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Abstract

We prove that every planar graph with n vertices has at least 2n/9 distinct list-colorings provided every
vertex has at least five available colors.
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1. Introduction

If a graph is 4-list-colorable, then it is easy to see that it has exponentially many 5-list-
colorings. Voigt [7] showed that a planar graph need not be 4-list-colorable. In [4] I proved that
every planar graph is 5-list-colorable, and in the present paper I prove that it has exponentially
many 5-list-colorings. Clearly, there are no more than 5n distinct list-colorings if every vertex has
precisely 5 available colors, so an exponential function is the best we can hope for. However, our
exponential function is probably not the best possible. The following questions arise naturally
from the result of the present paper.

Problem 1. Does there exist a positive constant c0 such that every planar graph with n vertices
has at least c0 · 2n distinct 5-list-colorings?

In case of an affirmative answer we may go even further in two different directions.

Problem 2. Does every planar graph with n vertices have at least 60 · 2n−3 distinct 5-list-
colorings?
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Birkhoff and Lewis [1] answered this in the affirmative for ordinary 5-colorings. It is best
possible because of the planar triangulations obtained from a triangle by successively adding
vertices of degree 3.

Problem 3. Let S be a surface of Euler genus g. Does there exist a positive constant cg such that
every graph on S which is 5-list-colorable and which has n vertices has at least cg · 2n distinct
L-colorings for each list assignment L with five colors in each list?

For ordinary 5-colorings, this was proved in [5]. We also repeat a problem raised in [6].

Problem 4. Does every planar triangle-free graph with n vertices have exponentially many dis-
tinct 3-colorings?

In [6] this was verified for planar graphs of girth 5, even for the list-color version.
The notation and terminology are the same as in [2–4]. For the reader’s convenience we repeat

the most important definitions.
Let G be a graph. For every vertex v of G, let L(v) be a list of colors which we call available

colors. An L-coloring of G is a coloring of the vertex set such that every vertex v receives a
color from L(v), and neighbors always have distinct colors. If it is clear what L is, we just call
it a list-coloring of G. If every list L(v) has at least k colors, we call it a k-list-coloring of G.
We say that G is k-list-colorable if it has a k-list-coloring for every possible choice of the list
function L (with at least k colors in every list). We shall consider planar graphs only. If C is a
cycle in a plane graph G, then int(C) denotes the set of vertices and edges in the interior of C.
Int(C) denotes the graph C ∪ int(C). ext(C) and Ext(C) are defined analogously. If ext(C) is
empty, then C is the outer cycle of G. If, in addition, every face (region) inside C is bounded by
a triangle, then G is a near-triangulation. The proof of the 5-list-color theorem in [4] is about
near-triangulations. For technical reasons two vertices on the outer cycle are precolored, and all
other vertices on the outer cycle have only three available colors. Then a short argument shows
that a list-coloring exists. The argument is tight in the sense that there is no choice for the color
of the vertex which is deleted in the inductive argument. And simple examples of outerplanar
near-triangulations show that indeed there need not be more than one list-coloring. To overcome
that obstacle, we shall extend the result in [4] to a result where three vertices on the outer cycle
are precolored. In that case a list-coloring need not exist. But, we characterize the exceptions,
and we use that to provide a new proof of the 5-list color theorem which allows enough flexibility
to imply exponentially many list-colorings.

2. 5-List-colorings with precolored vertices

Let G be a plane near-triangulation with outer cycle C: v1v2 · · ·vkv1. We say that G is 3-
extendable with respect to the path vkv1v2 if the following statement holds:

For each vertex v in G, let L(v) be a list of colors. Assume that the vertices vk, v1, v2 are
precolored, that is, if v is one of vk, v1, v2, then L(v) consists of one color only. If v is one
of v3, v4, . . . , vk−1, then L(v) consists of at least three colors. Otherwise, L(v) has at least five
colors. Then G has an L-coloring.

2-Extendability is defined analogously. The result in [4] can be phrased as follows.
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Theorem 1. Any near-triangulation is 2-extendable with respect to any path (on the outer cycle)
with two vertices.

This implies the following.

Theorem 2. Let H be a near-triangulation with prescribed and precolored outer cycle C of
length at most 5. For each vertex v in int(C), let L(v) be a list of at least five colors. Then H

has an L-coloring unless C has length 5, and int(C) has a vertex joined to all vertices of C, and
L(v) consists of the colors of C.

