
Two lower bounds for branching programs

Mikl�os Ajtai

IBM Almaden Research, San Jose CA

L�aszl�o Babai

University of Chicago and

E�otv�os University, Budapest

P�eter Hajnal

University of Chicago and

E�otv�os University, Budapest

J�anos Koml�os

Univ. California San Diego and

Hungarian Academy of Sciences, Budapest

Pavel Pudl�ak

Mathematical Institute

Czechoslovak Academy of Sciences, Prague

Vojt�ech R�odl

Department of Mathematics

FJFI

�

CVUT, Prague

Endre Szemer�edi

University of Chicago and

Hungarian Academy of Sciences, Budapest

Gy�orgy Tur�an

University of Illinois at Chicago and

Hungarian Academy of Sciences, Szeged

1

Abstract.

The �rst result concerns branching programs having width (logn)

O(1)

. We give an

(n logn= log logn) lower bound for the size of such branching programs computing al-

most any symmetric Boolean function and in particular the following explicit function:

\the sum of the input variables is a quadratic residue mod p" where p is any given prime

between n

1=4

and n

1=3

. This is a strengthening of previous nonlinear lower bounds obtained

by Chandra, Furst, Lipton and by Pudl�ak. We mention that by iterating our method the

result can be further strengthened to
(n logn).

The second result is a C

n

lower bound for read-once-only branching programs com-

puting an explicit Boolean function. For n =

�

v

2

�

, the function computes the parity of

the number of triangles in a graph on v vertices. This improves previous exp(c

p

n) lower

bounds for other graph functions by Wegener and Z�ak. The result implies a linear lower

bound for the space complexity of this Boolean function on \eraser machines", i.e. ma-

chines that erase each input bit immediately after having read it.

1. Introduction.

1.1. Branching programs.

A Boolean function in n variables is a mapping from the set of 2

n

(0,1) input strings to

f 0; 1 g. Several models of computation of such functions have been considered in the liter-

ature (Turing machine, Boolean circuit, decision tree, Boolean formula, etc.). Branching

programs are a model generalizing decision trees. The program is a directed acyclic graph.

To avoid confusion we shall use the terms nodes and arcs to refer to the elements of this

digraph. (We shall use branching programs to do computation on graphs; these graphs

(input objects) will have vertices and edges.)

One of the nodes of the branching program is a source (has fan-in zero) and is called

START, some other nodes are sinks (fan-out zero) and are called terminal nodes. All non-

terminal nodes have fan-out two. The two arcs leaving a non-terminal node are labeled 0

and 1. Each non-terminal node is labeled by an input variable and each terminal node is

labeled 0 or 1. We shall assume that the program is leveled, START is on level one and

arcs go from each level to the next level only. This causes no loss of generality to the result

in Section 3. We shall discuss the e�ect on the result in Section 2 there.

Each input string � = �

1

:::�

n

de�nes a unique path from START to a terminal node:

the computation path determined by �. This path, after entering a nonterminal node

labeled x

i

, proceeds along the arc labeled �

i

. The path ends at a terminal node. The

function f computed by this branching program is de�ned by setting f(�) equal to the

label of this terminal node.

The size of a branching program is the number of nodes. The width of the program is

the maximum number of nodes on any level. The length is the number of levels. The mul-

tiplicity of reading is the maximum number of times any particular variable is encountered

as a node label along any computation path.

An easy counting argument shows that most Boolean functions require exponential

size branching programs. It is desirable to �nd nontrivial lower bounds for explicit Boolean

functions (functions that belong to P or at least to NP).

1

The only known lower bound for the size of an unrestricted branching program com-

puting an explicit Boolean function is due to Ne�ciporuk [Ne], [Sa] and is
(n

2

= log

2

n).

P. Beame and S. Cook observed [BC] that Ne�ciporuk's technique actually applies to the

\element distinctness" problem in the following sense. Let x

1

; . . . ; x

m

be m integers be-

tween 1 and m

2

. Written in binary, they form the input string of length n = 2m logm.

Then any branching program deciding whether or not all the x

i

are distinct must have size

(m

2

) =
(n

2

= log

2

n).

Another approach that has recently gained popularity is proving lower bounds for

branching programs with bounds on various \resources" (width, multiplicity of reading).

A similar approach to Boolean circuits has been quite successful recently [Ya2], [An], [Ra],

[Ha], [AB], [Be].

Our aim is to present two more results of this kind | one under each type of restriction.

