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Abstract. The kth p-power of a graph G is the graph on the vertex set V (G)k, where two
k-tuples are adjacent iff the number of their coordinates which are adjacent in G is not congruent
to 0 modulo p. The clique number of powers of G is polylogarithmic in the number of vertices; thus
graphs with small independence numbers in their p-powers do not contain large homogeneous subsets.
We provide algebraic upper bounds for the asymptotic behavior of independence numbers of such
powers, settling a conjecture of [N. Alon and E. Lubetzky, Combinatorica, 27 (2007), pp. 13–33] up
to a factor of 2. For precise bounds on some graphs, we apply Delsarte’s linear programming bound
and Hoffman’s eigenvalue bound. Finally, we show that for any nontrivial graph G, one can point out
specific induced subgraphs of large p-powers of G with neither a large clique nor a large independent
set. We prove that the larger the Shannon capacity of G is, the larger these subgraphs are, and if G
is the complete graph, then some p-power of G matches the bounds of the Frankl–Wilson Ramsey
construction, and is in fact a subgraph of a variant of that construction.
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1. Introduction. The kth Xor graph power of a graph G, G⊕k, is the graph
whose vertex set is the Cartesian product V (G)k, where two k-tuples are adjacent iff
an odd number of their coordinates is adjacent in G. This product was used in [21] to
construct edge colorings of the complete graph with two colors, containing a smaller
number of monochromatic copies of K4 than the expected number of such copies in
a random coloring.

In [4], the authors studied the independence number, α, and the clique number, ω,
of high Xor powers of a fixed graph G, motivated by problems in coding theory: cliques
and independent sets in such powers correspond to maximal codes satisfying certain
natural properties. It is shown in [4] that while the clique number of G⊕k is linear in

k, the independence number α(G⊕k) grows exponentially: the limit α(G⊕k)
1
k exists

and is in the range [
√
|V (G)|, |V (G)|]. Denoting this limit by xα(G), the problem of

determining xα(G) for a given graph G proves to be extremely difficult, even for simple
families of graphs. Using spectral techniques, it is proved in [4] that xα(Kn) = 2 for
n ∈ {2, 3, 4}, where Kn is the complete graph on n vertices, and it is conjectured that
xα(Kn) =

√
n for every n ≥ 4. The best upper bound given in [4] on xα(Kn) for

n ≥ 4 is n/2.
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The graph product we introduce in this work, which generalizes the Xor product,
is motivated by Ramsey theory. In [9], Erdős proved the existence of graphs on n
vertices without cliques or independent sets of size larger than O(log n) vertices, and
that in fact almost every graph satisfies this property. Ever since, there have been
many attempts to provide explicit constructions of such graphs. Throughout the
paper, without being completely formal, we call a graph “Ramsey” if it has neither
a “large” clique nor a “large” independent set. The famous Ramsey construction
of Frankl and Wilson [10] provided a family of graphs on n vertices, FWn, with a
bound of exp

(√
(2 + o(1)) logn log log n

)
on the independence and clique numbers,

using results from extremal finite set theory. Thereafter, constructions with the same
bound were produced in [3] using polynomial spaces and in [11] using low degree
matrices. Recently, the old Frankl–Wilson record was broken in [6], where the authors
provided, for any ε > 0, a polynomial-time algorithm for constructing a Ramsey graph
on n vertices without cliques or independent sets on exp ((logn)ε) vertices. The
disadvantage of this latest revolutionary construction is that it involves a complicated
algorithm, from which it is hard to tell the structure of the resulting graph.

Relating the above to graph products, the Xor product may be viewed as an
operator, ⊕k, which takes a fixed input graph G on n vertices and produces a graph
on nk vertices, H = G⊕k. The results of [4] imply that the output graph H satisfies
ω(H) ≤ nk = O(log(|V (H)|)), and that if G is a nontrivial d-regular graph, then
H is d′-regular, with d′ → 1

2 |V (H)| as k tends to infinity. Thus, ⊕k transforms any
nontrivial d-regular graph into a random looking graph, in the sense that it has an
edge density of roughly 1

2 and a logarithmic clique number. However, the lower bound

α(H) ≥
√
|V (H)|, which holds for every even k, implies that ⊕k cannot be used to

produce good Ramsey graphs.
In order to modify the Xor product into a method for constructing Ramsey graphs,

one may try to reduce the high lower bound on the independence numbers of Xor
graph powers. Therefore, we consider a generalization of the Xor graph product,
which replaces the modulo 2 (adjacency of two k-tuples is determined by the parity of
the number of adjacent coordinates) with some possibly larger modulo p ∈ N. Indeed,
we show that by selecting a larger p, the lower bound on the independence number,
α(H), is reduced from

√
|V (H)| to |V (H)|1/p, at the cost of a polynomial increase in

ω(H). The generalized product is defined as follows.
Definition 1.1. Let k, p ∈ N. The kth p-power of a graph G, denoted by Gk(p) ,

is the graph whose vertex set is the Cartesian product V (G)k, where two k-tuples are
adjacent iff the number of their coordinates which are adjacent in G is not congruent
to 0 modulo p, that is,

(u1, . . . , uk) (v1, . . . , vk) ∈ E(Gk) iff |{i : uivi ∈ E(G)}| �≡ 0 (mod p).

Throughout the paper, we use the abbreviation Gk for Gk(p) when there is no
danger of confusion.

In section 2 we show that the limit α(Gk)
1
k exists and equals supk α(Gk)

1
k ; denote

this limit by x
(p)
α . A simple lower bound on x

(p)
α is |V (G)|1/p, and algebraic arguments

show that this bound is nearly tight for the complete graph: x
(p)
α (Kn) = O(n1/p). In

particular, we obtain that

√
n ≤ xα(Kn) = x(2)

α (Kn) ≤ 2
√
n− 1,

improving the upper bound of n/2 for n ≥ 4 given in [4], and determining that the
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behavior of xα for complete graphs is as stated in Question 4.1 of [4] up to a factor
of 2.

For the special case G = Kn, it is possible to apply coding theory techniques in

order to bound x
(p)
α (G). The problem of determining x

(p)
α (Kn) can be translated into

finding the asymptotic maximum size of a code over the alphabet [n], in which the
Hamming distance between any two codewords is divisible by p. The related problem
for linear codes over a field has been well studied: see, e.g., [23] for a survey on this
subject. However, as we later note in section 2, the general nonlinear case proves
to be quite different, and the upper bounds on linear divisible codes do not hold for

x
(p)
α (Kn). Yet, other methods for bounding sizes of codes are applicable. In section 3

we demonstrate the use of Delsarte’s linear programming bound in order to obtain

precise values of α(K
k(3)

3 ). We show that α(K
k(3)

3 ) = 3k/2 whenever k ≡ 0 (mod 4),

while α(K
k(3)

3 ) < 1
23k/2 for k ≡ 2 (mod 4); hence the series α(K

k+1(3)

3 )/α(K
k(3)

3 ) does
not converge to a limit.

