). By 2.1 applied to G \ {v},

I
(
G \ {v}, x) = I

(
G \ {u,v}, x) + xI

(
G \ N [u], x)

,

so to complete the proof of the theorem, by 2.2 it is enough to show that the polynomials

xI
(
G \ N [v], x)

, I
(
G \ {u,v}, x)

, xI
(
G \ N [u], x)

are pairwise compatible. But the pairs xI (G \ N [v], x), I (G \ {u,v}, x) and xI (G \ N [u], x),
I (G \ {u,v}, x) are compatible by the inductive hypothesis applied, respectively, to the graphs
G \ {u} and G \ {v}; and xI (G \ N [u], x), xI (G \ N [v], x) are compatible by (1) and the first
assertion of 2.5, since I (G\N [u], x) = I (H \NH [u], x) and I (G\N [v], x) = I (H \NH [v], x).
This completes the proof of 2.6. �
Proof of 1.1. We proceed by induction on |V (G)|. We may assume that there exists v ∈ V (G);
and from the inductive hypothesis, G \ {v} is real-rooted. By 2.6, I (G \ {v}, x), xI (G \ N [v], x)

are compatible; and since I (G,x) = I (G \ {v}, x) + xI (G \ N [v], x) by 2.1, it follows that all
roots of I (G,x) are real. This proves 1.1. �
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3. Proof of the lemma

It remains, therefore, to prove 2.2, and that is the goal of this section. We start by proving
some general facts about compatible pairs of polynomials.

3.1. If the polynomials f and g are compatible then so are their derivatives.

Proof. We note that between every two real roots of a polynomial h there is a root of its deriva-
tive h′ (counting according to multiplicity), and so if all roots of h are real then the same holds
for h′. Thus the fact that f and g are compatible implies that their derivatives are compatible.
This proves 3.1. �

If f is a polynomial, we denote its degree by deg(f ).

3.2. If f,g are compatible polynomials with positive leading coefficients then |deg(f ) −
deg(g)| � 1.

Proof. The proof is by induction on max{deg(f ),deg(g)}. Assume first that one of f,g is a
constant function, say f (x) = c. Since the leading coefficient of f is positive, it follows that
c > 0. Then adding a large enough multiple of f to g produces a polynomial with at most one
real root (since the leading coefficient of g is positive). Since the pair f,g is compatible it follows
that deg(g) � 1 and the result holds.

So we may assume that both f and g have degree at least 1. By 3.1 the derivatives f ′ and g′
of f and g respectively are compatible. Both f ′ and g′ have positive leading coefficients and it
follows inductively that

∣∣deg(f ) − deg(g)
∣∣ = ∣∣deg(f ′) − deg(g′)

∣∣ � 1.

This proves 3.2. �
When f (x) is a polynomial, we denote by nf (x) the number of real roots of f (x) that lie

in the interval [x,∞) (counted with their multiplicities). We say that f and g agree at a ∈ 
 if
f (a) and g(a) are either both positive or both negative (and both non-zero).

3.3. If f and g are compatible polynomials that agree at a and b for some a < b ∈ 
, then

nf (b) − nf (a) = ng(b) − ng(a).

Proof. For 0 � t � 1 let pt (x) = tf (x) + (1 − t)g(x). Since f and g agree at a and b, for all t

the polynomial pt(x) has no roots on the boundary of the interval [a, b]. For 0 � t � 1 the roots
of pt move continuously with t in the complex plane, and therefore in the real line, since all
the roots of pt are real because f and g are compatible. In particular, the number of roots of
pt(x) in the open interval (a, b) is independent of t . But the polynomials p0(x) and p1(t) have
ng(b) − ng(a) and nf (b) − nf (a) roots respectively in this interval. This proves 3.3. �
3.4. Let f,g be compatible polynomials with positive leading coefficients. Then |nf (x) −
ng(x)| � 1 for all x ∈ 
.
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Proof. The proof is by induction on max{deg(f ),deg(g)}. Since the common roots of f and g

contribute the same amount to nf and ng we may assume that f,g have no common roots by
factoring out the greatest common divisor (the compatibility property is preserved). Suppose that
nf (x0) − ng(x0) � 2 for some x0 ∈ 
. We may assume that x0 is a root of f , and indeed x0 is
the largest root such that nf (x0) − ng(x0) � 2. Since x0 is a root of f , it is not a root of g.