1.2. Bounded width branching programs for symmetric functions

Bounded width branching programs have �rst been promoted by Borodin, Dolev, Fich

and Paul [BDFP]. Their main result, completed by Yao [Ya1] , is a superpolynomial lower

bound for width-2 branching programs computing the majority function. Shearer [Sh] re-

cently proved an exponential lower bound for for width-2 branching programs computing

the \0 mod 3" function. These functions are symmetric (invariant under permutations of

the variables). Interest in such functions was in part motivated by the conjecture stated

in [BDFP] that any bounded width branching program computing the majority function

would require exponential size. This conjecture has been proved false by David Barring-

ton's surprising result [Ba1] that the class of Boolean functions computed by polynomial

size, width-5 branching programs coincides with nonuniform NC

1

(log-depth, fan-in 2

Boolean circuits) and thus contains all symmetric functions. This may be part of the rea-

son why it is so di�cult to �nd even nonlinear lower bounds for bounded width branching

programs for symmetric functions.

The �rst such lower bound was derived by a beautiful Ramsey argument by Chandra,

Furst, and Lipton [CFL] for the function

P

n

i=1

x

i

= n=2. Unfortunately, as it tends to

be the case with Ramsey arguments, the bound is barely nonlinear: it is
(nw(n)) where

w(n) is the inverse function of van der Waerden numbers (see [GRS]).

A more e�ective lower bound was obtained by P. Pudl�ak [Pu]. Using a di�erent Ram-

sey argument, he proves
(n log logn= log log logn) lower bounds for threshold functions

and separates (by the same amount) the power of width k and width k + 1 branching

programs for each k. He also proves a nonlinear lower bound under no width constraint for

the majority function as well as an
(n log logn= log log logn) lower bound for bounded

width branching programs for all but a bounded number of symmetric Boolean functions.

The �rst result of this paper gives a more e�ective,
(n logn= log logn) lower bound for

bounded width branching programs computing any member of a large class of symmetric

Boolean functions (Section 2). In this range, Ramsey methods no longer seem to help

and we have to establish some \global" structure. The width bound we impose is not a

constant, only (logn)

O(1)

. We hope that it will be possible to eliminate this width bound

altogether.

2

1.3. Limited reading

A read-k-times-only branching program is allowed to encounter each variable at most k

times along any computation path. This hierarchy of classes of branching programs was

introduced by Masek [Ma]. Wegener [We] conjectures an exponential gap between the

levels of this hierarchy and gives candidate Boolean functions computable with polynomial

size read-k-times-only programs but conjectured to require exponential size read (k � 1)-

times-only programs.

No superpolynomial lower bounds are known, however, even for read-twice-only

branching programs computing an explicit Boolean function, and no such bound will ap-

pear in this paper.

In connection with the history of read-once-only branching programs we should men-

tion a paper by Fortune, Hopcroft and Schmidt [FHS]. In the context of program schemes,

they gave an exp(c

p

n) lower bound for computing an explicit function by read-once-only

branching programs satisfying the additional restriction that the variables have to be ex-

amined in precisely the same order along each computation path. Without this restriction,

however, their function is computable by a read-once-only branching program of polyno-

mial size and is indeed de�ned by such a program.

Wegener [We] and Z�ak [Za] independently prove an exp(c

p

n) lower bound for read-

once-only branching programs computing certain, clique related graph properties. We-

gener's property is NP -complete (presence of a clique of size v=2 where v is the number

of vertices), Z�ak's is polynomial time decidable (recognizing the graphs that consist of a

clique of size v=2 and v=2 isolated vertices.) We shall improve the lower bound to C

n

(for

a di�erent function, also a polynomial time decidable graph property) (Section 3).

3

1.4. Space-complexity: the eraser RAM

It has been noted ([Ma], [BFKLT], [Pu]) that a lower bound S(n) on the size of the smallest

branching program computing a Boolean function f

n

of n variables implies an
(logS(n))

lower bound on the space complexity of the family f f

n

: n = 1; 2; . . .g on any reasonable

model of computation.

The Fortune-Hopcroft-Schmidt result mentioned above corresponds to on-line space

complexity: the input bits are read once and in a given order only. The [FHS] result

provides an
(

p

n) space lower bound for such computation (independently of the given

order of input bits).

General read-once-only branching programs suggest the following machine model

which we call eraser RAM. This is a RAM with a special read-only input tape. The

machine decides in the course of the computation in what order to read the input but

once an input cell has been read, it is erased. Let us measure the space required by a

computation by the number of bits stored at any given time on the worktape.

The following is immediate.

Proposition. If a language L can be recognized by an eraser RAM in space S(n) then

the set L

n

= L\f 0; 1 g

n

can be recognized by a read-once-only branching program of size

exp(O(S(n)).

The results of Wegener and Z�ak thus imply an
(

p

n) lower bound for the eraser RAM

space complexity of their respective Boolean functions. Our result implies a linear lower

bound on the same model.

2. Bounded width branching programs: the result

The value of a symmetric Bolean function f is fully determined by the sum of the input

variables. Let N(f) denote the set of those integers from zero to n corresponding to

output 1.