Section 4 gives a general bound on x
(p)
α for d-regular graphs in terms of their

eigenvalues, using Hoffman’s eigenvalue bound. The eigenvalues of p-powers of G are
calculated using tensor products of matrices over C, in a way somewhat similar to
performing a Fourier transform on the adjacency matrix of G. This method may also
be used to derive tight results on α(Gk(p)), and we demonstrate this on the above-
mentioned case of p = 3 and the graph K3, where we compare the results with those
obtained in section 3 by the Delsarte bound.

Section 5 shows, using tools from linear algebra, that indeed the clique number of
Gk(p) is polylogarithmic in k, and thus p-powers of graphs attaining the lower bound

of x
(p)
α are Ramsey. We proceed to show a relation between the Shannon capacity

of the complement of G, c(G), and the Ramsey properties of p-powers of G. Indeed,
for any nontrivial graph G, we can point out a large Ramsey-induced subgraph of
some p-power of G. The larger c(G) is, the larger these Ramsey subgraphs are. When

G = Kp for some prime p, we obtain that H = K
p2

(p)
p is a Ramsey graph matching the

bound of Frankl and Wilson, and in fact, H contains an induced subgraph which is a
modified variant of FWN1 for some N1 and is contained in another variant of FWN2

for some N2. The method of proving these bounds on Gk(p) provides yet another
(simple) proof for the Frankl–Wilson result.

2. Algebraic lower and upper bounds on x(p)
α . In this section, we define

the parameter x
(p)
α and provide lower and upper bounds for it. The upper bounds

follow from algebraic arguments, using graph representation by polynomials.

2.1. The limit of independence numbers of p-powers. The following lem-

ma establishes that x
(p)
α exists and gives simple lower and upper bounds on its range

for graphs on n vertices.
Lemma 2.1. Let G be a graph on n vertices, and let p ≥ 2. The limit of α(Gk(p))

1
k

as k → ∞ exists, and, denoting it by x
(p)
α (G), it satisfies

n1/p ≤ x(p)
α (G) = sup

k
α(Gk(p))

1
k ≤ n.

Proof. Observe that if I and J are independent sets of Gk and Gl, respectively,
then the set I×J is an independent set of Gk+l, as the number of adjacent coordinates
between any two k-tuples of I and between any two l-tuples of J is 0 (mod p).
Therefore, the function g(k) = α(Gk) is supermultiplicative and strictly positive, and
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we may apply Fekete’s lemma (cf., e.g., [15, p. 85]) to obtain that the limit of α(Gk)
1
k

as k → ∞ exists, and satisfies

(2.1) lim
k→∞

α(Gk)
1
k = sup

k
α(Gk)

1
k .

Clearly, α(Gk) ≤ nk, and it remains to show the lower bound on x
(p)
α . Notice that

the following set is an independent set of Gp:

I = { (u, . . . , u) : u ∈ V (G)} ⊂ Gp,

since for all u, v ∈ V (G) there are either 0 or p adjacent coordinates between the two

corresponding p-tuples in I. By (2.1), we obtain that x
(p)
α (G) ≥ |I|1/p = n1/p.

2.2. Bounds on x(p)
α of complete graphs. While the upper bound |V (G)|

on x
(p)
α (G) is clearly attained by an edgeless graph, proving that a family of graphs

attains the lower bound requires some effort. The next theorem states that complete
graphs achieve the lower bound of Lemma 2.1 up to a constant factor.

Theorem 2.2. The following holds for all integers n, p ≥ 2:

(2.2) x(p)
α (Kn) ≤ 2H(1/p)(n− 1)1/p,

where H(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function. In

particular, x
(p)
α (Kn) = Θ(n1/p). In the special case where n = p = qr for some prime

q and r ≥ 1, the lower bound roughly matches the upper bound:

p
2

p+1 ≤ x(p)
α (Kp) ≤

(
ep2

)1/p
.

Taking p = 2 and noting that H( 1
2 ) = 1, we immediately obtain the following

corollary for Xor graph products, which determines the asymptotic behavior of xα for
complete graphs.

Corollary 2.3. For all n ≥ 2, the complete graph on n vertices satisfies
√
n ≤ xα(Kn) ≤ 2

√
n− 1.

Proof of Theorem 2.2. The upper bound will follow from an argument on poly-
nomial representations, an approach which was used in [3] to bound the Shannon
capacity of certain graphs. Take k ≥ 1, and consider the graph H = Kk

n. For every
vertex of H, u = (u1, . . . , uk), we define the following polynomial in R[xi,j ], where
i ∈ [k], j ∈ [n]:

(2.3) fu(x1,1, . . . , xk,n) =

�k/p	∏
t=1

(
k − tp−

k∑
i=1

xi,ui

)
.

Next, give the following assignment of values for {xi,j}, xv, to each v = (v1, . . . , vk) ∈
V (H):

(2.4) xi,j = δvi,j ,

where δ is the Kronecker delta. Definitions (2.3) and (2.4) imply that for every two
such vertices u = (u1, . . . , uk) and v = (v1, . . . , vk) in V (H),

(2.5) fu(xv) =

�k/p	∏
t=1

(
k − tp−

k∑
i=1

δui,vi

)
=

�k/p	∏
t=1

(|{i : ui �= vi}| − tp) .
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Notice that, by the last equation, fu(xu) �= 0 for all u ∈ V (H), and consider two
distinct nonadjacent vertices u, v ∈ V (H). The Hamming distance between u and v
(considered as vectors in Zk

n) is by definition 0 (mod p) (and is not zero). Thus, (2.5)
implies that fu(xv) = 0.

Recall that for all u, the assignment xu gives values xi,j ∈ {0, 1} for all i, j, and
additionally

∑n
j=1 xi,j = 1 for all i. Therefore, it is possible to replace all occurrences

of xi,n by 1−
∑n−1

j=1 xi,j in each fu, and then proceed and reduce the obtained result
modulo the polynomials,⋃

i∈[k]

(
{x2

i,j − xi,j : j ∈ [n]} ∪ {xi,jxi,l : j, l ∈ [n], j �= l}
)
,

without affecting the value of the polynomials on the above-defined substitutions. In
other words, after replacing xi,n by 1−

∑
j<n xi,j , we repeatedly replace x2

i,j by xi,j ,
and let all the monomials containing xi,jxi,l for j �= l vanish. This gives a set of

multilinear polynomials {f̃u} satisfying{
f̃u(xu) �= 0 for all u ∈ V (H),

f̃u(xv) = 0 for u �= v, uv /∈ E(H),

where the monomials of f̃u are of the form
∏r

t=1 xit,jt for some 0 ≤ r ≤ k
p �, a set of

pairwise distinct indices {it} ⊂ [k], and indices {jt} ⊂ [n− 1].
Let F = Span({f̃u : u ∈ V (H)}), and let I denote a maximum independent set

of H. A standard argument shows that F = {f̃u : u ∈ I} is linearly independent in
F . Indeed, suppose that

∑
u∈I auf̃u(x) = 0; then substituting x = xv for some v ∈ I

gives av = 0. It follows that α(H) ≤ dimF , and thus

(2.6) α(H) ≤
�k/p	∑
r=0

(
k

r

)
(n− 1)r ≤

(
2H(1/p)(n− 1)1/p

)k

,

where in the last inequality we used the fact that
∑

i≤λn

(
n
i

)
≤ 2nH(λ) (cf., e.g., the

remark following Corollary 4.2 in [2], and also [5, p. 242]). Taking the kth root and
letting k grow to ∞, we obtain

x(p)
α (Kn) ≤ 2H(1/p)(n− 1)1/p,

as required.

