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We show that, for every l, the family Fl of circuits of length at least l satisfies the Erdős–
Pósa property, with f(k)=13l(k−1)(k−2)+(2l+3)(k−1), thereby sharpening a result of
C. Thomassen. We obtain as a corollary that graphs without k disjoint circuits of length l
or more have tree-width O(lk2).

1. Introduction

Let G be a graph and F a family of graphs. A transversal of F is a set X
of vertices of G such that G−X contains no member of F . The family F
is said to have the Erdős–Pósa property if there exists a function f :N→N

such that every graph G contains either k vertex-disjoint members of F or
a transversal of F of size at most f(k). This concept originated in [6], where
Erdős and Pósa established the existence of such a function f when F is the
family of circuits. For the rest of the paper, we abbreviate vertex-disjoint to
disjoint.

In this paper, we show that, for every l, the family Fl of circuits of length
at least l satisfies the Erdős–Pósa property, with f(k)=13l(k−1)(k−2)+(2l+
3)(k−1). This sharpens a result of Thomassen [11], who obtained a doubly
exponential bound on f(k). Applying a result of Birmelé [1], we obtain as
a corollary that graphs without k disjoint circuits of length l or more have
tree-width O(lk2).
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We now discuss our results in more detail. Let k and l be integers, with
k ≥ 1 and l ≥ 3. By a long circuit, we mean a circuit of length at least l.
Let G be a graph which does not contain k disjoint long circuits. We shall
bound the size of a minimum transversal of the long circuits of G. The case
k=2 is of particular importance. The proof of this base case is much more
complicated than the inductive argument which allows us to extend it to
arbitrary k. Moreover, it is reasonable to hope that an exact result can be
obtained when k=2. Indeed, we propose:

Conjecture 1. Let G be a graph containing no two disjoint long circuits.
Then there exists a transversal of the long circuits of G of size at most l.

The complete graph on 2l−1 vertices shows that the bound l cannot be
reduced. Lovász [8] proved that it is sharp when l=3. Moreover, he char-
acterized the graphs containing no two disjoint circuits. Birmelé [2] proved
that the bound is also sharp for l=4 and l=5. We obtain the bound 2l+3,
valid for all l≥3.

Theorem 1. Let G be a graph containing no two disjoint long circuits.
Then there exists a transversal of the long circuits of size at most 2l+3.

To obtain a bound in the general case, we delete an appropriate set of
vertices X of bounded size and then apply Theorem 1 to G−X. We prove:

Theorem 2. Let G be a graph containing no k disjoint long circuits.
Then there exists a transversal of the long circuits of size at most
13l(k−1)(k−2)+(2l+3)(k−1).

In Section 2, we show how to derive Theorem 2 from Theorem 1. The
proof of Theorem 1 is given in Section 3. Consequences of our results for
tree-width are given in Section 4. We close the paper with a discussion of
related questions.

To close this section, we note a number of other families which enjoy
the Erdős–Pósa property. Let H be a graph and FH the family of graphs
containing an H-minor. It is easily seen that if H is not planar, FH does
not have the Erdős–Pósa property. Robertson and Seymour [9] proved, on
the other hand, that if H is planar, FH does have the Erdős–Pósa property.
Thomassen [11] showed that the family Fl,m of circuits of length l modulo
m satisfies the Erdős–Pósa property if l=0. On the other hand, if l �=0, this
is not necessarily true, as was shown by Dejter and Neumann-Lara [4]; in
particular, the family of odd circuits do not satisfy the Erdős–Pósa property.
Reed [10] proved, however, that there exists a function f :N→N such that,
for any positive integer k, a graph either contains k odd circuits using each
vertex at most twice or has an odd circuit transversal of size at most f(k).



THE ERDŐS–PÓSA PROPERTY FOR LONG CIRCUITS 137

2. Transversals of graphs without k pairwise-disjoint long circuits

We give here a proof of Theorem 2, based on Theorem 1:

Let G be a graph which does not contain k disjoint long circuits.
Then there exists a transversal of the long circuits of G of size at most
13l(k−1)(k−2) +(2l+3)(k−1).

We shall need to apply the following well-known result of Erdős and
Szekeres [7].