The term \almost all symmetric Boolean functions" refers to a (1� o(1)) fraction of

the 2

n

possible choices of the set N(f).

We shall prove a lower bound for a class of of symmetric Boolean functions. This class

includes almost all symmetric functions as well as the following constructive example: Let

p be a prime, n

1=4

< p < n

1=3

, and let N(f) consist of the quadratic residues mod p.

Theorem. Let f be almost any symmetric Boolean function or the example given above.

Suppose a leveled branching program of width< (logn)

c

computes f where c is an arbitrary

constant. Then the size of this branching program is at least n logn=C log logn for some

positive constant C.

Comments. C1. In a more complete version of this paper, we shall improve the lower

bound to
(n logn), using the method of the present proof iteratively.

C2. The constraint that a program of width w is leveled can be eliminated at the cost

of reducing the size bound by a factor of w. This makes no di�erence for bounded width

programs but is not permissible in our more general case.

C3. We hope that it will be possible to eliminate both the width constraint and the

restriction of leveledness and still obtain a reasonable lower bound (say
(n

p

logn)).

4

Proof. For a contradiction, we shall assume that a branching program of size N <

"n logn= log logn computes our Boolean function, where " is a small constant to be speci�ed

later.

At the cost of adding at most 2 to the width and at most tripling the size, we may

assume that all terminal nodes are on the last level.

We say that two sets A;B of variables are levelwise disjoint if no x

i

2 A and x

j

2 B

appear on the same level of the program. (In particular, these sets must be disjoint.) Given

such a pair of sets, we de�ne A-levels and B-levels inductively: a level is an A-level if it

has no B-nodes and either it has at least one A-node or it is the �rst level or the preceding

level is an A-level. Otherwise it is a B-level. An alternation occurs at level L if L is either

the �rst level or the last level or L is an A-level followed by a B-level or conversely.

Lemma 1. There exist levelwise disjoint sets A;B of variables such that jAj = jBj >

n

1�5"

, and the number of alternations is less than 2" logn= log logn.

Proof. Let H be the set of those variables which appear as node labels no more than

2N=n times. Clearly, jHj � n=2.

Let us now divide the levels of the branching program into k = log

2

n blocks B

1

; . . . ; B

k

such that each block contains at most 2N=k nodes. With each variable x

i

2 H we associate

a (0; 1)-string code(x

i

) = � = �

1

. . .�

k

where �

j

= 1 precisely if x

i

appears as a node

label in block B

j

. For each variable in H, the number of 1's in a code string is at most

2N=n � 2" logn= log logn, therefore the number of distinct code strings for H is at most

k

2N=n

= n

4"

. Let � be the most frequent code string for H and let A

0

� H be the set

of those variables with code �. We have jA

0

j � n

1�4"

=2; let A � A

0

have cardinality

jAj = n

1�5"

.

A block B

i

is an �-block if �

i

= 1. The number of nodes in the union of the �-blocks

is at most

4N

2

=nk � 4"

2

n=(log logn)

2

< n=4:

Let K be the set those variables appearing in �-blocks. (K � A.)

Now, let us consider the codes of those, at least n=4, variables not in H [K. They

will all be disjoint from �. Using the most frequent code � we obtain, as before, a set B

of variables, jBj = n

1�5"

, queried in �-blocks only. The number of alternations between

A-blocks and B-blocks is at most 2N=n.

Let m = jAj = jBj = n

1�5"

. Let us set all the variables not in A [B to zero. We are

left with a set of 2

2m

possible truth assignments.

Let � = "c=(1� 6").

Lemma 2. There exist a set E of � m

��

2

m+1

truth assigments to A and a set F of

� m

��

2

m+1

truth assignments to B such that all truth assignments from the set E � F

assign the same value to f .

Proof. Let L

0

; . . . ; L

s

be those levels where alternation occurs (including the �rst and

the last levels). Select nodes l

i

2 L

i

inductively as follows.

Let l

0

be the START node. To de�ne l

i

, consider the set T (i� 1) of all truth assign-

ments de�ning computation paths which pass through l

0

; . . . ; l

i�1

. Let l

i

be a node in L

i

to which at least jT (i� 1)j=jL

i

j of these truth assignments lead.

5

If w denotes the width of the program then T (i) � w

�i

2

2m

. Moreover, the set T (i)

is clearly a Cartesian product T (i) = E(i)� F (i) where E(i) is a set of truth assignments

A ! f0; 1g and F (i) is a set of truth assignments B ! f0; 1g. Let E = E(s), F = F (s).

Clearly, jEj; jF j � w

�(s+1)=2

2

m

. Now, w � (logn)

c

and s � 2" logn= log logn therefore

w

s

� n

2"c

and jEj; jF j � n

�2"c

2

m

� m

��

2

m+1

: The node l

s

determines the value of f on

E � F .