In the special case of Kp (that is, n = p), note that 2H( 1
p ) = p

1
p ( p

p−1 )
p−1
p ≤ (ep)

1
p

and hence in this case x
(p)
α (Kp) ≤ (ep2)1/p. If p = qr is a prime-power, we can provide

a nearly matching lower bound for x
(p)
α (Kp) using a construction of [4], which we

shortly describe for the sake of completeness.
Let L denote the set of all lines with finite slopes in the affine plane GF (p), and

write down the following vector w� for each � ∈ L, � = ax + b for some a, b ∈ GF (p):

w� = (a, ax1 + b, ax2 + b, . . . , axp + b),

where x1, . . . , xp denote the elements of GF (p). For every two distinct lines �, �′, if
�‖�′, then w�, w�′ has a single common coordinate (the slope a). Otherwise, w�, w�′

has a single common coordinate, which is the unique intersection of �, �′. In any case,
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we obtain that the Hamming distance of w� and w�′ is p; hence W = {w� : � ∈ L} is
an independent set in Kp+1

p . By (2.1), we deduce that

x(p)
α (Kp) ≥ p

2
p+1 ,

completing the proof.

Remark 2.4. The proof of Theorem 2.2 used representation of the vertices of Kk
n

by polynomials of kn variables over R. It is possible to prove a similar upper bound

on x
(p)
α (Kn) using a representation by polynomials of k variables over R. To see this,

use the natural assignment of xi = vi for v = (v1, . . . , vk), denoting it by xv, and
assign the following polynomial to u = (u1, . . . , uk):

(2.7) fu(x1, . . . , xk) =

�k/p	∏
t=1

(
k − tp−

k∑
i=1

n∏
j=1
j �=ui

xi − j

ui − j

)
.

The expression
∏

j �=ui

xi−j
ui−j is the monomial of the Lagrange interpolation polynomial

and is equal to δxi,ui
. Hence, we obtain that fu(xu) �= 0 for any vertex u, whereas

fu(xv) = 0 for any two distinct nonadjacent vertices u, v. As the Lagrange monomials
yield values in {0, 1}, we can convert each fu to a multilinear combination of these
polynomials, f̃u, while retaining the above properties. Note that there are n possibil-
ities for the Lagrange monomials (determined by the value of ui), and it is possible to
express one as a linear combination of the rest. From this point, a calculation similar
to that in Theorem 2.2 for the dimension of Span({f̃u : u ∈ V }) gives the upper bound
(2.2).

Remark 2.5. The value of α(K
k(p)
n ) corresponds to a maximum size of a code C

of k-letter words over Zn, where the Hamming distance between any two codewords
is divisible by p. The case of linear such codes when Zn is a field, that is, we add
the restriction that C is a linear subspace of Zk

n, has been thoroughly studied; it is
equivalent to finding a linear subspace of Zk

n of maximal dimension, such that the
Hamming weight of each element is divisible by p. It is known for this case that
if p and n are relatively prime, then the dimension of C is at most k/p (see [22]),
and hence the size of C is at most nk/p. However, this bound does not hold for the
nonlinear case (notice that this bound corresponds to the lower bound of Lemma 2.1).
We give two examples of this:

1. Take p = 3 and n = 4. The divisible code bound implies an upper bound

of 41/3 ≈ 1.587, and yet x
(3)
α (K4) ≥

√
3 ≈ 1.732. This follows from the

geometric construction of Theorem 2.2, which provides an independent set of

size 9 in K
4(3)

3 ⊂ K
4(3)

4 , using only the coordinates {0, 1, 2} (this result can
be slightly improved by adding an all-3 vector to the above construction in
the 12th power).

2. Take p = 3 and n = 2. The linear code bound is 21/3 ≈ 1.26, whereas the

following construction shows that α(K
12(3)

2 ) ≥ 24, implying that x
(3)
α (K2) ≥

241/12 ≈ 1.30. Let {v1, . . . , v12} denote the rows of a binary Hadamard matrix
of order 12 (such a matrix exists by Paley’s theorem; cf., e.g., [12]). For all
i �= j, vi and vj have precisely 6 common coordinates, and hence the set
I = {vi} ∪ {vi} (where vi denotes the complement of vi modulo 2) is an

independent set of size 24 in K
12(3)

2 . In fact, I is a maximum independent set
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of K
12(3)

2 , as Delsarte’s linear programming bound (described in section 3)

implies that α(K
12(3)

2 ) ≤ 24.

2.3. The value of x(3)
α (K3). While the upper bound of Theorem 2.2 on x

(p)
α (Kn)

is tight up to a constant factor, the effect of this constant on the independence num-
bers is exponential in the graph power, and we must resort to other techniques in
order to obtain more accurate bounds. For instance, Theorem 2.2 implies that

1.732 ≈
√

3 ≤ x(3)
α (K3) ≤ 2H( 1

3 )2
1
3 =

3

21/3
≈ 2.381.

In sections 3 and 4, we demonstrate the use of Delsarte’s linear programming bound
and Hoffman’s eigenvalue bound for the above problem, and in both cases obtain the

exact value of α(K
k(3)

3 ) under certain divisibility conditions. However, if we are merely
interested in the value of x

(3)
α (K3), a simpler consideration improves the bounds of

Theorem 2.2 and shows that x
(3)
α (K3) =

√
3.

Lemma 2.6. For any k ≥ 1, α(K
k(3)

3 ) ≤ 3·
√

3
k
, and in particular x

(3)
α (K3) =

√
3.

Proof. Treating vertices of Kk
3 as vectors of Zk

3 , notice that every two vertices
x = (x1, . . . , xk) and y = (y1, . . . , yk) satisfy

k∑
i=1

(xi − yi)
2 ≡ |{i : xi �= yi}| (mod 3),

and hence if I is an independent set in Kk
3 , then∑

i

(xi − yi)
2 ≡ 0 (mod 3) for all x, y ∈ I.

