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Abstract. G and H, two simple graphs, can be packed if G is isomorphic to a

subgraph of

�

H, the complement of H. A theorem of Catlin, Spencer and Sauer

gives a su�cient condition for the existence of packing in terms of the product of

the maximal degrees of G and H. We improve this theorem for bipartite graphs.

Our condition involves products of a maximum degree with an average degree.

Our relaxed condition still guarantees a packing of the two bipartite graphs.

0. Introduction

If G is a graph, then V (G); E(G); D(G); �(G);

�

d(G) will denote its vertex set,

edge set, maximal degree, minimal degree and average degree. Let U be any

subset of V (G). Let D

U

(G) and

�

d

U

(G) be the maximum and average degrees

where the maximum and average taken over the vertices in U (the corresponding

degrees are based on the whole graph). Let G

v

be the collection of graphs with

vertex set of size v. Let B

u;w

be the collection of bipartite graphs with two color

classes of size u and w. If f be a 1-1 map from V (G) onto W , let G

f

be the

image of G under f , i.e. a graph on the vertex set W .
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Definition 0.1. (a) Let G;H 2 G

v

. A packing is a bijection f : V (H)! V (G)

such that the edge set of G and H

f

are disjoint.

(b) Let G;H 2 B

u;w

. Let us assume that G has color classes U and W and H

has color classes U

0

and W

0

. A bipartite packing is a bijection f that maps U

0

to

U and W

0

to W such that the edge set of G and H

f

are disjoint.

Packing graphs is a heavily studied subject in graph theory. A good survey of

this research can be found in [Bo78]. Next we summarize the known results on

packing.

Much e�ort has been spent for packing sparse graphs [SS78], [TY87], [BS77],

[BS78], [HHS81], [STY85], [FRSS81]. A typical theorem from this area is:

Theorem 0.2. (N. Sauer and J. Spencer [SS78]) If jE(G)j; jE(H)j � v�2 (where

jV (G)j = jV (H)j = v) then G and H can be packed.

One can extend packing to packing several graphs. We just refer the reader to

[GyL76], and we mention a nice conjecture from this paper.

Conjecture 0.3. (A. Gy�arf�as and J. Lehel [GyL76])

Let T

k

be any tree with vertex set of size k (k = 1; . . . ; n). Then there is a

packing of T

1

; T

2

; . . . ; T

n

into the complete graph on n vertices.

The following few theorems give su�cient conditions on the number of edges

for the existence of a packing.

Theorem 0.4. (B. Bollob�as and S.E. Eldridge [BE78])

If jE(G)j + jE(H)j � b

3

2

(v � 1)c (where jV (G)j = jV (H)j = v) then there is a

packing of G and H.

For improvements (but still with a linear upper bound in the condition on the

sum of the number of edges) see [BE78].

Theorem 0.5. (B. Bollob�as and S.E. Eldridge [BE78])

(i) If G;H 2 G

v

and jE(G)jjE(H)j <

�

v

2

�

then G and H can be packed.

(ii) If G;H 2 B

u;w

and jE(G)jjE(H)j < uw, then G and H can be packed as

bipartite graphs.

Theorem 0.6. (B. Bollob�as and S.E. Eldridge [BE78])

(i) If G;H 2 G

v

, jE(H)j <

v

3

and jE(G)j <

1

15

v

3

2

then G and H can be packed.

(ii)If G;H 2 B

u;u

, jE(H)j <

u

3

and jE(G)j <

1

15

u

3

2

then G and H can be packed

as bipartite graphs.

For us the most important su�cient conditions will be the following ones on

the maximal degrees.

Theorem 0.7. (Conditions on the maximal degree [SS78],[Ca74]) (i) If G;H 2

G

v

and D(G)D(H) <

v

2

then G and H can be packed.
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(ii) If A;B 2 B

u;w

and D

U

(A)D

W

(B) +D

W

(A)D

U

(B) < u, then A and B can

be packed as bipartite graphs.

In the last two statements the bounds in the conditions are tight (up to negli-

gible factors). For theorem 0.7.(ii) (the bipartite case) this can be easily shown

using the probabilistic method in [SS78]. For theorem 0.7.(i) there is an easy

construction [BE78] showing that one cannot improve the condition with more

than a factor of 2. That example suggests the following conjecture.

Conjecture 0.8. (B. Bollob�as and S.E. Eldridge [BE78])

LetG andH be two graph on a vertex set of size v. If (D(G)+1)(D(H)+1) � v+1

then there is a packing of G and H.

The condition in theorem 0.7.(ii) restricts the product of the maximum degrees

of G and H. Our improvement comes from relaxing one of the terms to average

degree.