The independence of assigning truth values to the variables in A and in B is our main

structural tool. Let N(E) stand for the set of those integers which occur as the number

of A-variables evaluated to 1 by some truth assignment in E. We de�ne N(F) similarly.

By possibly interchanging f with its negation, we obtain:

Observation 3. N(E) +N(F) is a subset of N(f).

Let q be an integer, n

1=4

< 2q + 1 < n

1=3

.

We observe that in some interval of length q, the set N(E) cannot be too sparse, and

the same holds for N(F). This is a consequence of the following observation.

Lemma 4. Let u

0

� . . . � u

d

be a nondecreasing sequence of positive numbers and

� =

P

d

i=0

u

i

. Let further � > 0 and �

0

; . . . ; �

d

be nonnegative coe�cients such that

P

d

i=0

�

i

u

i

� 2��. Then, for each positive integer k � �=u

d

, there exists an interval I of k

consecutive integers such that

P

i2I

�

i

> �k.

Proof. Let us extend the de�nitions of the u

i

and the �

i

to all integral subscripts,

setting u

i

= �

i

= 0 for subscripts i < 0 and i > d. Let �

i

=

P

1

t=0

(u

i�kt

� u

i�kt�1

).

Clearly,

P

i

j=i�k+1

�

j

= u

i

, and for j � d we have �

j

� 0. For j < 0, �

j

= 0:

Assume, for a contradiction, that

P

j+k�1

i=j

�

i

� �k for every j. It follows that

�k

P

d

j=0

�

j

�

P

1

j=�1

�

j

P

j+k�1

i=j

�

i

=

P

d

i=0

�

i

P

i

j=i�k+1

�

j

=

P

d

i=0

�

i

u

i

� 2�� and

therefore

P

d

j=0

�

j

� 2�=k.

On the other hand,

P

d

j=0

�

j

=

P

1

t=0

P

d�tk

j=d�(t+1)k+1

�

j

=

P

1

t=0

u

d�tk

< u

d

+ �=k.

A combination of the last two inequalities yields k > �=u

d

, a contradiction.

Corollary 5. Let M be the set of integers f1; . . . ;mg and let G be a subset of 2

M

.

Suppose jGj � �2

m+1

where 0 � � � 1. Let k <

p

m=2 be a positive integer. Then there

exists an interval I of length k in M such that N(G) contains at least �k members of I.

Here N(G) is the set of cardinalities of sets in G.

Proof. Without loss of generality we may assume that sets of size � m=2 comprise

the greater half of jGj. Let us now apply Lemma 4 to the sequence u

i

=

�

m

i

�

, i � m=2,

with coe�cients �

i

= 1 if jXj = i for some X 2 G; �

i

= 0 otherwise.

An application of Corollary 5 with � = m

��

to both E and F yields intervals I; J of

length q in M such that, setting P = I \N(E) and Q = J \N(F), we obtain

(a) jP j; jQj > q

1��

;

(b) P +Q is a subset of N(f).

Assuming � < 1=2 (i.e. � < 1=(2c + 6)), one can show, using the method of trigono-

metric sums, that this situation is impossible for most sets N(f) and in particular in the

6

case hen p = 2q � 1 is a prime and N(f) consists of the quadratic residues (nonresidues)

mod p. (See [Va] or [Vi] as general references for the method of trigonometric sums.)

Let R = N(f) \ (I + J). Note that I + J is an interval of length p.

According to (b), the equation

(1) x+ y = z; x 2 P; y 2 Q; z 2 R

has jP jjQj solutions. We show that the actual number of solutions is substantially less:

approximately jP jjQjjRj=p only, assuming certain bound for the discrete Fourier coe�cients

of R. This bound is valid for most sets including such random-looking explicit ones as

quadratic residues mod p.

Note that by our de�nition of the sets P , Q and R, the solutions of (1) are precisely

the solutions of the congruence

(2) x+ y � z mod p; x 2 P; y 2 Q; z 2 R:

For a �nite set T of integers mod p, let

(3) '

T

(j) =

X

t2T

!

tj

(j = 0; . . . ; p� 1)

where ! = exp(2�i=p) is a primitive p

th

root of unity. Let

(4) �

T

= max

1�j�p�1

j'

T

(j)j:

Although the method of trigonometric sums has been widely used in additive number

theory, the following simple lemma does not seem to have been stated explicitly. A similar

lemma (with a similar comment) appears in Ruzsa [Ru].