Let I denote a maximum independent set of Kk
3 , and let Ic = {x ∈ I :

∑
i x

2
i ≡ c

(mod 3)} for c ∈ {0, 1, 2}. For every c ∈ {0, 1, 2} we have∑
i

(xi − yi)
2 = 2c− 2x · y ≡ 0 (mod 3) for all x, y ∈ Ic,

and hence x · y = c for all x, y ∈ Ic. Choose c for which |Ic| ≥ |I|/3, and subtract an
arbitrary element z ∈ Ic from all the elements of Ic. This gives a set J of size at least
|I|/3, which satisfies

x · y = 0 for all x, y ∈ J.

Since Span(J) is a self-orthogonal subspace of Zk
3 , its dimension is at most k/2, and

hence |J | ≤ 3k/2. Altogether, α(Kk
3 ) ≤ 3 ·

√
3
k
, as required.

3. Delsarte’s linear programming bound for complete graphs. In this
section, we demonstrate how Delsarte’s linear programming bound may be used to
derive precise values of independence numbers in p-powers of complete graphs. As
this method was primarily used on binary codes, we include a short proof of the bound
for a general alphabet.
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3.1. Delsarte’s linear programming bound. The linear programming bound
follows from the relation between the distance distribution of codes and the Kraw-
tchouk polynomials, defined as follows.

Definition 3.1. Let n ∈ N and take q ≥ 2. The Krawtchouk polynomials Kn;q
k (x)

for k = 0, . . . , n are defined by

(3.1) Kn;q
k (x) =

k∑
j=0

(
x

j

)(
n− x

k − j

)
(−1)j(q − 1)k−j .

Definition 3.2. Let C be an n-letter code over the alphabet {1, . . . , q}. The
distance distribution of C, B0, B1, . . . , Bn, is defined by

Bk =
1

|C| |{(w1, w2) ∈ C2 : δ(w1, w2) = k}| (k = 0, . . . , n),

where δ denotes the Hamming distance.
The Krawtchouk polynomials {Kn;q

k (x)} are sometimes defined with a normalizing
factor of q−k. Also, it is sometimes customary to define the distance distribution with
a different normalizing factor, letting Ak = Bk

|C| , in which case Ak is the probability

that a random pair of codewords has a Hamming distance k.
The Krawtchouk polynomials {Kn;q

k : k = 0, . . . , n} form a system of orthogonal
polynomials with respect to the weight function w(x) = n!

Γ(1+x)Γ(n+1−x) (q−1)x, where

Γ is the gamma function. For further information on these polynomials see, e.g., [20].
Delsarte [7] (see also [18]) presented a remarkable method for bounding the max-

imal size of a code with a given set of restrictions on its distance distribution. This
relation is given in the next proposition, for which we include a short proof.

Proposition 3.3. Let C be a code of n-letter words over the alphabet [q], whose
distance distribution is B0, . . . , Bn. The following holds:

(3.2)

n∑
i=0

BiKn;q
k (i) ≥ 0 for all k = 0, . . . , n.

Proof. Let G = Zn
q , and for every two functions f, g : G → C, define (as usual)

their inner product 〈f, g〉 and their delta-convolution, f ∗ g, as

〈f, g〉 =

∫
G

f(x)g(x)dx =
1

|G|
∑
T∈G

f(T )g(T ),

(f ∗ g)(s) =

∫
G

f(x)g(x− s)dx.

Denoting the Fourier expansion of f by f =
∑

S∈G f̂(S)χS , where χS(x) = ωS·x and
ω is the qth root of unity, it follows that for any k = 0, . . . , n,

(3.3)
∑

S∈G:|S|=k

f̂(S) =
1

|G|

n∑
i=0

Kn;q
k (i)

∑
T∈G:|T |=i

f(T ),

where |S| and |T | denote the Hamming weights of S, T ∈ G. Since the delta-
convolution satisfies

f̂ ∗ g(S) = f̂(S)ĝ(S),
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every f satisfies

(3.4) f̂ ∗ f(S) = |f̂(S)|2 ≥ 0.

Let f denote the characteristic function of the code C, f(x) = 1{x∈C}, and notice
that

(f ∗ f)(S) =
1

|G|
∑
T∈G

f(T )f(T − S) =
1

|G| |{T : T, T − S ∈ C}|,

and thus

(3.5) Bi =
|G|
|C|

∑
T :|T |=i

(f ∗ f)(T ).

Putting together (3.3), (3.4), and (3.5), we obtain

0 ≤
∑

S:|S|=k

f̂ ∗ f(S) =
1

|G|

n∑
i=0

Kn;q
k (i)

∑
T :|T |=i

(f ∗ f)(T ) =
|C|
|G|2

n∑
i=0

Kn;q
k (i)Bi,

as required.
Let F ⊂ [n] be a set of forbidden distances between distinct codewords. Since

|C| =
∑

i Bi, the following linear program provides an upper bound on the size of any
code with no pairwise distances specified by F :

maximize
∑
i

Bi subject to the constraints

⎧⎪⎪⎨⎪⎪⎩
B0 = 1,
Bi ≥ 0 for all i,
Bi = 0 for all i ∈ F,∑n

i=0 BiKn;q
k (i) ≥ 0 for all k = 0, . . . , n.

By examining the dual program, it is possible to formulate this bound as a minimiza-
tion problem. The following proposition has been proved in various special cases (cf.,
e.g., [8], [16]). For the sake of completeness, we include a short proof of it.

Proposition 3.4. Let C be a code of n-letter words over the alphabet [q], whose
distance distribution is B0, . . . , Bn. Let P (x) =

∑n
k=0 αkKn;q

k (x) denote an n-degree
polynomial over R. If P (x) has the two properties

α0 > 0 and αi ≥ 0 for all i = 1, . . . , n,(3.6)

P (d) ≤ 0 whenever Bd > 0 for d = 1, . . . , n,(3.7)

then |C| ≤ P (0)/α0.
Proof. The MacWilliams transform of the vector (B0, . . . , Bn) is defined as follows:

(3.8) B′
k =

1

|C|

n∑
i=0

Kn;q
k (i)Bi.

By the Delsarte inequalities (stated in Proposition 3.3), B′
k ≥ 0, and furthermore

B′
0 =

1

|C|

n∑
i=0

Kn;q
0 (i)Bi =

1

|C|
∑
i

Bi = 1.
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Therefore, as (3.6) guarantees that αi ≥ 0 for i > 0, we get

(3.9)

n∑
k=0

αkB
′
k ≥ α0.

On the other hand, B0 = 1, and by (3.7), whenever Bi > 0 for some i > 0 we have
P (i) ≤ 0, and thus

(3.10)

n∑
i=0

BiP (i) ≤ P (0).

Combining (3.9) and (3.10) with (3.8) gives

α0 ≤
n∑

k=0

αkB
′
k =

1

|C|

n∑
i=0

Bi

n∑
k=0

αkKn;q
k (i) =

1

|C|

n∑
i=0

BiP (i) ≤ P (0)

|C| ,

and the result follows.