Theorem 0.9. Let G;H 2 G

u;w

. Assume that

(a) u � w � 2u,

(b) d

U

0

(G)D

W

(H) �

u

100

,

(c) d

U

(H)D

W

0

(G) �

u

100

,

(d) D

U

(G); D

U

0

(H) �

u

1000 log u

.

Then G and H can be packed.

This research was motivated by questions on decision tree complexity. For an

application of this theorem in this direction see [Ha89].

1. The improved packing theorem for bipartite graphs

In this section we prove the result stated in the introduction.

First, we review Catlin's idea. Given G;H 2 G

u;w

with color classes U;W

and U

0

;W

0

, resp. We want to �nd a su�cient condition for existence a packing.

We take an arbitrary bijection f : U

0

! U . De�ne a bipartite graph between W

and W

0

based on whether two nodes can be identi�ed or not. Now the problem

is simply �nding a matching in this auxiliary graph.

Definition 1.1. Let G;H 2 G

u;w

. Let U;W;U

0

and W

0

be the corresponding

color classes. Given f , a bijection U

0

! U , we de�ne a bipartite graph B

f

with

color classes W andW

0

. We make x 2W and y 2W

0

adjacent i� x and y can be

identi�ed, i.e., the neighborhoods of x in G and of y in H

f

are disjoint subsets

of U .

Now it is easy to show that if G and H satisfy the condition of Theorem 0.7.(ii)

then for any bijection f B

f

satis�es the condition of K�onig's theorem (see e.g.

[Lo79], Chap. 7, prob. 4.) and therefore possesses a perfect matching along

which we can map W

0

to W to obtain a packing. It is worth to state this fact as

a separate lemma.

3



Lemma 1.2. (i) Let G 2 B

u;u

. If �

U

(G); �

W

(G) �

u

2

then G has a perfect

matching.

(ii) Let G 2 B

u;u

. If �

U

(G) + �

W

(G) � u then G has a perfect matching.

The proof of our result is probabilistic. Our goal is to show that there exists

a bijection f : U ! U

0

such that B

f

has a perfect matching. We are going to

show that this is true for a random bijection.

Let d

1

; . . . ; d

u

be all the degrees in U , and let e

1

; . . . ; e

u

be all the degrees in

U

0

.

Lemma 1.3. Let f : U ! U

0

be a random bijection, all bijections being equally

likely.

Prob(B

f

has perfect matching) � 1�w Prob(

X

i2R

d

i

�

w

2

)�w Prob(

X

i2S

e

i

�

w

2

);

where S is a random subset of U

0

of size D

W

(G), all such subsets being equally

likely, and R is a random subset of U of size D

W

0

(G), all such subsets being

equally likely.

Proof: We are interested in the event

E = B

f

has a perfect matching :

By lemma 1.2 the following event is a subset of E.

F = Each node of B

f

has degree at least

w

2

:

One elementary bad event is

F

x

= x has degree in B

f

less then

w

2

(for x 2W [W

0

):

Using this notation

E � F = 
� [

x2W[W

0

F

x

:

Thus

Prob(E) � 1�

X

x2W[W

0

Prob(F

x

):

For x 2W , F

x

is exactly the event that the image f(N(x)) of N(x) (f(N(x)) �

U

0

) has a neighborhood in W

0

of size more than

w

2

. The event that the sum of

the degrees in f(N(x)) is at least

w

2

is a superset of F

x

. If x 2W then f(N(x))

is a random set of size jN(x)j and its size is at most D

W

(G). This completes the

proof.
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Our conditions on G and H are symmetric. So it is enough to show that

Prob(

X

i2R

d

i

�

w

2

) <

1

2w

:

R is a random subset of U

0

. There are di�erent models for random sets. In

our case R is a random set of a given size. Another model is that each element

of our universe will be in the set with a given probability. This model is more

convenient. It is well-known in the theory of random graphs [Bo85] that by

choosing the right parameters the two models yield basically the same theorems.

So our next step is to change to the second model. For this we need some

inequality for Bernoulli random variables.

Lemma 1.4. (Cherno� [Ch52]) Let X

1

; X

2

; :::; X

N

be independent 0-1 random

variables such that Prob(X

i

= 1) = p. If m � Np is an integer then

Prob(

X

N

i=1

X

i

� m) �

�

Np

m

�

m

exp(m�Np):

An easy consequence of this is the following.