Lemma 6. Let � denote the number of solutions of (2) where P;Q and R are arbitrary

sets of mod p residue classes for a positive integer p (not necessarily prime). Then

(5) j� �

jP jjQjjRj

p

j � �

R

p

jP jjQj:

Proof. The number of solutions of (2) is precisely

(6)

1

p

p�1

X

j=0

'

P

(j)'

Q

(j)'

R

(�j):

The dominant term here corresponds to j = 0 and gives the expected number

jP jjQjjRj=p. In order to estimate the error term, we observe that for any set T ,

(7)

p�1

X

j=0

j'

T

(j)j

2

= pjT j

7

(because the matrix (!

ij

=

p

p)

p�p

is unitary).

The error term is

1

p

p�1

X

j=1

j'

P

(j)'

Q

(j)'

R

(�j)j �

1

p

�

R

p�1

X

j=0

j'

P

(j)jj'

Q

(j)j:

We estimate the right hand side using the Cauchy inequality and the above identity.

We obtain that the error term is

�

1

p

�

R

((

p�1

X

j=0

j'

P

(j)j

2

)(

p�1

X

j=0

j'

Q

(j)j

2

))

1=2

= �

R

(jP jjQj)

1=2

:

It is easy to see that �

R

= O(

p

p log p) for almost every set R and �

R

� (1 +

p

p)=2

when p is a prime and R is the set of quadratic residues (non-residues). Therefore Lemma

6 implies that the contribution of the error terms is indeed negligible, thus completing the

proof of the Theorem.

3. Read-once-only branching programs: the result

Let n =

�

v

2

�

and let us �x a bijection between the set f 1; . . . ; n g and the set of pairs from

f 1; . . . ; v g. Each string x = x

1

. . .x

n

2 f 0; 1 g

n

can be thought of as representing a graph

G(x) on the vertex set f 1; . . . ; v g. The value of each input variable corresponds to the

presence or absence of an edge between a given pair of vertices in G(x).

Let f

n

(x) denote the number of triangles in G(x) modulo 2.

Theorem. There exists a positive constant � such that every read-once-only branching

program computing f

n

has size at least 2

�n

.

First we outline the idea of the proof.

We shall use the term \edge" to mean any of the

�

v

2

�

pairs of vertices. (These are the

edges of the complete graph K

v

.) Let P be a path in a branching program. We shall say

that an arc of P labeled 1 from a node labeled x

e

has the e�ect of accepting the edge e; the

arc labeled 0 from the same node rejects e. The edges accepted by P form the graph A(P),

the rejected edges form the graph R(P). The union of these two edge sets constitutes the

set D(P) of edges determined by P .

Assume f

n

is computed by a read-once-only branching program of size less than 2

"n

for some appropriately selected small positive constant ". From this assumption we shall

derive

(8) the existence of a node w in the program, two paths P

0

and P

1

both leading from

START to w, and an edge e not determined by either P

i

, such that the parity of the

number of triangles containing e in the graph A(P

i

) is i.

The read-once-only property implies that after w, the program follows the same path

of computation for input graphs A(P

0

) [e and A(P

1

) [e and thus leads to the same

terminal node. This means these two graphs have the same number of triangles mod 2;

the same holds for A(P

0

) and A(P

1

). This contradicts the choice of the P

i

and e.

We proceed to showing how w, e, P

0

, and P

1

satisfying (8) are found.

The depth of a node is its distance from START.

8

Proposition 1. Let P be a path from START to a terminal node. If three edges are

undetermined by this path, they cannot form a triangle.

Proof. Suppose, to the contrary, that the edges e

1

; e

2

; e

3

of a triangle are left unde-

termined by P . Then the parity of the number of triangles in each graph A(P) [e

i

must

agree with the parity of the number of triangles in A(P). But then adding all the three

edges at once will change the parity, a contradiction.

Corollary 2. The depth of each terminal node is at least v(v � 2)=4.

Proof: by Tur�an's Theorem in graph theory (cf. [Lo, Probl.10.30,34]). Any path of

length less than v(v � 2)=4 leaves more than v

2

=4 edges undetermined, forcing the graph

of undetermined edges to contain a triangle.

It follows that for any constant c < 1=4, there are precisely 2

cn

computation paths

of length cn beginning at START. Consequently there exists a node w such that at least

2

(c�")n

paths of length cn connect START to w.

Let us �x c at a quite small value; any c � 10

�5

will be safe. Then, " must be even

smaller; let us set " = c

3=2

.

Using w as a \checkpoint", we shall classify the edges according to their status at the

time various computation paths pass through w. We shall see that these classes exhibit a

strong structure.

Let D denote the set of edges determined by at least one path from START to w. Let

U denote the set of the remaining (undetermined) edges; jDj+ jU j = n.

Proposition 3. Let P be any path from START to w. It is impossible that three edges

e

1

, e

2

, e

3

form a triangle, where e

1

2 D �D(P), e

2

; e

3

=2 D(P).