We proceed with an application of the last proposition in order to bound the
independence numbers of p-powers of complete graphs. In this case, the distance
distribution is supported by {i : i ≡ 0 (mod p)}, and in section 3.2 we present
polynomials which satisfy the properties of Proposition 3.4 and provide tight bounds

on α(K
k(3)

3 ).

3.2. Improved estimations of α(K
k(3)

3 ). Recall that the geometric construc-

tion of Theorem 2.2 describes an independent set of size p2 in K
p+1(p)
p for every p,

which is a prime-power. In particular, this gives an independent set of size 3k/2 in

K
k(3)

3 for every k ≡ 0 (mod 4). Using Proposition 3.4 we are able to deduce that
indeed α(Kk

3 ) = 3k/2 whenever k ≡ 0 (mod 4), whereas for k ≡ 2 (mod 4) we prove
that α(Kk

3 ) < 1
23k/2.

Theorem 3.5. The following holds for any even integer k:{
α(Kk

3 ) = 3k/2, k ≡ 0 (mod 4),
1
33k/2 ≤ α(Kk

3 ) < 1
23k/2, k ≡ 2 (mod 4).

Proof. Let k be an even integer, and define the following polynomials:

P (x) =
2

3
3k/2 +

k∑
t=1

t�≡0(mod 3)

Kk;3
t (x),(3.11)

Q(x) =
2

3
3k/2 +

k∑
t=0

t≡0(mod 3)

Kk;3
t (x).(3.12)

Clearly, both P and Q satisfy (3.6), as Kn;q
0 = 1 for all n, q. It remains to show

that P,Q satisfy (3.7) and to calculate P (0), Q(0). As the following calculation will
prove useful later on, we perform it for a general alphabet q and a general modulo p.
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Denoting the qth root of unity by ω = e2πi/q, we have

k∑
t=0

t≡0(mod p)

Kk;q
t (s) =

k∑
t=0

t≡0(mod p)

t∑
j=0

(
s

j

)(
k − s

t− j

)
(−1)j(q − 1)t−j

=

s∑
j=0

(
s

j

)
(−1)j

k−s∑
l=0

j+l≡0(mod p)

(
k − s

l

)
(q − 1)l

=

s∑
j=0

(
s

j

)
(−1)j

k−s∑
l=0

(
k − s

l

)
(q − 1)l

1

q

q−1∑
t=0

ω(j+l)t

= δs,0 · qk−1 +
1

q

q−1∑
t=1

(1 + (q − 1)ωt)k−s(1 − ωt)s,(3.13)

where the last equality is by the fact that
∑s

j=0

(
s
j

)
(−1)j = δs,0, and therefore the

summand for t = 0 vanishes if s �= 0 and is equal to qk−1 if s = 0. Repeating the
above calculation for t �≡ 0 (mod p) gives

k∑
t=0

t�≡0(mod p)

Kk;q
t (s) =

s∑
j=0

(
s

j

)
(−1)j

k−s∑
l=0

(
k − s

l

)
(q − 1)l

(
1 − 1

q

q−1∑
t=0

ω(j+l)t

)

= δs,0 · (qk − qk−1) − 1

q

q−1∑
t=1

(1 + (q − 1)ωt)k−s(1 − ωt)s.(3.14)

Define

ξs =
1

q

q−1∑
t=1

(1 + (q − 1)ωt)k−s(1 − ωt)s,

and consider the special case p = q = 3. The fact that ω2 = ω implies that
(3.15)

ξs =
2

3
Re

(
(1 + 2ω)k−s(1 − ω)s

)
=

2

3
Re

(
(
√

3i)k−s(
√

3e−
π
6 i)s

)
=

2

3

√
3
k
cos

(
πk

2
− 2πs

3

)
,

and for even values of k and s ≡ 0 (mod 3) we deduce that

(3.16) ξs =
2

3
3k/2(−1)k/2.

Therefore, ξs = 2
33k/2 whenever s ≡ 0 (mod 3) and k ≡ 0 (mod 4), and (3.14) gives

the following for any k ≡ 0 (mod 4):

P (0) =
2

3
3k/2 +

2

3
3k − ξ0 =

2

3
3k,

P (s) =
2

3
3k/2 − ξs = 0 for any 0 �= s ≡ 0 (mod 3).

Hence, P (x) satisfies the requirements of Proposition 3.4 and we deduce that for any
k ≡ 0 (mod 4),

α(Kk
3 ) ≤ P (0)

2
33k/2

= 3k/2.
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As mentioned before, the construction used for the lower bound on x
(p)
α (K3) implies

that this bound is indeed tight whenever 4 | k.
For k ≡ 2 (mod 4) and s ≡ 0 (mod 3) we get ξs = − 2

33k/2, and by (3.13) we get

Q(0) =
2

3
3k/2 + 3k−1 + ξ0 = 3k−1,

Q(s) =
2

3
3k/2 + ξs = 0 for any 0 �= s ≡ 0 (mod 3).

Again, Q(x) satisfies the requirements of Proposition 3.4 and we obtain the following
bound for k ≡ 2 (mod 4):

α(Kk
3 ) ≤ Q(0)

2
33k/2 + 1

=
3k

2 · 3k/2 + 3
<

1

2
3k/2.

To conclude the proof, take a maximum independent set of size
√

3
l

in Kl
3, where

l = k − 2, for a lower bound of 1
33k/2.

4. Hoffman’s bound on independence numbers of p-powers. In this sec-
tion we apply spectral analysis in order to bound the independence numbers of p-
powers of d-regular graphs. The next theorem generalizes Theorem 2.9 of [4] by
considering tensor powers of adjacency matrices whose values are pth roots of unity.

Theorem 4.1. Let G be a nontrivial d-regular graph on n vertices, whose eigen-
values are d = λ1 ≥ λ2 ≥ · · · ≥ λn, and let λ = max{λ2, |λn|}. The following holds
for any p ≥ 2:
(4.1)

x(p)
α (G) ≤ max

{√
n2 − 2

(
1 − cos

(
2π

p

))
d(n− d), λ

√
2 − 2 cos

(
2π

p

⌊p
2

⌋)}
.

Proof. Let A = AG denote the adjacency matrix of G, and define the matrices Bt

for t ∈ Zp as follows:

(4.2) Bt = Jn + (ωt − 1)A,

where ω = e2πi/p is the pth root of unity, and Jn is the all-ones matrix of order n. In
other words,

(Bt)uv = ωtAuv =

{
ωt if uv ∈ E(G),
1 if uv /∈ E(G).