Proof. The proof is by induction on the number of vertices of H . If no vertex of int(C) is
joined to more than two vertices of C, then we consider the subgraph G induced by the ver-
tices in int(C). We delete from each list the colors of the neighbors in C. By Theorem 1, G is
list-colorable with these reduced lists. (If G is not 2-connected, then we color the blocks of G

successively.) So we may assume that some vertex v in int(C) has at least three neighbors in C.
If it is not possible to color v, then H satisfies the conclusion of Theorem 2. On the other hand, if
it is possible to color v, then we color it and complete the proof by induction. If the exceptional
case in Theorem 2 occurs for the reduced graph (that is, there is a colored cycle whose coloring
cannot be extended to its interior), then v has precisely three consecutive neighbors in C, and
we therefore have two possibilities for coloring v. So, the exceptional case in Theorem 2 can be
avoided. �
3. Generalized wheels

In the next section we extend Theorem 1 to 3-extendability.
First we describe some near-triangulations which are not 3-extendable. If the interior of the

above near-triangulation G consists of the edges v1v3, v1v4, . . . , v1vk−1, then we call G a broken
wheel. We also call it a generalized wheel. We call v1 its major vertex and vkv1v2 its principal
path. We also say that vkv1, v1v2 are the principal edges and that vk, v2 are the principal neigh-
bors of v1. If k � 4, then this generalized wheel is clearly not 3-extendable with respect to its
principal path. If the interior of the above near-triangulation G consists of a vertex u and all edges
from u to the outer cycle, then G is a wheel. We also call that a generalized wheel, and again, we
call v1 its major vertex and vkv1v2 its principal path. It is easy to see that this generalized wheel
is not 3-extendable with respect to its principal path when k is odd, k � 5. Finally, if G1,G2
are generalized wheels and we identify a principal edge in one of them with a principal edge in
the other (in such a way that their major vertices are identified), then the resulting graph is also
called a generalized wheel. Its two principal edges are those which are principal edges in one of
the graphs but not part of the identification above. Again, it is easy to see that this generalized
wheel is not 3-extendable with respect to its principal path unless it contains a vertex of even
degree or degree 3 inside the outer cycle. As we shall not use the fact that a generalized wheel
needs not be 3-extendable with respect to its principal path, we leave the proof for the reader.
Instead, we shall now prove the converse, namely that a near-triangulation is 3-extendable pro-
vided it does not contain a generalized wheel as a spanning subgraph. For that we need some
technical lemmas.

In Lemmas 1–3 below we refer to the near-triangulation G whose outer cycle C is described
above.
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Lemma 1. Assume that G is a generalized wheel but not a broken wheel. Assume fur-
ther that each vertex in int(C) has at least five available colors and that each of the ver-
tices v3, v4, . . . , vk−1 has at least three available colors. Then there is at most one coloring
of vk, v1, v2 which cannot be extended to a list-coloring of G.

Proof. We prove the lemma by induction on k. Consider first the case where G is a wheel.
Let v be the vertex not in C. Suppose vk, v1, v2 are colored c(vk), c(v1), c(v2), respectively,
and that this coloring cannot be extended to G. Then L(v3) \ {c(v2)} consists of precisely two
colors, say α,β , since otherwise we can color v and extend that coloring to G by applying The-
orem 1 to G − v1 − v2. Similarly, L(vk−1) \ {c(vk)} consists of precisely two colors, say γ, δ.
If L(v) \ {c(vk), c(v1), c(v2)} has a color ε distinct from α,β , then we can give v that color,
we give v3 the list {α,β, ε}, and then extend the resulting coloring to G by applying Theorem 1
to G − v1 − v2, a contradiction. So we may assume that L(v) \ {c(vk), c(v1), c(v2)} = {α,β}.
In particular, c(vk), c(v1), c(v2) are distinct. Similarly, L(v) \ {c(vk), c(v1), c(v2)} = {γ, δ}.
Thus L(v3),L(vk−1) have precisely two colors in common, c(v2) is the unique color of
L(v3) \ L(vk−1), and c(vk) is the unique color of L(vk−1) \ L(v3), and c(v1) is the unique
color of L(v) \ (L(v3) ∪ L(vk−1)). This shows that the coloring of vk, v1, v2 is unique.

Consider next the case where v1 is joined to v3. If there are two distinct colorings of vk, v1, v2

that cannot be extended to G, then each of these can be extended to v3, and we thereby get at least
two distinct colorings of vk, v1, v3 that cannot be extended to G, a contradiction to the induction
hypothesis.

We use a similar argument if v1 is joined to vk−1. So we assume that v1 is joined to none
of v3, vk−1.

Assume finally that v1 is joined to a vertex vi , 4 � i � k − 2. The edge v1vi divides G into
two generalized wheels G1,G2 none of which is a broken wheel. Suppose there is a coloring
c(vk), c(v1), c(v2) of vk, v1, v2, respectively, that cannot be extended to G. Then L(vi) \ {c(v1)}
has precisely two colors α,β . For if there were three such colors, then we can apply Theorem 1
to G1 where the three available colors of vi consists of c(v1) and two of the three colors in
L(vi) \ {c(v1)}. This implies that G1 can be colored such that there are two possible choices for
the color of vi . Similarly for G2. But then the color of vi can be chosen such that the coloring
of vk, v1, v2, vi can be extended to G, a contradiction.