Proof. The proof is similar to that of Proposition 1. Suppose the contrary. The

read-once-only property implies that e

1

is not tested along any path starting at w and

therefore the parity of the number of triangles in A(P) and A(P) [f e

1

g is the same. In

other words, e

1

is contained in an even number of triangles in A(P) [f e

1

g. Similarly

we infer that the number of triangles containing e

1

in the graph A(P) [f e

1

; e

2

; e

3

g is

even. But this number is precisely one greater than the number just shown to be even, a

contradiction.

Let AR denote the set of those edges which are accepted along some path from START

to w and are rejected along some other. Clearly, AR � D.

Proposition 4. There is no triangle e

1

; e

2

; e

3

with e

1

2 AR, e

2

; e

3

2 U .

Proof: a parity argument similar to the proofs of Propositions 1 and 3.

One can deduce from Proposition 3 that most edges determined along any path be-

tween START and w are actually determined along P , i.e. the set D � D(P) is small.

Moreover, most edges determined by some path to w are both accepted and rejected along

paths to w, i.e. D � AR is a small set. More speci�cally:

Lemma 5. (a) jD �D(P)j < 3c

3=2

n.

(b) jU j > (1� c� 3c

3=2

)n:

(c) jARj � (c� ")n:

(d) jD � ARj � 4c

3=2

n:

9

Proof. For a set A of edges, let deg

A

(p) denote the degree of p with respect to the

graph formed by A.

(a) Let e = pq be any edge in D �D(P). By Proposition 3, every vertex is adjacent

in D(P) to at least one end of e. Therefore,

deg

D(P)

(p) + deg

D(P)

(q) � (v � 2):

Adding up these inequalities for all pq 2 D �D(P) we obtain

(9)

X

p

deg

D�D(P)

(p)deg

D(P)

(p) � (v � 2)jD �D(P)j:

On the other hand, also by Proposition 3, the neighborhood in D �D(P) of any vertex p

induces a clique in D(P). Therefore

�

deg

D�D(P)

(p)

2

�

� jD(P)j = cn = c

�

v

2

�

:

Consequently,

(10) deg

D�D(P)

(p) � 1 + c

1=2

v:

Combining (9) and (10),

jD �D(P)j �

1 + c

1=2

v

v � 2

X

p

deg

D(P)

(p) =

2 + 2c

1=2

v

v � 2

jD(P)j � 3c

3=2

n:

(b) follows immediately from (a) since jU j = n� jDj.

(c) Clearly, the logarithm of the number of START-to-w paths is a lower bound for

jARj.

(d) By (a), jDj � jD�D(P)j+ jD(P)j � 3c

3=2

n+ cn. Combining this inequality with

(c) we obtain jD �ARj � ("+ 3c

3=2

)n = 4c

3=2

n:

Lemma 5(b) implies that the graph U has a vertex p

0

of degree greater than d =

(1 � c � 4c

3=2

)v. Let S be a set of precisely d neighbors of p

0

in U and let T be the

complement of S (jT j+ jSj = v).

Proposition 4 implies that no edge in AR has both of its endpoints in S. From this,

it follows that AR is \mostly" bipartite, with bipartition (S; T). We can actually deduce

even more structure: most vertices in T are adjacent in AR to either almost all or to almost

no vertices in S (about half of the vertices will satisfy each alternative). More precisely,

let us divide T into three classes, T

0

; T

1

; T

2

. We shall refer to a moderately large constant

K, 20 � K � 1=(8c

1=2

).

Let T

0

consist of those p 2 T which have more thanKc

1=2

v neighbors in S in the graph

D�AR. We put p 2 T � T

0

into T

1

or T

2

according to whether p has more AR-neighbors

in S than U -neighbors or not. Let deg

S

AR

(p) denote the number of AR-neighbors of p in

S and analogously for other classes.

10

Lemma 6. (a) jT

0

j < 2cv=K:

(b) For each p 2 T

1

, deg

S

U

(p) � 5c

3=2

v:

(c) For each p 2 T

2

, deg

S

AR

(p) � 5c

3=2

v:

Proof. By Lemma 5(d),

jT

0

jKc

1=2

v � jD �ARj � 4c

3=2

n:

Claim (a) is now immediate.

To prove (b) and (c), let p 2 T � T

0

. Let N

1

and N

2

denote the sets of U -neighbors

and AR-neighbors of p in S, resp.; let n

i

= jN

i

j. Since p 62 T

0

, we have

(11) n

1

+ n

2

� jSj �Kc

1=2

v > 6v=7:

On the other hand, by Proposition 4, all edges between N

1

and N

2

belong to D�AR.

By Lemma 5(d) it follows that n

1

n

2

� 4c

3=2

n < 2c

3=2

v

2

. Consequently,

minfn

1

; n

2

g �

2n

1

n

2

n

1

+ n

2

< 5c

3=2

v:

Let X denote the set of AR-edges between T

1

and S.