First we claim that nf (x0)−ng(x0) = 2. Assume for a contradiction that nf (x0)−ng(x0) � 3.
Since between every two real roots of a polynomial there is a real root of its derivative, it follows
that nf ′(x0) = nf (x0) − 1 and ng′(x0) � ng(x0). Thus

nf ′(x0) − ng′(x0) � nf (x0) − ng(x0) − 1 � 2,

contrary to the inductive hypothesis. This proves that nf (x0) − ng(x0) = 2.
Choose y1 strictly larger than all roots of f and all roots of g. Since f and g both have

positive leading coefficients, it follows that f and g agree at y1. For the same reason and since
nf (x0) − ng(x0) is even, we can choose y2 < x0 such that f and g agree at y2 and have no roots
in the interval [y2, x0). But now

nf (y2) − nf (y1) �= ng(y2) − ng(y1),

contrary to 3.3. This proves 3.4. �
For two monotone non-increasing sequences (a1, . . . , am) and (b1, . . . , bn) of real numbers,

we say that the first interleaves the second if n � m � n + 1 and (a1, b1, a2, b2, . . .) is another
monotone non-increasing sequence. (This does not imply that the second sequence interleaves
the first.)

If f is a polynomial of degree d with all roots real, let r1 � · · · � rd be the roots of f . We
call the sequence (r1, . . . , rd) the root sequence of f . Let f1(x), . . . , fk(x) be polynomials with
positive leading coefficients and all roots real. A common interleaver for f1(x), . . . , fk(x) is a
sequence that interleaves the root sequence of each fi .

We observe the following (the proof is easy and we leave it to the reader).

3.5. Let f (x), g(x) be polynomials with all roots real. They have a common interleaver if and
only if |nf (x) − ng(x)| � 1 for all x ∈ 
.

We now complete the proof of 2.2, by proving it in the strengthened form below. If k = 2 and
f1, f2 have the same degree, this was essentially proved by Dedieu [6,7] (thanks to Alan Sokal
for bringing this reference to our attention).

3.6. Let f1(x), . . . , fk(x) be polynomials with positive leading coefficients and all roots real. The
following four statements are equivalent:

(1) f1, . . . , fk are pairwise compatible,
(2) for all s, t such that 1 � s < t � k, the polynomials fs, ft have a common interleaver,
(3) f1, . . . , fk have a common interleaver,
(4) f1, . . . , fk are compatible.

Proof. For 1 � i � k let di = deg(fi) and let d = max1�i�k di . Let (ri
1, . . . , r

i
di

) be the root

sequence of fi . If di � 1, let I i
1, . . . , I

i
di+1 be the intervals of 
 defined as follows: I i

1 =
[ri ,∞), I i = (−∞, ri ] and I i = [ri , ri ] for 2 � j � di . If di = 0 we set I i = 
. We note
1 di+1 di j j j−1 1
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that a sequence (p1, . . . , pm) interleaves the root sequence of fi if and only if di − 1 � m � di

and pj ∈ I i
j for i � j � m.

3.6(1) implies 3.6(2). For let 1 � s < t � k and let d∗ = min{ds, dt }. By 3.2 d∗ �
max{ds, dt } − 1. It is enough to prove that for 1 � j � d∗ + 1 the intersection I s

j ∩ I t
j is non-

empty. Suppose not, and let j be minimum such that I s
j ∩ I t

j = ∅. Since the leading coefficients
of both fs and ft are positive, j � 2. From the symmetry we may assume that rs

j−1 � rt
j−1, and

so rt
j exists and rs

j−1 < rt
j . But then nft (r

t
j ) = j and nfs (r

t
j ) � j −2, contrary to 3.4. This proves

that 3.6(1) implies 3.6(2).
3.6(2) implies 3.6(3). For it follows from 3.6(2) that for all s, t ∈ {1, . . . , k} and all j ∈