By Theorem 1, the coloring of vk, v1, v2 can be extended to Gi for i = 1,2. We may as-
sume that vi has the color α in the coloring of G1 and the color β in the coloring of G2.
Thus c(vk), c(v1), α is the unique coloring of vk, v1, vi that cannot be extended to G2, and
β, c(v1), c(v2) is the unique coloring of vi, v1, v2 that cannot be extended to G1. This completes
the proof of Lemma 1. �
Lemma 2. Assume that G is a generalized wheel. Assume further that each vertex in int(C)

has at least five available colors and that each of the vertices v3, v4, . . . , vk−1 has at least three
available colors. Assume that vk, v1, v2 are precolored. Let e be any edge not on the outer cycle.
Then G − e has a list coloring.

Lemma 2 can be proved by induction on the number of edges from v1 to the outer cycle. The
proof is easily reduced to the case where G is a wheel or the union of two wheels where e is their
common edge. We leave the details for the reader.



C. Thomassen / Journal of Combinatorial Theory, Series B 97 (2007) 571–583 575
Lemma 3. Assume that the interior of C has precisely two vertices u,v, and there exists a
natural number i, where 3 � i � k − 1, such that u is joined to v, v1, v2, . . . , vi , and v is joined
to u,vi, . . . , vk, v1. Then G is 3-extendable with respect to the path vkv1v2.

Proof. We give u a color α such that L(v3) \ {c(v2), α} has at least two colors. If i = k − 1, then
we color vk−1, vk−2, . . . , v3, v in that order. So assume that i � k − 2 and, similarly, i � 4.

If it is now possible to color v such that vi still has two available colors, then it is easy to
complete the coloring by coloring v, vk−1, vk−2, . . . , v3 in that order. So we may assume that
such a coloring of v is not possible. That is, after u has received color α, both v and vi have
the same two available colors, say β,γ . So before coloring u, both v and vi have the same
three available colors, namely α,β, γ . By a similar argument, u,vi have the same three available
colors. Again, we give u the color α, and we give v the color β . If β is not in L(vk−1), then we
color vi, vi+1, . . . , vi−1, . . . . So we may assume that β,γ are the only available colors at vk−1
distinct from the color of vk .

Again, we give u the color α, we give v the color β , and we color vk−1, vk−2, . . . , vi+1. If
this coloring can be extended to vi , it is easy to complete the coloring. So we may assume that
vi+1 has color γ . We now try another coloring. We give v the color α, we give u the color γ ,
and we color v3, v4, . . . , vi−1. We may assume that this cannot be extended to vi , that is, vi−1
has color β . Now we keep the colors of v3, v4, . . . , vi−1, vi+1, . . . , vk−1. And we give vi, v,u the
colors α,β, γ , respectively.

This completes the proof of Lemma 3. �
4. 3-Extendability

We now characterize the near-triangulations that are not 3-extendable.

Theorem 3. Let G be a plane near-triangulation with outer cycle C: v1v2 · · ·vkv1. For each
vertex v in G, let L(v) be a list of colors. Assume that the vertices vk, v1, v2 are precolored, that
is, if v is one of vk, v1, v2, then L(v) consists of one color only. If v is one of v3, v4, . . . , vk−1,
then L(v) consists of at least three colors. Otherwise, L(v) has at least five colors. Then G has an
L-coloring unless G contains a subgraph G′ which is a generalized wheel whose principal path
is vkv1v2, and all vertices on the outer cycle of G′ are on C and have precisely three available
colors.

Proof. The proof is by induction on the number of vertices of G. For k � 5, Theorem 3 follows
from Theorem 2. So assume that k > 5. Suppose (reductio ad absurdum) that the theorem is false,
and let G be a smallest counterexample.

Claim 1. C has no chord.

Proof. Suppose (reductio ad absurdum) that vivj is a chord of C, where 1 � i < j � k. Then
vivj divides G into near-triangulations G1,G2, respectively. If G2, say, does not contain v1, then
any L-coloring of vi, vj can be extended to G2, by Theorem 1. Therefore G1 has no L-coloring.
Now we apply the induction hypothesis to G1 and obtain a contradiction. So assume that i = 1.

By Theorem 1, G2 has an L-coloring. That coloring cannot be extended to G1. The induction
hypothesis implies that G1 satisfies the conclusion of Theorem 3. A similar argument shows
that G2 satisfies the conclusion of Theorem 3. It only remains to be proved that L(vi) has only
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three available colors. But, if L(vi) \ {c(v1)} has a subset consisting of three colors, then, by
Theorem 1, each of G1,G2 can be list-colored, and the color of vi can be chosen in two distinct
ways (among these three colors) for each of G1,G2. Hence G can be L-colored, a contradiction
which proves Claim 1. �
Claim 2. G has no separating triangle and no separating 4-cycle.