Corollary 7. (a) (1�

8c

K

)cv=2 � jT

1

j � (1 + 4c

1=2

)cv=2:

(b) jAR�Xj <

3c

K

v

2

:

Proof. We begin with (b). Clearly,

jAR�Xj < jT j

2

+ jT

2

jmax

p2T

2

deg

S

AR

(p) + jT

0

jjSj:

By de�nition, jT j � (c + 4c

3=2

)v. We use Lemma 6(c) to estimate the second term and

Lemma 6(a) and the fact jSj < v for the last term.

For the upper bound in (a), we obtain from Lemma 6(b) that

jT

1

j �

jDj

min

p2T

1

deg

S

D

(p)

�

jDj

jSj � 5c

3=2

v

:

Lemma 5(a) provides the bound jDj � (c+3c

3=2

)n. By the de�nition of S (after the proof

of Lemma 5), jSj = (1� c� 4c

3=2

)v. A combination of these estimates yields the desired

upper bound.

For the lower bound we �rst observe that jXj > (c�"�7c=K)v

2

=2 > (1�8=K)cv

2

=2.

This follows from Lemma 5(c) and part (b) of this Corollary. On the other hand, trivially,

jT

1

j � jXj=v.

The structural consequence of Lemma 6 and Corollary 7 for the AR graph is that

the subgraph X induced between T

1

and S is a nearly complete bipartite graph, and X

contains almost all edges of AR.

11

In order to focus on X, let us make a decision on the value of each input variable

(edge) in AR�X. There are 2

jAR�Xj

< 2

(3=K)cv

2

possible outcomes (by Corollary 7(b)).

Let us choose the one that is the most frequent among the START to w computation

paths. Having �xed these values,we still have at least

(12) 2

(c�")n�(3=K)cv

2

> 2

c

2

v

2

(1�7=K)

computation paths left. Let � denote the set of these paths:

(13) log j�j �

c

2

v

2

(1� 7=K):

(The base of the log is 2.)

Let t = jT

1

j and s = jSj. We see, that log j�j is nearly ts. In order to complete the

proof, we show, that, unless situation (8) arises, the number of subgraphs of X arising

from paths P 2 � must be substantially less than 2

ts

: only about 2

ts=2

. This is impossible

because di�erent paths de�ne di�erent subgraphs of X. (This in turn is true since the

possible branchings on variables in AR�X have been eliminated.)

The proof is based on a counting lemma in mod 2 linear algebra.

Let A;B;C be (0; 1)-matrices of the same dimensions.

We shall say that A � C mod B if for every i; j, B[i; j] = 0 implies A[i; j] = C[i; j].

Lemma 8. Let A

1

; . . . ; A

N

be t�s matrices over the two-element �eld GF (2). Let further

B and C be s � s matrices over GF (2). Let � be the number of 1's in B. Assume that

A

T

i

A

i

� C mod B for every i. Then

(14) logN < � +

t

2

(s+ t+ log s):

Proof. First we estimate the number of t � s matrices of rank � t=2 over GF (2).

There are less than 2

t

2

=2

possible choices of the column space. Given the column space of

dimension � t=2, there are � 2

t=2

choices for each column, giving a total of � 2

t(s+t)=2

matrices.

Next, we estimate the number of those A

i

having rank > t=2. Such a matrix has

a set of t=2 linearly independent columns; they are positioned in any of

�

s

t=2

�

< s

t=2

ways. Let us �x their positions, say columns 1; . . . ; t=2, and decide their entries. Let us

estimate, how many ways the remaining columns can be �lled. For each pair (i; j) where

1 � j � t=2 < i � s and B[i; j] = 0, we have a linear condition

P

t

k=1

x

ik

A[k; j] = C[i; j]

for the prospective entries x

ik

. All these equations are linearly independent and their

number is � t(2s� t)=4 � �. This reduces the number of candidates (2

ts

) by a factor of

2

�t(2s�t)=4+�

. The number of those A

i

of rank > t=2 is thus

(15) < s

t=2

2

ts�t(2s�t)=4+�

= 2

�+

t

2

(s+

t

2

+log s)

:

Add the bound 2

t(s+t)=2

on the number of low rank matrices to this; the �gure in (14) is

a generous overestimate of logarithm of the sum.