Theorem 3. Let S be a sequence of (m− 1)(n− 1) + 1 distinct integers.
Then S has either an increasing subsequence of m terms or a decreasing
subsequence of n terms.

Proof of Theorem 2. We proceed by induction on k, and may therefore
assume that G contains k−1 disjoint long circuits C1, . . . ,Ck−1.

For i<j, consider the graph Gij :=G−
⋃

r �=i,j Cr. If there are 26l disjoint
paths linking Ci and Cj in Gij , there are 26 such paths whose ends in Ci

are separated by segments of length at least l. By Theorem 3, the ends of
some six of these paths appear in the same order on Ci and Cj . The union
of these six paths with Ci and Cj contains three disjoint long circuits (see
Figure 1).

Ci

Cj

Figure 1. Three disjoint long circuits.

These, together with the k − 3 circuits Cr, r �= i,j, define a set of k
disjoint long circuits, contradicting the hypothesis on G. Consequently, there
exists a set Xij of at most 26l vertices separating Ci and Cj in Gij . We set
X :=∪{Xij :1≤ i<j≤k−1}.
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We claim that each component of G−X intersects at most one of the
circuits Ci, 1≤ i≤k−1. Suppose, to the contrary, that some component H of
G−X intersects two of these circuits, Ci and Cj . Then there is a path P in
H connecting Ci and Cj; without loss of generality, we may assume that no
internal vertex of P lies on any of the circuits C1, . . . ,Ck−1. But then Ci and
Cj belong to the same component of Gij−X, hence to the same component
of Gij −Xij , a contradiction.

It follows that no component H of G−X contains two disjoint long
circuits, for if it did, these two circuits, together with k−2 of the circuits Ci,
1≤ i≤k−1, not meeting H, would constitute a set of k disjoint long circuits
in G. By Theorem 1, each component of G−X has a transversal of size
at most 2l + 3. Since G has only k− 1 disjoint long circuits, G−X has a
transversal of size at most (2l+3)(k−1). Therefore G has a transversal of
size at most 13l(k−1)(k−2)+(2l+3)(k−1).

3. Transversals of graphs without two disjoint long circuits

This section is devoted to a proof of our main theorem, Theorem 1:

Let G be a graph containing no two disjoint long circuits. Then there
exists a set X of at most 2l+3 vertices that hits all long circuits.

The notation P [x,y] will be used to indicate a path P with initial vertex
x and terminal vertex y. Likewise, for a given path P or circuit C, we denote
by P [x,y] or C[x,y] the xy-segment of the path P or the circuit C (with
respect to its prescribed sense of orientation).

Let X and Y be two subsets of vertices of G. An (X,Y )-path is a path
which starts at a vertex of X, ends at a vertex of Y , and has no internal
vertex in either X or Y .

Proof. Let C be a shortest long circuit in G, with a prescribed sense of
orientation. Because C intersects every long circuit of G, its vertex set is a
transversal for the long circuits. We may thus assume that C has length at
least 2l+4 and is induced (that is, has no chord).

The following concept is the key to the proof of Theorem 1. A path P
which connects two vertices, u and v, of C, and which is internally-disjoint
from C, will be called a long path if both uv-segments of C are of length at
least l/2. By the minimality of C and the fact that C is of length at least 2l,
a long path P necessarily has length at least l/2, and thus forms a long
circuit with each of the uv-segments of C it defines.
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Claim. If there are no long paths, there exists a set X of at most l vertices
that hits all long circuits.

Suppose that there are no long paths. As noted above, every long circuit
D intersects C. Define CD to be a shortest segment of C containing V (C)∩
V (D), and choose a long circuit D for which CD is minimal (see Figure 2).
Let xD and yD be the first and last vertices of CD, respectively (with respect

C

D

X1

X2

xD

yD

Figure 2. A long circuit D with C[xD,yD] minimal.

to the sense of orientation of C). Let X1 be the set of �l/2� vertices of C
immediately preceding xD, and let X2 consist of yD and the set of l/2�−1
vertices of C immediately following yD. Set X :=X1∪X2. We shall show that
X hits all long circuits. If not, there is a long circuit D′ in G−X. By the
choice of D, D′ intersects the segment C ′ of C−X which is disjoint from CD.
But D′ also intersects D. It follows that there is a long path, made up of a
segment of D′ and a segment of D, connecting a vertex of C ′ and a vertex
of CD. This contradiction establishes the claim.