Proof. Suppose (reductio ad absurdum) that G has a separating cycle C′ of length 3 or 4. We
consider the case where C′ has length 4. (The case where C′ has length 3 is similar and easier.)
Replace int(C′) by a single edge e, say, and denote the resulting graph by G′. If G′ can be list-
colored, then so can G, by Theorem 2. So we may assume that G′ cannot be list-colored. Then G′
contains a generalized wheel by the induction hypothesis. This generalized wheel contains e

because we assume that G does not contain such a generalized wheel. If we delete the edge e

from G′, then the resulting graph can be list-colored by Lemma 2. By Theorem 2, G can be
list-colored, a contradiction which proves Claim 2. �
Claim 3. If u is a vertex in int(C) which is joined to both of vi, vj where 2 � i � j − 2 � k − 2,
then u is joined to each of vi, vi+1, . . . , vj .

Proof. Let C′ be the cycle uvivi+1 · · ·vju. Suppose (reductio ad absurdum) that Int(C′) is not a
broken wheel. We apply the induction hypothesis, first to Ext(C′) and then to Int(C′). If Int(C′)
is a generalized wheel, then, by Lemma 1, there is at most one coloring of its principal path that
cannot be extended to Int(C′). Before we apply the induction hypothesis to Ext(C′), we delete
from L(u) the color u in the above mentioned coloring of the principal path of Int(C′). The
resulting list-coloring of G gives a contradiction which proves Claim 3. �
Claim 4. G has no vertex u in int(C) which is joined to both of v2, vk .

Proof. Suppose (reductio ad absurdum) that some vertex u in int(C) is joined to both of v2, vk .
By Claim 3, u is joined to all vertices of C except possibly v1. However, Claim 2 implies that u

is joined to v1, too. Hence G is a wheel. If some vertex of C has more than three available colors,
then it is easy to list-color G. This contradiction proves Claim 4. �
Claim 5. v3 has degree at least 4.

Proof. Suppose (reductio ad absurdum) that v3 has degree at most 3. By Claim 1, v3 has degree
precisely 3, and G has a vertex u in int(C) joined to v2, v3, v4. Let i be the largest number such
that u is joined to vi . The path v2uvi divides G into two near-triangulations G1,G2 where G1
contains v1. By Claims 2, 3, G2 is a broken wheel. By Claim 4, i < k.

Now we use the argument of the proof of Theorem 1 in [4]. We delete from L(u) two colors
of L(v3)\L(v2) and denote the new list assignment of G−v3 by L′. We may assume that G1 has
no L′-coloring. For otherwise, that coloring could be extended to G − v3 and hence also to G.
Therefore the induction hypothesis implies that G1 contains a generalized wheel. By Claims 1, 2,
G1 is a generalized wheel.

As C is chordless, by Claim 1, there is a vertex w in int(C) which is joined to vk, vk−1, . . . ,

vi, u, v1. By Claim 4, w is not joined to v2. Then u is joined to v1. But then Lemma 3 implies
that G has an L-coloring, a contradiction which proves Claim 5. �
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By a similar argument we get

Claim 6. vk−1 has degree at least 4.

We now claim that

Claim 7. v3 and vk−1 have a common neighbor in int(C).

Proof. Suppose (reductio ad absurdum) that Claim 7 is false. Let v2, u1, . . . , uq, v4 be the neigh-
bors of v3 in clockwise order. Then q � 2, by Claim 5. There is a similar neighborhood around
vk−1. Let uivj be the unique edge such that i is minimum and j is maximum. By Claim 3, i = q ,
and j � k − 2. As in the proof of Claim 5 we let L′ be obtained from L by deleting two colors
of L(v3)\L(v2) from each neighbor of v3 in int(C). Now G−v3 does not satisfy the conclusion
of Theorem 3 because vk−1 has two neighbors in int(C) joined by an edge, and a generalized
wheel does not have that property. (Note that the generalized wheel above must contain vk−1 be-
cause j �= k.) Therefore G−v3 has an L′-coloring, and that can be extended to G, a contradiction
which proves Claim 7. �

We are now ready for the final contradiction. As in the proof of Claim 7, we let v2, u1, . . . ,

uq, v4 be the neighbors of v3 in clockwise order. Now Claims 2, 3, 7 imply that uq is joined to
v3, v4, . . . , vk−1. By Claim 3, vk is not joined to any of u1, . . . , uq−1, and by Claims 2, 6, vk is
not joined to uq .