12

Let now s = jSj, t = jT

1

j and for each P 2 � let A

P

be the t � s adjacency matrix

of the bipartite subgraph of X de�ned by P . (This graph is the restriction to T

1

� S

of A(P).) Let B be the s � s adjacency matrix of the induced subgraph of D � AR on

S. (Recall that the complement, relative to S, of this graph belongs entirely to U by

Proposition 4.) Observe that the entries of A

T

P

A

P

count the number of common neighbors

of each pair of vertices in S. The falsity of (8) is thus precisely the statement that all

the A

T

P

A

P

� C mod B mod 2 for some �xed s� s matrix C. The number of 1's in B is

� = jD�ARj � 4c

3=2

n < 2c

3=2

v

2

by Lemma 5(b). Using the upper bound of Lemma 7(a)

for t we now infer from Lemma 8 that

(16) log j�j < � +

t

2

(s+ t+ log s) < � +

t

2

(v + log v) <

c

4

v

2

(1 + 12c

1=2

+

2 log v

v

):

This contradicts (13) for large v, completing the proof of the Theorem.

References

[AB] N. Alon and R. Boppana, The monotone circuit complexity of Boolean functions,

Combinatorica, to appear

[An] A. E. Andreev, On a method of obtaining lower bounds for the complexity of

individual monotone functions (in Russian), Dokl. Akad. Nauk SSSR 282/5

(1985), 1033-1037

[Ba1] D. A. Barrington, Bounded-width polynomial size branching programs recognize

exactly those languages in NC

1

, draft, MIT 1985

[Ba2] D. A. Barrington, Width-3 permutation branching programs, draft, MIT 1985

[Be] P. Beame, Limits on the power of concurrent-write parallel machines, Proc. 18th

ACM STOC, Berkeley CA 1986

[BC] P. Beame and S. Cook, 1985, private communication

[BDFP] A. Borodin, D. Dolev, F. E. Fich and W. Paul, Bounds for width-2 branching

programs, Proc. 15th ACM STOC, 1983, pp. 87{93.

[BFKLT] A. Borodin, M.J. Fischer, D.G. Kirkpatrick, N.A. Lynch and M. Tompa, A time-

space tradeo� for sorting on nonoblivious machines, J.C.S.S. 22 (1981) 351-364.

[CFL] A. K. Chandra, M. L. Furst and R. J. Lipton, Multiparty protocols, Proc. 15th

ACM STOC, 1983, pp. 94{99.

[FMP] M. J. Fischer, A. Meyer and M. S. Paterson, Omega(n logn) lower bounds on

length of Boolean formulas, SIAM J. Computing 11 (1982) 416-427

[FHS] S. Fortune, J. Hopcroft, E. M. Schmidt, The complexity of equivalence and con-

tainment free single variable program schemes, Cornell Univ. TR 77-310

[GRS] R. L. Graham, B. Rothschild and J. Spencer, Ramsey Theory, Wiley, New York

1980.

[Ha] J. Hastad, Improved lower bounds for small depth circuits, Proc. 18th ACM

STOC, Berkeley CA 1986

[Le] C. Y. Lee, Representation of switching functions by binary decision programs,

Bell Syst. Tech. Journal 38 (1959), 985-999.

13

[Lo] L. Lov�asz, Combinatorial Problems and Exercises, North-Holland 1979.

[Ma] W. Masek, A fast algorithm for the string editing problem and decision graph

complexity, M.Sc. Thesis, MIT 1976

[Ne] E. I. Ne�ciporuk, On a Boolean function, Dokl. Akad. Nauk SSSR 169 No. 4

(1966), 765-766. English translation: Soviet Math. Doklady 7 (1966), pp. 999-

1000.

[Pu] P. Pudl�ak, A lower bound on complexity of branching programs, Proc. Conf. on

the Mathematical Foundations of Computer Science 1984, Springer Lecture Notes

in Computer Science 176 (1984), 480{489.

[Ra1] A. A. Razborov, Lower bounds for the monotone complexity of some Boolean

functions (in Russian), Dokl. Akad. Nauk SSSR 281 (1985), 798-801.

[Ra2] A. A. Razborov, A lower bound for the monotone network complexity of the

logical permanent (in Russian), Matematicheskie Zametki 37/6 (1985)

[Ru] I. Z. Ruzsa, Essential components, Acta Arithm.?, to appear

[Sa] J. E. Savage, The Complexity of Computing, Wiley 1976

[Sh] J. B. Shearer, announced in [Ba]

[Va] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press,

1981

[Vi] I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Num-

bers, Interscience Publ., London

[We] I. Wegener, On the complexity of branching programs and decision trees for clique

functions, Universit�at Frankfurt, Fachbereich Informatik, Int. Rept. 5/84, 1984

[Ya1] A. C. Yao, Lower bounds by probabilistic arguments, Proc. 24th IEEE FOCS,

1983, pp. 420{428.

[Ya2] A. C. Yao, Separating the polynomial-time hierarchy by oracles, Proc. 26th IEEE

FOCS, Portland OR 1985, pp. 1{10.

[Za] S. Z�ak, An exponential lower bound for one-time-only branching programs, Proc.

Conf. on Mathematical Foundations of Computer Science 1984, Springer Lecture

Notes in Computer Science 176 (1984), 562-566.

14