By the definition of the matrix tensor product ⊗, it follows that for all u = (u1, . . . , uk)
and v = (v1, . . . , vk) in Gk,

(B⊗k
t )u,v = ωt|{i : uivi∈E(G)}|,

and

p−1∑
t=0

(B⊗k
t )u,v =

{
p if |{i : uivi ∈ E(G)}| ≡ 0 (mod p),
0 otherwise.

Recalling that uv ∈ E(Gk) iff |{i : uivi ∈ E(G)}| �≡ 0 (mod p), we get

(4.3) AGk = Jnk − 1

p

p−1∑
t=0

B⊗k
t =

p− 1

p
Jnk − 1

p

p−1∑
t=1

B⊗k
t .



GRAPH POWERS, DELSARTE, HOFFMAN, RAMSEY, AND SHANNON 341

The above relation enables us to obtain expressions for the eigenvalues of Gk and then
apply the following bound, proved by Hoffman (see [13], [17]): every regular nontrivial
graph H on N vertices, whose eigenvalues are μ1 ≥ · · · ≥ μN , satisfies

(4.4) α(H) ≤ −NμN

μ1 − μN
.

Recall that Jn has a single nonzero eigenvalue of n corresponding to the all-ones
vector 1. Hence, (4.2) implies that 1 is an eigenvector of Bt with an eigenvalue of
n + (ωt − 1)d, and the remaining eigenvalues of Bt are {(ωt − 1)λi : i > 1}. By well-
known properties of tensor products, we obtain that the largest eigenvalue of H = Gk

(which is its degree of regularity) is

μ1 = nk − 1

p

p−1∑
t=0

(n + (ωt − 1)d)k = nk − 1

p

k∑
j=0

(
k

j

)
(n− d)k−jdj

p−1∑
t=0

ωjt

= nk −
k∑

j=0
j≡0(mod p)

(
k

j

)
(n− d)k−jdj ,(4.5)

and the remaining eigenvalues are of the form

(4.6) μ(λi1 , . . . , λis) = −1

p

p−1∑
t=1

(n + (ωt − 1)d)k−s
s∏

j=1

(ωt − 1)λij ,

where 0 < s ≤ k and 1 < ij ≤ n for all j (corresponding to an eigenvector which is a
tensor-product of the eigenvectors of λij for j = 1, . . . , s and 1⊗k−s). The following
holds for all such choices of s and {λij}:

|μ(λi1 , . . . , λis)| ≤ max
1≤t≤p−1

∣∣∣∣(n + (ωt − 1)d)k−s
s∏

i=1

(ωt − 1)λij

∣∣∣∣
≤ max

1≤t≤p−1
|n + (ωt − 1)d|k−s(|ωt − 1|λ)s

≤ max
1≤t≤p−1

(
max{|n + (ωt − 1)d|, λ|ωt − 1|}

)k
.

Since for any 1 ≤ t ≤ p− 1 we have

|n + (ωt − 1)d|2 = n2 − 2

(
1 − cos

(
2πt

p

))
d(n− d) ≤ n2 − 2

(
1 − cos

(
2π

p

))
d(n− d),

|ωt − 1|2 = 2 − 2 cos

(
2πt

p

)
≤ 2 − 2 cos

(
2π

p

⌊p
2

⌋)
,

it follows that

|μ(λi1 , . . . , λis)| ≤ (max{ρ1, ρ2})k,

where

ρ1 =

√
n2 − 2

(
1 − cos

(
2π

p

))
d(n− d),

ρ2 = λ

√
2 − 2 cos

(
2π

p

⌊p
2

⌋)
.
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By the same argument, (4.5) gives

|μ1| ≥ nk − ρk1 ,

and applying Hoffman’s bound (4.4), we get

(4.7) α(Gk) ≤ −nkμnk

μ1 − μnk

≤ (max{ρ1, ρ2})k

1 − (ρ1

n )k + (max{ρ1,ρ2}
n )k

.

To complete the proof, we claim that max{ρ1, ρ2} ≤ n, and hence the denominator
in the expression above is Θ(1) as k → ∞. Clearly, ρ1 ≤ n, and a simple argument
shows that λ ≤ n/2 and hence ρ2 ≤ n as well. To see this, consider the matrix A2

whose diagonal entries are d; we have

nd = trA2 =
∑
i

λ2
i ≥ d2 + λ2,

implying that λ ≤
√
d(n− d) ≤ n

2 . Altogether, taking the kth root and letting k tend

to ∞ in (4.7), we obtain that x
(p)
α (G) ≤ max{ρ1, ρ2}, as required.

Examples. For p = 2, 3 the above theorem gives

x(2)
α (G) ≤ max{|n− 2d|, 2λ},

x(3)
α (G) ≤ max{

√
n2 − 3d(n− d),

√
3λ}.

Since the eigenvalues of K3 are {2,−1,−1}, this immediately provides another

proof for the fact that x
(3)
α (K3) ≤

√
3. Note that, in general, the upper bounds derived

in this method for x
(p)
α (Kn) are useful only for small values of n, and tend to n as

n → ∞, whereas by the results of section 2 we know that x
(p)
α (Kn) = Θ(n1/p).

Consider d = d(n) = n
2 + O(

√
n ), and let G ∼ Gn,d denote a random d-regular

graph on n vertices. By the results of [14], λ = max{λ2, |λn|} = O(n3/4), and thus

Theorem 4.1 implies that x
(2)
α (G) = O(n3/4), and x

(3)
α (G) ≤ (1+o(1))n2 . We note that

one cannot hope for better bounds on x
(3)
α in this method, as ρ1 attains its minimum

at d = n
2 .

Remark 4.2. The upper bound (4.1) becomes weaker as p increases. However,
if p is divisible by some q ≥ 2, then clearly any independent set of Gk(p) is also

an independent set of Gk(q) , and in particular x
(p)
α (G) ≤ x

(q)
α (G). Therefore, when

applying Theorem 4.1 on some graph G, we can replace p by the minimal q ≥ 2, which

divides p. For instance, x
(4)
α (G) ≤ x

(2)
α (G) ≤ max{|n− 2d|, 2λ}, whereas substituting

p = 4 in (4.1) gives the slightly weaker bound x
(4)
α (G) ≤ {

√
(n− d)2 + d2, 2λ}.

Remark 4.3. In the special case G = Kn, the eigenvalues of G are {n − 1,−1,
. . . ,−1}, and the general expression for the eigenvalues of Gk in (4.6) takes the form
(note that λij = −1 for all 1 ≤ j ≤ s)

μ(s) = −1

p

p−1∑
t=1

(1 + (n− 1)ωt)k−s(1 − ωt)s,

and as s > 0, we obtain the following from (3.14):

μ(s) =
k∑

t=0
t�≡0(mod p)

Kk;q
t (s).
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Similarly, comparing (4.5) to (3.14) gives

μ1 =

k∑
t=0

t�≡0(mod p)

Kk;q
t (0).