We may henceforth assume that there is a long path. Let H be the com-
ponent of G−C containing the internal vertices of a long path. Suppose,
first, that H is 2-connected. Choose a long path P [x,y] whose internal ver-
tices are in H, with C[x,y] minimal. Let X1 consist of the vertex x and the
set of l/2�−1 vertices of C immediately preceding x, and let X2 consist of
the vertex y and the set of l/2�−1 vertices of C immediately preceding y.
Set X :=X1∪X2. Denote by A the segment of C−X contained in C[x,y],
and by B the other segment (see Figure 3); note that A might be empty.

Then, in G−X:

• There is no (A,P −{x,y})-path. If there were such a path P ′[x′,y′], the
path P ′[x′,y′]P [y′,y] would be a long path contradicting the choice of P .
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A

B

P

H
X1

X2

xy

Figure 3. A long path P [x,y].

• Every (A,B)-path is disjoint from H. If not, there would be an (A,P −
{x,y})-path.

• Every (A,B)-path is long.
• There are at most two disjoint (A,B)-paths. Two ‘parallel’ (A,B)-paths

would yield, when combined with appropriate segments of C, two disjoint
long circuits; likewise, three mutually ‘crossing’ (A,B)-paths, together
with the path P , would yield two disjoint long circuits (see Figure 4).

AA

BB

PP

X1X1

X2X2

xx yy

Figure 4. Parallel and crossing AB-paths.

Menger’s theorem thus implies that there is a set X3 of at most two vertices
meeting all (A,B)-paths in G−X. We now set X := X1 ∪X2 ∪X3. Then,
in G−X:

• There is no (A,B)-path.
• Every long circuit intersects A or B, but not both. A long circuit meeting

A and B would contain an (A,B)-path.
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• No long circuit intersects A. Such a circuit would be disjoint from the
long circuit P [x,y]C[y,x].

• Every long circuit intersects B.

Let X4 be the set of l/2� − 1 vertices of C immediately following y. Set
X :=X1∪X2∪X3∪X4. Let B′ be the segment of C−Xcontained in B. For
every long circuit D of G−X, define CD[xD,yD] to be a shortest segment of
B′ containing V (C)∩V (D), and choose a long circuit D (if any) such that
the vertex yD occurs as soon as possible after the interval X4. Let X5 be
the set of �l/2� vertices of C immediately following yD, and including yD.
We now set X :=X1∪X2∪X3∪X4∪X5. If there is a long circuit in G−X
then, as in the proof of the Claim above, there is a long (B,B)-path Q[u,v]
linking the two segments of B′ −X5. Note that Q is at least as long as
the segment C[u,v], and thus certainly of length at least three. Moreover,
Q intersects P , because otherwise C[u,v]Q[v,u] and C[x,y]P [y,x] would be
disjoint long circuits. Hence the internal vertices of Q lie in H. Denote the
neighbours on P of x and y by x′ and y′, respectively, and the neighbours
on Q of u and v by u′ and v′, respectively (see Figure 5). Note that the

A

H

P

Q

X1

X2

X4

X5

xy

u
v

x′y′

u′ v′

yD

Figure 5. The long path Q[u,v].

four vertices x′, y′, u′ and v′ are distinct, as otherwise the long path Q
would be too short. Because H is 2-connected, there are two disjoint paths
in H linking the sets {x′,u′} and {y′,v′}. These paths, together with the
edges xx′,yy′,uu′,vv′ and appropriate segments of C, yield two disjoint long
circuits, a contradiction (see Figure 6). Thus X intersects all long circuits
of G, and |X|≤2l+2.

We now consider the case where H is not 2-connected. Here, it is neces-
sary to define the long path P [x,y] differently. We assume, as before, that
H contains the internal vertices of a long path. We root H at an arbitrary
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HH
X1X1

X2X2

X4X4

X5X5

xx yy

uu
vv

x′x′ y′y′

u′u′ v′v′

Figure 6. Two disjoint long circuits.

block R, and thereby associate, to each block Z of H, a subgraph HZ of H,
namely the union of Z and the blocks of H ‘below’ Z, relative to R (see
Figure 7).