As in the proof of Claim 7, we define L′ and conclude that G − v3 has no L′-coloring. There-
fore there is no L′-coloring of the cycle v1v2u1 · · ·uqvk−1vkv1 and its interior. By the induction
hypothesis, that graph contains a generalized wheel, and by Claim 1 it follows that there is a
vertex w in int(C) joined to uq, vk−1, vk, v1. By Claim 4, w is not joined to v2.

We repeat the above argument considering vk−1 instead of v3. Hence q = 2, and u1 is joined
to v1.

By Claim 3, the cycle u2v3v4 · · ·vk−1u2 together with its interior is a broken wheel. By
Claim 2, G contains the edge u1w. (Note that G cannot contain the edge u2v1 because of
Claim 2.)

We may assume that L(v3) \ {c(v2)} has precisely two colors and that L(v4) has precisely
three colors since otherwise we just delete some colors from L(v3),L(v4). If L(v4) intersects
L(v3) \ {c(v2)}, we give u2 a color not in any of these sets. Otherwise, we give u2 any available
color not in L(v3) \ {c(v2)}. Then we color vk−1,w,u1, v3, vk−2, vk−3, . . . , v4.

This contradiction completes the proof of Theorem 3. �
5. Further list-color properties of generalized wheels

Lemma 4. Let G be a generalized wheel. Assume that each vertex in int(C) has at least five
available colors and that each of the vertices v3, v4, . . . , vk has at least three available colors.
Assume that v2 is precolored with color c(v2).

Then it is possible to color vk such that any coloring of v1 can be extended to G.

Proof. We prove Lemma 4 by induction on the number of vertices of G.
If G is not a broken wheel, then Lemma 4 follows easily from Lemma 1. So assume that G

is a broken wheel. In particular, v1 is joined to v3. Let α,β be two colors in L(v3) \ {c(v2)}.
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Let γ, δ, ε be three colors in L(vk). Suppose (reductio ad absurdum) that, for each of these three
colors it is possible to color v1 such that the coloring cannot be extended to G. The color at
v1 must be one of α,β since otherwise, the coloring can be extended by Theorem 1 applied to
G − v2. So for two of the colors γ, δ, ε, say γ, δ, it is the same color, say α, which is used at v1.
But now we get a contradiction to Theorem 1 applied to G, where v1 has color α, and vk has the
available colors γ, δ,α.

This completes the proof of Lemma 4. �
We now define a generalized wheel string as follows.
Let G1,G2, . . . ,Gm be generalized wheels. (In particular, some of them may be triangles.)

Identify a principal neighbor of the major vertex in G1 with a principal neighbor of the major
vertex in G2. Identify the other principal neighbor of the major vertex in G2 with a principal
neighbor of the major vertex in G3, etc. In other words, each principal neighbor of the major
vertex in Gi has been identified with precisely one neighbor of the major vertex in Gi−1 or
Gi+1, i = 2,3, . . . ,m − 1. One principal neighbor of the major vertex in G1 (respectively Gm)
has not been identified with any other vertex. We call these the two clean vertices. If each of the
graphs G1,G2, . . . ,Gm is a broken wheel, then G is a broken wheel string.

Lemma 5. Let G be a generalized wheel string. Assume further that each vertex not on the outer
face boundary has at least five available colors and that each non-clean vertex on the outer
face boundary has at least three available colors. Assume that the two clean vertices have two
available colors each. Then it is possible to color the two clean vertices and all the cutvertices
of G such that any coloring of the major vertices can be extended to G.

Proof. We prove Lemma 5 by induction on the number of vertices of G. Suppose (reductio ad
absurdum) that G is a smallest counterexample.

Consider first the case where m � 2. Let x (respectively y) be the clean vertex in G1 (re-
spectively Gm). Let z be the common vertex of G1 and G2. Assume that L(z) = {α,β, γ }. We
now apply the induction hypothesis to G1. We may assume that x, z can be colored such that
the conclusion of Lemma 5 holds. Assume the color of z is α. Then we again apply the in-
duction hypothesis to G1 but now we only allow colors β,γ at z. So the coloring of x, z can
be chosen in two ways in which z has two distinct colors. Applying the induction hypothesis
to G2 ∪ G3 ∪ · · · ∪ Gm there are two distinct colorings of z, y (with z getting distinct colors)
such that the conclusion of Lemma 5 holds. Now we let z receive a color that appears in both a
coloring of x, z and a coloring of y, z. So we may assume that m = 1.