It is possible to deduce this result directly, as Kk
n is a Cayley graph over Zk

n with the
generator set S = {x : |x| �≡ 0 (mod p)}, where |x| denotes the Hamming weight of
x. It is well known that the eigenvalues of a Cayley graph are equal to the character
sums of the corresponding group elements. Since for any k = 0, . . . , n and any x ∈ Zk

n

the Krawtchouk polynomial Kn;q
k satisfies

Kn;q
k (|x|) =

∑
y∈Zk

n:|y|=k

χy(x),

the eigenvalue corresponding to y ∈ Zk
n is

μ(y) =
∑
x∈S

χx(y) =

k∑
t=0

t�≡0 (mod p)

∑
x:|x|=t

χx(y) =

k∑
t=0

t�≡0 (mod p)

Kk;q
t (|y|).

Remark 4.4. The upper bound on x
(p)
α was derived from an asymptotic analysis

of the smallest eigenvalue μnk of Gk. Tight results on α(Gk) may be obtained by
a careful analysis of the expression in (4.6). To illustrate this, we consider the case
G = K3 and p = 3. Combining the previous remark with (3.14) and (3.15), we obtain

that the eigenvalues of K
k(3)

3 are

μ1 =
2

3
3k − 2

3

√
3
k
cos

(
πk

2

)
,

μ(s) = −2

3

√
3
k
cos

(
πk

2
− 2πs

3

)
for 0 < s ≤ k.

Noticing that μ(s) depends only on the values of s (mod 3) and k (mod 4), we can
determine the minimal eigenvalue of Gk for each given power k and deduce that

α(Gk) ≤ 3k/2 if k ≡ 0 (mod 4),

α(Gk) ≤ 3k+1

3 + 2 · 3(k+1)/2
<

1

2
3(k+1)/2 if k ≡ 1 (mod 2),

α(Gk) ≤ 3k

3 + 2 · 3k/2 <
1

2
3k/2 if k ≡ 2 (mod 4),

matching the results obtained by the Delsarte linear programming bound.

5. Ramsey subgraphs in large p-powers of any graph. In order to prove a
polylogarithmic upper bound on the clique sizes of p-powers of a graph G, we use an
algebraic argument, similar to the method of representation by polynomials described
in the section 2. We note that the same approach provides an upper bound on the
size of independent sets. However, for this latter bound, we require another property,
which relates the problem to strong graph products and to the Shannon capacity of
a graph.
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The kth strong power of a graph G (also known as the and power), denoted by
G∧k, is the graph whose vertex set is V (G)k, where two distinct k-tuples u �= v are
adjacent iff each of their coordinates is either equal or adjacent in G:

(u1, . . . , uk)(v1, . . . , vk) ∈ E(G∧k) iff for all i = 1, . . . , k : ui = vi or uivi ∈ E(G).

In 1956, Shannon [19] related the independence numbers of strong powers of a fixed
graph G to the effective alphabet size in a zero-error transmission over a noisy channel.
Shannon showed that the limit of α(G∧k)

1
k as k → ∞ exists and equals supk α(G∧k)

1
k ,

by supermultiplicativity; this limit is denoted by c(G), the Shannon capacity of G. It
follows that c(G) ≥ α(G), and in fact equality holds for all perfect graphs. However,
for nonperfect graphs, c(G) may exceed α(G), and the smallest (and most famous)
example of such a graph is C5, the cycle on 5 vertices, where α(C5) = 2 and yet

c(C5) ≥ α(C∧2
5 )

1
2 =

√
5. The seemingly simple question of determining the value of

c(C5) was solved only in 1979 by Lovász [17], who introduced the ϑ-function to show
that c(C5) =

√
5.

The next theorem states the bound on the clique numbers of Gk(p) and relates
the Shannon capacity of G, the complement of G, to bounds on independent sets of
Gk(p) .

Theorem 5.1. Let G denote a graph on n vertices and let p ≥ 2 be a prime. The
clique number of Gk(p) satisfies

(5.1) ω(Gk(p)) ≤
(
kn + p− 1

p− 1

)
,

and if I is an independent set of both Gk(p) and G
∧k

, then

(5.2) |I| ≤
(
kn + k

p �
k
p �

)
.

Moreover, if in addition G is regular, then

(5.3) ω(Gk(p)) ≤
(
k(n− 1) + p

p− 1

)
, |I| ≤

(
k(n− 1) + k

p � + 1

k
p �

)
.

The above theorem implies that if S is an independent set of G
∧k

, then any
independent set I of Gk(p) [S], the induced subgraph of Gk(p) on S, satisfies inequality
(5.2). For large values of k, by definition there exists such a set S of size roughly
c(G)k. Hence, there are induced subgraphs of Gk(p) of size tending to c(G)k whose
clique number and independence number are bounded by the expressions in (5.1) and
(5.2), respectively.

In the special case G = Kn, the graph G
∧k

is an edgeless graph for any k, and
hence

α(K
k(p)
n ) ≤

(
k(n− 1) + k

p � + 1

k
p �

)
≤ (ep(n− 1) + e + o(1))

k/p
,

where the o(1)-term tends to 0 as k → ∞. This implies an upper bound on x
(p)
α (Kn)

which nearly matches the upper bound of Theorem 2.2 for large values of p.
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Proof. Let g1 : V (G) → Zm
p and g2 : V (G) → Cm, for some integer m, denote two

representations of G by m-dimensional vectors satisfying the following for any (not
necessarily distinct) u, v ∈ V (G):

(5.4)

{
gi(u) · gi(v) = 0 if uv ∈ E(G)
gi(u) · gi(v) = 1 otherwise

(i = 1, 2).

It is not difficult to see that such representations exist for any graph G. For instance,
the standard basis of n-dimensional vectors is such a representation for G = Kn. In
the general case, it is possible to construct such vectors inductively, in a way similar
to a Gram–Schmidt orthogonalization process. To see this, define the lower diagonal
|V (G)| × |V (G)| matrix M as follows:

Mk,i =

⎧⎪⎪⎨⎪⎪⎩
−
∑i−1

j=1 Mk,jMi,j , i < k, vivk ∈ E(G),

1 −
∑i−1

j=1 Mk,jMi,j , i < k, vivk /∈ E(G),

1, i = k,
0, i > k.

The rows of M satisfy (5.4) for any distinct u, v ∈ V (G), and it remains to modify the
inner product of any vector with itself into 1 without changing the inner products of
distinct vectors. This is clearly possible over Zp and C using additional coordinates.