R

Z

z

HZ

Figure 7. The rooted block tree of H .

We now select a block Z of H such that HZ contains the internal vertices
of some long path and is minimal with respect to this property. The path
P [x,y] is then chosen to be a long path in HZ for which C[x,y] is minimal.
If Z �=R, we denote by z the cutvertex of H which separates HZ from the
rest of H.

We define X1,X2,X,A,B as before. As before, there is a set S of at most
two vertices meeting all (A,B)-paths in G−X −HZ . We set X3 := S if
Z =R, and X3 :=S∪{z}, otherwise. We now set X :=X1∪X2∪X3. Then,
in G−X−HZ :
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• There is no (A,B)-path.
• Every long circuit intersects A or B, but not both.

However, by the choice of P , no edge links A to a vertex of HZ . Thus,
in G−X:

• No long circuit intersects A.
• Every long circuit intersects B.

We define X4,B
′,D,yD,X5 as before, and set X :=X1∪X2∪X3∪X4∪X5.

We may assume, as before, that there is a long (B,B)-path Q in G−X.
This path necessarily intersects P . By the choice of P and the definition
of X3, the path Q must include an edge of Z. We define x′,y′ as the first
and last vertices of P in Z (necessarily distinct), and u′,v′ as the first and
last vertices of Q in Z (also necessarily distinct), and obtain two disjoint
long circuits, as before. This final contradiction shows that X is a set of
vertices meeting all long circuits, with |X|≤2l+3.

4. Tree-width

The notion of tree-width was introduced by Robertson and Seymour, who
showed in [9] that, given a graph H, the graphs with no H-minor have
bounded tree-width if and only if H is planar. In the case where H is planar,
however, the bound given in [9] for the tree-width is exponential in m, where
m is such that H can be embedded in the m×m-grid. The authors of [5]
gave a somewhat simpler proof of the Robertson–Seymour theorem, but
their bound is exponential, too. The results in this paper imply a polynomial
bound for the tree-width when H is a disjoint union of l-circuits.

Note that if X ⊂V (G), and (T,W) is a tree-decomposition of G−X, a
tree-decomposition of G can be obtained by simply adjoining the set X to
each element of W. It follows that

tw(G) ≤ tw(G−X) + |X|.(1)

In order to deduce our bound, we also need the following result of
Birmelé [1].

Theorem 4. Let G be a graph containing no long circuit. Then tw(G)≤ l−2.

This bound is best possible, the complete graph on l−1 vertices having
tree-width l−2.

Corollary 1. Let G be a graph which does not contain k disjoint long
circuits. Then tw(G)≤13l(k−1)(k−2)+3l+1.
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Proof. If k = 2, this follows from Theorem 4 on applying inequality (1)
with X the transversal of 2l+3 vertices guaranteed by Theorem 1. If k>2,
it follows from the case k = 2 on applying inequality (1) with X the set of
13l(k−1)(k−2) vertices defined in the proof of Theorem 2.

5. Related questions

We conclude by briefly mentioning several questions suggested by the results
presented in this paper.

1. Let us first reiterate Conjecture 1:
Let G be a graph containing no two disjoint long circuits. Then there
exists a transversal of the long circuits of G of size at most l. The first
open case of this conjecture is the case l=6.

2. One may consider versions of Conjecture 1 for particular classes of graphs.
For instance, one might ask for the smallest function f such that, in any
planar graph G containing no two disjoint long circuits, there exists a
transversal of the long circuits of G of size at most f(l).

3. Consider the family G := G(l,m) of all graphs containing no m disjoint
long circuits. Denote by f(l,m) the largest tree-width of a member of G,
and by g(l,m) the largest size of a minimum transversal of a member
of G. What are the correct orders of magnitude of the functions f and g?
We have shown here that f(l,m) = O(lm2). Erdős and Pósa [6] proved
that c1mlogm≤g(3,m)≤c2mlogm for appropriate constants c1 and c2.

4. The above questions have edge analogues, obtained on replacing ‘disjoint’
by ‘edge-disjoint’ and ‘vertices’ by ‘edges’.

5. The l-prism is the cartesian product Cl ×K2. In [3], a quadratic upper
bound on the tree-width of the graphs containing no l-prism minor is
established.

References
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