Lemma 1.5. ([ES74], [AV79]) Let X

1

; X

2

; :::; X

N

be independent 0-1 random

variables such that Prob(X

i

= 1) = p. Then for every 0 < � < 1,

(i) Prob(

P

N

i=1

X

i

� b(1� �)Npc) � exp

�

�

�

2

Np

2

�

:

(ii) Prob(

P

N

i=1

X

i

� b(1 + �)Npc) � exp

�

�

�

2

Np

3

�

:

And now let us see the reduction.

Lemma 1.6. Let X

1

; . . . ; X

u

be independent random variables such that

Prob(X

i

= d

i

) = p > 2

D

W

(G)

u

and Prob(X

i

= 0) = 1 � p. Let � be a ran-

dom subset of 1; 2; . . . ; u of size D

W

(G). Then

Prob(

X

i2�

d

i

�

w

2

) < 2 Prob(

u

X

i=1

X

i

�

w

2

):

Proof: Let �

i

be a random subset of 1; 2; . . . ; u of size i, with all i-subsets of

1; 2; . . . ; u being equally likely. Let P

i

= Prob(

P

j2�

i

d

j

>

w

2

). Then P

0

� P

1

�

::: � P

u

.
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Then

Prob(

X

u

i=0

X

i

>

w

2

) =

X

u

k=1

�

u

k

�

p

k

(1� p)

u�k

P

k

�P

b

1

2

upc

X

b

1

2

npc�k�b

3

2

upc

�

u

k

�

p

k

(1� p)

u�k

�

1

2

P

b

1

2

upc

�

1

2

P

D

W

(G)

=

1

2

Prob(

X

i2�

d

i

>

w

2

):

So at this point using the notation of the previous lemma, we will give an

upper bound on Prob(

P

u

i=1

X

i

�

w

2

).

Let us �x the value of p to be 10

D

W

(G)

u

. Notice that the conditions of theorem

0.9 imply

w

2

� E(

P

u

i=1

X

i

) =

P

i

10

D

W

(G)

u

d

i

= 10D

W

(G)d

U

0

. So we need an

upper bound on the probability that a sum of independent random variables is

much greater than their expected sum. The Cherno� bound is that kind of result,

but it is about Bernoulli random variables. We use the method of the proof of

Cherno�'s theorem to get the desired upper bound. For that we need the notion

of characteristic function.

Definition 1.7. Let X be a random variable. Its characteristic function is e

tX

,

a random variable depending on the real parameter t.

The following lemma shows an important property of the characteristic func-

tion.

Lemma 1.8. Let X

1

; . . . ; X

N

be independent random variables. Then

E(

N

Y

i=1

e

tX

i

) =

N

Y

i=1

E(e

tX

i

):

Now we have everything required to prove the last lemma that we need.

Lemma 1.9. Let 0 � d

1

; d

2

; :::; d

u

� L =

u

1000 logu

be integers and de�ne d by

P

u

i=1

d

i

= du. Let X

1

; X

2

; :::; X

u

be independent random variables such that

Prob(X

i

= d

i

) = p and Prob(X

i

= 0) = 1� p. Then Prob(

P

u

i=1

X

i

> 10pdu) �

1

u

2

.

Proof: For all positive t

Prob(

X

i

X

i

> 10pdu) = Prob(e

(

P

i

X

i

)t

> e

10pdut

):
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Let us compute E(e

P

i

X

i

t

).

E(e

P

i

X

i

t

) = E(

Y

i

e

X

i

t

) =

Y

i

E(e

X

i

t

)

=

Y

i

(1� p+ pe

d

i

t

) =

Y

i

(1� p(1� e

d

i

t

)):

An easy calculation shows that this product is maximal if all d

i

's are 0 or L,

the maximal possible value of them. So

E(e

P

i

X

i

t

) � (1�p(1�e

Lt

))

du

L

< (1�p(1�(1+2Lt)))

du

L

< (1+2pLt)

du

L

< e

2pdut

;

assuming that Lt � 1.

Using Markov's inequality

Prob(

X

i

X

i

> 10pdu) = Prob(e

P

i

X

i

t

> e

10pdut

) �

e

2pdut

e

10pdut

= e

�8pdut

:

Fixing the value of t to be

1

L

our bounds are still true and we obtain the desired

upper bound.

We obtain the promised packing theorem (theorem 0.9) as a corollary.

Proof of Theorem 0.9: Applying lemma 1.9, lemma 1.6 and lemma 1.3 we ob-

tain that for a random f that B

f

has a perfect matching with positive probability

. This proves that there exists a concrete bijection f such that the corresponding

B

f

has a perfect matching. This perfect matching is an identi�cation of W and

W

0

, which together with f gives us a packing.

Our proof heavily uses the fact that we are working with bipartite graphs. It

is an interesting open question whether one can extend our result to the case of

general graphs.
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