{1, . . . , d}, the intersection I s
j ∩ I t

j is non-empty. From the Helly property of linear intervals

we deduce that
⋂k

i=1 I i
j �= ∅ for all j ∈ {1, . . . , d}. For 1 � j � d choose pj ∈ ⋂k

i=1 I i
j ; then

(p1, . . . , pd) is a common interleaver for f1, . . . , fk . This proves that 3.6(2) implies 3.6(3).
3.6(3) implies 3.6(4). The proof is by induction on d . We may assume that no x0 ∈ 
 is a root

of all f1, . . . , fk , for otherwise the theorem follows from the inductive hypothesis applied to the
family fi/(x − x0) (1 � i � k), which still has a common interleaver by 3.5. Let c1, . . . , ck be
non-negative real numbers, and let f = ∑k

i=1 cifi . We need to prove that all the roots of f are
real. We may assume that c1, . . . , ck are all positive.

Since f1, . . . , fk have a common interleaver, it follows that d − 1 � di � d for all 1 � i � k,
and so we may assume that there is a common interleaver with d terms, say (p1, . . . , pd).

Let 1 � i � k. Since the leading coefficient of fi is positive and (p1, . . . , pd) interleaves the
root sequence of fi , it follows that for all j ∈ {1, . . . , d}, fi(pj ) � 0 if j is odd and fi(pj ) � 0
if j is even. Since no pj is a common root of f1, . . . , fk , it follows that for 1 � j � d we have
f (pj ) > 0 if j is odd and f (pj ) < 0 if j is even.

So for 1 � j < d there exists rj with pj+1 < rj < pj such that f (rj ) = 0. Since f is a real
polynomial of degree d (and therefore has an even number of non-real roots), it follows that all
the roots of f are real. This proves that 3.6(3) implies 3.6(4).

Since 3.6(4) clearly implies 3.6(1), this completes the proof of 3.6. �
The equivalence of 3.6(1) and 3.6(4) is closely related to a result of Bartlett, Hollot and Lin [1].

They prove the same assertion (indeed, they weaken statement 3.6(1), just requiring the compat-
ibility of all pairs of f1, . . . , fk that are adjacent in the 1-skeleton of the boundary of the convex
hull of f1, . . . , fk); but they require that f1, . . . , fk all have the same degree.

If we remove the hypothesis that the leading coefficients of f1, . . . , fk are all positive, 2.2 is
no longer true. For example, the polynomials x2 − 2x, x2 + 2x,1 − x2 are pairwise compatible,
but their sum does not have all roots real.

It is therefore natural to ask for an analogue of 3.6 without the assumption that the leading
coefficients of the polynomials are all positive. We have already seen that statements 3.6(1) and
3.6(4) are not equivalent, but it is possible that statements 3.6(3) and 3.6(4) are equivalent under
an appropriate modification of the definition of a common interleaver. We have not been able to
decide this.

What if we ask for all linear combinations of the polynomials to have all roots real, instead
of just all non-negative linear combinations? Let us say that a set f1, . . . , fk of polynomials is
strongly compatible if for all c1, . . . , ck ∈ 
, all the roots of the polynomial

∑k
i=1 cifi(x) are

real. When k = 2, there is an analogue of 3.6; a theorem of Obreschkoff [14] when there are no
common roots, and of Dedieu [6] in general, asserts that f1, f2 are strongly compatible if and
only if their degrees differ by at most one, and the root sequence of one of them interleaves that
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of the other. But there is no similar analogue for general k, because it is easy to see (thanks to
David Moulton for pointing this out to us) that three polynomials are never strongly compatible
unless they are linearly dependent.

Proof (Sketch). If two non-zero polynomials are strongly compatible, then their degrees dif-
fer by at most one; given three linearly independent polynomials f1, f2, f3, where deg(f1) �
deg(f2),deg(f3), there is a non-zero linear combination of them of degree at most deg(f1) − 2;
so this linear combination is not strongly compatible with f1. �
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