Consider Gk(p) , and define the vectors wu = g1(u1)◦· · ·◦g1(uk) for u = (u1, . . . , uk)
∈ V (Gk), where ◦ denotes vector concatenation. By definition

wu · wv ≡ k − |{i : uivi ∈ E(G)}| (mod p)

for any u, v ∈ V (Gk), and hence if S is a maximum clique of Gk, then wu · wv �≡ k
(mod p) for any u, v ∈ S. It follows that if B is the matrix whose columns are wu for
u ∈ S, then C = BtB has values which are k (mod p) on its diagonal and entries which
are not congruent to k modulo p anywhere else. Clearly, rank(C) ≤ rank(B), and
we claim that rank(B) ≤ kn, and that, furthermore, if G is regular, then rank(B) ≤
k(n− 1) + 1. To see this, notice that as the dimension of Span({g1(u) : u ∈ V }) is at
most n, the dimension of the span of {wu : u ∈ Gk} is at most kn. If in addition G
is regular, define z =

∑
u∈V g1(u) (assuming without loss of generality that z �= 0),

and observe that by (5.4), each of the vectors wu is orthogonal to the following k− 1
linearly independent vectors:

(5.5) {z ◦ (−z) ◦ 0◦(k−2), 0 ◦ z ◦ (−z) ◦ 0◦(k−3), . . . , 0◦(k−2) ◦ z ◦ (−z)}.

Similarly, the vectors w′
u = g2(u1) ◦ · · · ◦ g2(uk) satisfy the following for any u, v ∈

V (Gk):

w′
u · w′

v = k − |{i : uivi ∈ E(G)}|.

Let I denote an independent set of Gk(p) , which is also an independent set of G
∧k

.

By the definition of G
∧k

, every u, v ∈ I shares a coordinate i such that uivi ∈ E(G),
and combining this with the definition of Gk(p) , we obtain

0 < |{i : uivi ∈ E(G)}| ≡ 0 (mod p) for any u, v ∈ I.

Therefore, for any u �= v ∈ I,

w′
u · w′

v = k − tp for some t ∈
{

1, . . . ,

⌊
k

p

⌋}
,
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and if B′ is the matrix whose columns are w′
u for u ∈ I, then C ′ = B′tB′ has the entries

k on its diagonal and entries of the form k − tp, 0 < t ≤ k
p �, anywhere else. Again,

the definition of g2 implies that rank(C ′) ≤ kn, and in case G is regular, rank(C ′) ≤
k(n− 1) + 1 (each w′

u is orthogonal to the vectors of (5.5) for z =
∑

u∈V g2(u)).
Define the following polynomials:

(5.6) f1(x) =
∏
j∈Zp

j �≡k(mod p)

(j − x), f2(x) =

� k
p 	∏

t=1

(k − tp− x).

By the discussion above, the matrices D, D′ obtained by applying f1, f2 on each
element of C, C ′, respectively, are nonzero on the diagonal and zero anywhere else,
and, in particular, they are of full rank: rank(D) = |S| and rank(D′) = |I|. Recalling
that the ranks of C and C ′ are at most kn, and at most k(n− 1) + 1 if G is regular,
the proof is completed by the following simple lemma of [1].

Lemma 5.2 (see [1]). Let B = (bi,j) be an n× n matrix of rank d, and let P (x)
be an arbitrary polynomial of degree k. Then the rank of the n × n matrix (P (bi,j))

is at most
(
k+d
k

)
. Moreover, if P (x) = xk, then the rank of (P (bi,j)) is at most(

k+d−1
k

)
.

For large values of k, the upper bounds provided by the above theorem are

ω(H) ≤
(

(1 + o(1))kn

p

)
,

α(H) ≤
(

(1 + o(1))kn

k/p

)
.

This gives the following immediate corollary, which states that large p-powers of any
nontrivial graph G contain a large induced subgraph without large homogeneous sets.

Corollary 5.3. Let G be some fixed nontrivial graph and fix a prime p.
1. Let S denote a maximum clique of G, and set λ = logω(G) = logα(G). For

any k, the induced subgraph of Gk(p) on Sk, H = Gk(p) [Sk], is a graph on
N = exp(kλ) vertices which satisfies

ω(H) = O(logp N), α(H) ≤ N (1+o(1)) log(np)+1
pλ .

2. The above formula holds when taking λ = logα(G
∧�

)
� for some � ≥ 1 divid-

ing k, S a maximum clique of G
∧�

, and H = Gk(p) [Sk/�]. In particu-
lar, for sufficiently large values of k, Gk(p) has an induced subgraph H on
N = exp

(
(1 − o(1))k log c(G)

)
vertices satisfying

ω(H) = O(logp N), α(H) ≤ N
(1+o(1)) log(np)+1

p log c(G) .

Remark 5.4. In the special case G = Kn, where n, p are large and k > p,
the bound on ω(Kk

n) is
(
(1+o(1))kn

p

)
, whereas the bound on α(Kk

n) is
(
(1+o(1))kn

k/p

)
.

Hence, the optimal mutual bound on these parameters is obtained at k = p2. Writing
H = Kk

n, N = nk = np2

, and p = nc for some c > 0, we get

p =

√
(2c + o(1)) logN

log logN
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and

max{ω(H), α(H)} ≤ ((1 + o(1))epn)
p

= exp

((
1 + c√

2c
+ o(1)

)√
logN log logN

)
.

The last expression is minimized for c = 1, and thus the best Ramsey construction in
p-powers of Kn is obtained at p = n and k = p2, giving a graph H on N vertices with
no independence set or clique larger than exp

(
(1 + o(1))

√
2 logN log logN

)
vertices.

This special case matches the bound of the Frankl–Wilson Ramsey construction, and
is in fact closely related to that construction, as we next describe.

The graph FWN , where N =
(

p3

p2−1

)
for some prime p, is defined as follows: its

vertices are the N possible choices of (p2−1)-element sets of [p3], and two vertices are
adjacent iff the intersection of their corresponding sets is congruent to −1 modulo p.

Observe that the vertices of the graph K
k(p)
n for n = p and k = p2, as described above,

can be viewed as k-element subsets of [kn], where the choice of elements is restricted
to precisely one element from each of the k subsets {(j−1)n+1, . . . , jn}, j ∈ [k] (the
jth subset corresponds to the jth coordinate of the k-tuple). In this formulation, the
intersection of two sets corresponds to the number of common coordinates between
the corresponding k-tuples. As k = p2 ≡ 0 (mod p), it follows that two vertices in

K
p2
(p)

p are adjacent iff the intersection of their corresponding sets is not congruent to 0

modulo p. Altogether, we obtain that K
p2
(p)

p is an induced subgraph of a slight variant
of FWN , where the differences are in the cardinality of the sets and the criteria for
adjacency.

Another relation between the two constructions is the following: one can identify

the vertices of K
p3
(p)

2 with all possible subsets of [p3], where two vertices are adjacent
iff the intersection of their corresponding sets is not congruent to 0 modulo p. In

particular, K
p3
(p)

2 contains all the (p2 − 1)-element subsets of [p3], a variant of FWN

for the above value of N (the difference lies in the criteria for adjacency).
We note that the method of proving Theorem 5.1 can be applied to the graph

FWN , giving yet another simple proof for the properties of this well-known construc-
tion.
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