We use the same notation as in the definition of a generalized wheel. Let x = v2, y = vk be the
clean vertices in G1 = G. Let L(v2) = {α,β}. We may assume that G is a broken wheel since
otherwise, we apply Lemma 1. Then we may assume that L(v3) = {α,β, γ } since otherwise
we give v2 a color not in L(v3) and we give vk any available color and complete the proof by
applying Theorem 1 to G − v2 (no matter what the color of v1 is). Now, there are four possible
ways of coloring v2, vk . We may assume that none of them works. In other words, for each of
those four colorings, it is possible to color v1 such that the resulting coloring cannot be extended
to G. The color of v1 must be a color in L(v3) = {α,β, γ } since otherwise, the coloring can be
extended by applying Theorem 1 to G − v2. So, for two of the colorings of v2, vk , the color at
v1 is the same, and that color must be γ . For if it was β , say, then v2 would have the color α in
the above two colorings of v2, vk but that would contradict Theorem 1 applied to G with v2, v1
colored α,β , respectively. So we may assume that L(vk) = {α′, β ′} and that the colorings α,β ′, γ
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and β,α′, γ of v2, vk, v1, respectively cannot be extended to G. We now try the coloring α,α′
of v2, vk , respectively. The color at v1 which prevents the extension must be β . (For, if it was γ ,
then we would get a contradiction to Theorem 1 with v1, v2 being precolored.) If v2, vk, v1 are
colored such that there is no list-color-extension to G, then the color of v1 must be present in
all lists of the uncolored vertices. So all these lists must contain β,γ . Since we can interchange
between β,α, all the lists with three colors must be the same, namely {α,β, γ }. They must also
equal {α′, β ′, γ }. So v2 and vk have the same available colors, namely α,β . But then one of
the above-mentioned colorings α,β ′, γ or α,α′, β of v2, vk, v1 will work, a contradiction which
proves Lemma 5. �
6. Exponentially many 5-list-colorings of planar graphs

In this section we prove the main result.

Theorem 4. Let G be a plane near-triangulation with outer cycle C: v1v2 · · ·vkv1. For each
vertex v in G, let L(v) be a list of colors. Assume that the vertices vk, v1, v2 or the vertices
v1, v2 are precolored, that is, if v is one of vk, v1, v2 (respectively v1, v2), then L(v) consists
of one color only. If v is one of v3, v4, . . . , vk−1 (respectively v3, v4, . . . , vk), then L(v) consists
of at least three colors. Otherwise, L(v) has at least five colors. Let n denote the number of
non-precolored vertices, and let r denote the number of vertices with precisely three available
colors. Assume that G has an L-coloring. Then the number of distinct L-colorings of G is at
least 2n/9−r/3, unless G has three precolored vertices and also contains a vertex with precisely
four available colors which is joined to the three precolored vertices and has only one available
color distinct from the colors of the three precolored vertices.

Proof. The proof is by induction on n. It is easy to verify the statement if n � 1 so we proceed
to the induction step. Let f denote the number of vertices with precisely four available colors.

We assume that G is a counterexample such that n is minimum and, subject to this, r is maxi-
mum, and, subject to these conditions, f is minimum. We shall establish a number of properties
of G which will lead to a contradiction. Clearly, n > 3r .

Claim 8. G has no separating triangle.

Proof. Suppose (reductio ad absurdum) that xyzx is a separating triangle which divides G into
near-triangulations G1,G2, respectively, where G1 contains C. Then any L-coloring of x, y, z

can be extended to G2, by Theorem 2. Let n1 be the number of non-precolored vertices in G1,
and let n2 be the number of vertices in G2 − x − y − z. By the minimality of n, G1 has at
least 2n1/9−r/3 distinct list-colorings. Each such coloring has at least 2n2/9 extensions to G2. As
n = n1 + n2, this proves Claim 8. �
Claim 9. C has no chord.

Proof. Suppose (reductio ad absurdum) that vivj is a chord of C, where 1 � i < j � k. Then
vivj divides G into near-triangulations G1,G2, respectively.

Consider first the case where G2, say, does not contain a precolored vertex distinct from
vi, vj . Then any L-coloring of vi, vj can be extended to G2, by Theorem 1. We now obtain a
contradiction by repeating the proof of Claim 8.
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Assume next that i = 1 and that vk is precolored. If each of G1,G2 is a generalized wheel
such that each non-precolored vertex on the outer cycle has precisely three available colors, then
r � n/3, and there is nothing to prove. So assume that G2, say, is not such a generalized wheel.
Moreover, it does not contain such a generalized wheel because G has no separating triangle,
by Claim 8, and every chord of G2, if any, is incident with v1, by the first part of the proof of
Claim 9. Now we repeat the proof of Claim 8. This proves Claim 9 unless G has an edge from
v1 to vk−1. So assume that this edge is present.

Then we color vk−1, and we apply the induction hypothesis to G − vk . If vk−1 has at least
four available colors, then n decreases, but there are at least two choices for the color of vk−1.
So we only need to consider the exceptional case in Theorem 4, namely that G has a vertex with
precisely four available colors joined to vk−1, v1, v2. Then k = 5, and n = 2. If v3 has precisely
three available colors, then r = 1, and there is nothing to prove. On the other hand, if v3 has at
least four available colors, then G has at least two list-colorings. This proves Claim 9. �
Claim 10. Each non-precolored vertex on C has precisely three available colors.

Proof. Suppose (reductio ad absurdum) that Claim 10 is false. Select a set L′ of four available
colors in L(vi) for some vertex vi of C. Let L′′ be one of the four 3-element subsets of L′.
Now replace L(vi) by L′′. By the maximality of r , the new G has at least 2n/9−(r+1)/3 distinct
list-colorings. As L′′ can be chosen in four ways, this results in 4 · 2n/9−(r+1)/3 list-colorings and
each of these is counted three times. Thus we get at least 4 · 2n/9−(r+1)/3/3 distinct L-colorings,
a contradiction which proves Claim 10 unless G is a wheel with precisely two vertices with more
than three available colors. But then either n = r + 2 and r > 0 in which case there is nothing to
prove, or else n = 2, r = 0 in which case G has at least two distinct L-coloring. �
Claim 11. vk is precolored.

Proof. Suppose (reductio ad absurdum) that Claim 11 is false. The coloring of v1, v2 can be
extended to G. We give vk the color in that coloring. This decreases each of n, r by 1 and hence
we obtain a contradiction to the minimality of n. Note that, by Claim 10, the new G cannot have
a vertex with precisely four available colors joined to the three colored vertices. �
Claim 12. If v is a vertex in int(C) joined to vi, vj , where 2 � i < j � k, then v is also joined to
each of vi+1, vi+2, . . . , vj−1.

Proof. Let G1 be the cycle v1v2 · · ·vivvj · · ·vkv1 and its interior, and let G2 be the cycle
vvivi+1 · · ·vjv and its interior. Suppose (reductio ad absurdum) that Claim 12 is false. Then
G2 is not a broken wheel. Then we apply induction first to G1 and then to G2. This proves
Claim 12 unless G2 is a generalized wheel. Then we may assume that G2 is a wheel (by choos-
ing a larger i and a smaller j if necessary). Then there is at most one coloring of vi, v, vj which
cannot be extended to G2 by Lemma 1. Let α be the color of v if such a coloring exists. In that
case we delete α from L(v) before we apply induction to G1. If n′ (respectively r ′) is the number
of non-precolored vertices (respectively non-precolored vertices with precisely three available
colors) of G1, then it is easy to see that n′/9 − r ′/3 � n/9 − r/3. Only one problem remains
when we apply induction to G1, namely that v has precisely four available colors and is joined
to vk, v1, v2. But then we color v (and we have two choices for that), and we apply the induction
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hypothesis to G− v1 unless G− v1 is a generalized wheel. But, if G− v1 is a generalized wheel,
then r > n/3, and there is nothing to prove.

This contradiction proves Claim 12. �
We may assume that

Claim 13. k > 4.

For, if k = 3, then we delete the edge v2v3. And if k = 4, then we color v3 and delete it and
use induction.

We now split the proof up into the following two cases.

Case 1. G does not contain a path v2u1u2 · · ·uqvk with the properties that

(i) each of u1, u2, . . . , uq is a vertex in int(C) joined to at least two vertices of v3, v4, . . . , vk−1,

and

(ii) the cycle v1v2u1u2 · · ·uqvkv1 and its interior form a generalized wheel.

Case 2. G contains a path v2u1u2 · · ·uqvk with the above-mentioned properties (i) and (ii).

We first do Case 1. We shall prove that the number of list-colorings is not just at least 2n/9−r/3

as required in Theorem 4, but even at least 2(n+1)/9−r/3. This will be important in Case 2 which
we shall reduce to Case 1 by deleting an appropriate vertex.

Let R be the set of vertices in int(C) which are joined to at least two vertices of the path
C − vk − v1 − v2. By Claim 12, the union of the path C − vk − v1 − v2 and R and the edges from
R to C form a broken wheel string which we call W .

Subcase 1.1. No two consecutive blocks in W are triangles.
We use Lemma 5 to color all the principal neighbors of the major vertices in W in such a way

that, regardless of how the major vertices in W are colored, the coloring can be extended to W .
This means that we can apply induction to G′ = G − v3 − v4 − · · · − vk−1. Any list-coloring
of G′ can be extended to G. By the induction hypothesis, the number of list-colorings of G′ is
at least 2n′/9−r ′/3 where n′ = n − k + 3 = n − r and r ′ = |R|. The assumption of Subcase 1.1
implies that r ′ � (2r − 1)/3. Hence the number of list-colorings of G′ is at least 2(n+1)/9−r/3.

Subcase 1.2. Two consecutive blocks in W are triangles. Let w1,w2 be two vertices in R each
joined to precisely two consecutive vertices of C. That is, there is a natural number i such that
W contains the blocks w1vi−1viw1 and w2vivi+1w2. We now color successively v3 and the
cutvertices of W with increasing indices until we color vi−1. Whenever we color a cutvertex,
we do it such that the corresponding block of W can be colored regardless of how we color
the major vertex. This is possible by Lemma 4. There are even two possibilities for coloring
such a cutvertex of W whenever the preceding cutvertex is a neighbor of the cutvertex that is
being colored. Then we color successively vk−1 and the cutvertices of W with decreasing indices
until we color vi+1. Again, there are even two possibilities for coloring such a cutvertex of W

whenever the preceding cutvertex is a neighbor of the cutvertex that is being colored. Finally we
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color vi and apply the induction hypothesis to G− v3 − v4 − · · ·− vk−1. Let r ′ be the number of
vertices of R, and let n′ be the number of uncolored vertices of G − v3 − v4 − · · · − vk−1. Then
n′ = n − k + 3 = n − r .

The number of colorings of the vertices of W in the path v2v3 · · ·vk−1 is at least 2t , where t

is the number of blocks of W which are triangles.
For each of these there are at least 2n′/9−r ′/3 list-colorings of G− v3 − v4 −· · ·− vk−1, by the

induction hypothesis. Let s be the number of blocks of W which are not triangles. Then r ′ = s + t

and r � 2s + t + 1. So the total number of colorings of G is at least 2n′/9−r ′/3+t which is greater
than 2(n+1)/9−r/3. This completes the proof in Case 1.

We now do Case 2. Let m be the smallest number such that uq is joined to vm. By Claim 12,
uq is joined to vm, vm+1, . . . , vk (and possibly also to v1). Again, we split up into two cases.

Subcase 2.1. v1 is joined to uq . We select two colors in L(vk−1) distinct from the color of vk .
We delete these colors from L(uq) and we delete the vertex vk−1 from G. Then we color uq and
delete also vk . By the induction hypothesis, if the resulting graph G′ has at least one list-coloring,
then it has at least 2(n−2)/9−(r−1)/3 list-colorings. Each such coloring can be extended to vk−1
and the proof is complete. So assume that G′ has no list-coloring. By Theorem 3, G′ contains a
generalized wheel. Hence either q = 1 in which case G is a wheel by Claim 12, or else q = 2 in
which case G′ − vm+1 − vm+2 − · · · − vk−2 is a wheel. But then n − r � 2 and there is nothing
to prove. �
Subcase 2.2. v1 is not joined to uq . Now G has a vertex w joined to v1, vk, uq,uq−1 by the
definition of a generalized wheel.

If m < k − 2, then we select two colors in L(vk−1) distinct from the color of vk . We delete
these colors from L(uq) and we delete the vertices vk−1, vk−2, . . . , vm+1 from G. Then we use
the induction hypothesis to obtain a contradiction. So assume that m = k − 2.

If q = 1, then both of w and u1 are joined to all of v3, v4, . . . , vk−1 which is impossible. So
assume that q > 1.

If uq−1 is joined to vk−2, then we select two colors in L(vk−1) distinct from the color of vk .
We delete these colors from L(uq) and we delete the vertex vk−1 from G. The resulting graph G′
satisfies Claim 12 and it also satisfies the assumption in Case 1. Therefore we may repeat the
proof in Case 1. The proof in Case 1 gives a number of list-colorings which is larger than what
we need, and therefore the proof in Case 2 is complete. Therefore we may assume that uq−1 is
not joined to vk−2. In this case uq−1 does not satisfy Claim 12, and therefore a different argument
is needed.

Let i be the smallest number such that uq−1 is joined to vi , and let j be the largest number
such that uq−1 is joined to vj . Then j < k − 2. We select two colors in L(vk−1) distinct from the
color of vk . We delete these colors from L(uq) and we delete the vertex vk−1. The path viuq−1uq

divides the resulting graph into two graphs G1,G2, where G1 contains v1. If G2 is a generalized
wheel, then we obtain a contradiction by applying the induction hypothesis to G1 (which has a
smaller r than G has). We also use the fact that, by Lemma 1, there is at most one coloring of the
path viuq−1uq which cannot be extended to G2. We delete the color of uq−1 in this coloring from
L(uq−1) before we apply the induction hypothesis to G1. In this case the number list colorings
of G1 is greater than 2n/9−r/3, and any such coloring can be extended to G2.

On the other hand, if G2 is not a generalized wheel, then we obtain a contradiction by applying
the induction hypothesis first to G1 and then to G2. We lose a multiplicative factor 21/9 because
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of the deleted vertex vk−1. We make up for that before we apply induction to G1 since we can
delete one of the available colors of uq−1 in at least five different ways. In this way we gain a
multiplicative factor 5/4, and now the proof is complete, because 5/4 > 21/9. �
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