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Abstract. Let C be a con�guration of 1's. We de�ne f(n;C) to be the maximal

number of 1's in a 0-1 matrix of size n � n not having C as a subcon�guration.

We consider the problem of determining the order of f(n;C) for several forbidden

C's. Among others we prove that f(n;

�

1 1

1 1

�

) = �(�(n)n), where �(n)

is the inverse of the Ackermann function.

1. Introduction

A con�guration, C = (c

ij

) (1 � i � u; 1 � j � v), is a partial matrix with

1's and blanks at the entries. All the matrices we are going to work with will be

0�1 matrices. We say that a matrixM = (m

ij

) does have the con�guration C if

one can �nd u rows i

1

; i

2

; . . . ; i

u

; i

1

< � � � < i

u

and v columns j

1

; j

2

; . . . ; j

v

; j

1

<

� � � < j

v

in M such that the corresponding submatrix contains C, i.e. m

i

�

;j

�

= 1

whenever c

�;�

= 1. Let f(n;m;C) denote the maximum number of 1's in an

n�m matrix M not containing C. In the case of n = m we write f(n;C). One

can allow several forbidden con�gurations, the corresponding threshold function

is f(n;m; fC

1

; . . . ; C

n

g) or f(n; fC

1

; . . . ; C

n

g).

Our research is closely related to previous works in combinatorics.

First, let us mention Tur�an's theory in extremal graph theory. There the

question is: Given a graph G, what is T (n;G), the maximum number of edges

of a graph with n vertices and not containing G as a subgraph? A special case is

�
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when we work in the universe of bipartite graphs. Our matrices can be considered

as bipartite graphs. The important di�erence between Tur�an's theory and our

question that in our case the vertices (the rows and columns) are ordered. This is

a very important di�erence but in some special case the restriction on the order

is insigni�cant. An example is the four cycle (complete bipartite graph between

two color classes of size 2 each). Classical results in graph theory [KST], [ERS],

[B] immediately give us the following theorem.

Theorem 1.1. f(n;

�

1 1

1 1

�

) = �(n

3

2

) .

We do not know exactly how these two problems are related, but the following

facts are known. The Erd}os-Stone-Simonovits theorem ([ESi], [ESt], for a survey

see Bollob�as' book [Bo]) says that the order of magnitude of T (n;G) depends

on the chromatic number of G, namely lim

n!1

T (n;G)

(

n

2

)

= 1 � (�(G) � 1)

�1

.

This theorem gives sharp estimate on T (n;G), except for bipartite G. For every

bipartite graph B which is not a tree there are positive constants c

1

and c

2

(not

depending on n) such that


(n

1+c

1

) � T (n;B) � O(n

2�c

2

)

holds. If the graph is a tree F , then it is straightforward that T (n;F ) = �(n).

However we will see that our problem has completely di�erent threshold func-

tions. For a special matrix (such that the corresponding graph is a tree, hence

it has linear Tur�an function) our threshold function turns out to be �(n logn).

An other related question is raised by Davenport and Schinzel. A sequence

s = x

1

x

2

. . .x

l

is called a Davenport-Schinzel sequence, s 2 DS

k

(n), if x

i

6= x

i+1

,

x

i

2 f1; 2; . . . ; ng and s does not contain a subsequence x

i

1

x

i

2

. . .x

i

k

such that

x

i

1

= x

i

3

= . . . = x

i

2t�1

= . . . 6= x

i

2

= x

i

4

= . . . = x

i

2t

= . . .

(i

1

< i

2

< . . . < i

k

). Let ds

k

(n) denote the maximum length of an s 2 DS

k

(n).

It is obvious that

ds

3

(n) = n; ds

4

(n) = 2n� 1:

Szemer�edi [Sz] proved that ds

k

(n) = O(n log

�

(n)) for all �xed k while n tends

to in�nity. (Here, as usual, log

�

n denotes the inverse of the function p:N! N

with p(1) = 2, p(n+1) = 2

p(n)

.) Recently, mainly due to the works of M. Sharir

([S], [HS], [GHS], [K]) it is known that the true order of the magnitude of ds

k

(n)

for k � 5 is really superlinear, e.g. (Hart and Sharir [HS])

ds

5

(n) = �(n�(n));

where �(n) is the inverse Ackermann function, a very slowly growing function.

More on this see in Section 7 and 8.
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Some speci�c con�gurations were investigated in previous papers (see [BGy]

and [F]). The motivation of those results were geometrical.

For a matrix M (or vector as a special case) jjM jj denotes the number of its

entries equal to 1, M

T

is its transpose. [n] is the set of the �rst n positive

integers, and [a; b] =: fa; a+ 1; . . . ; bg.

2. A reduction between matrices

Let C be a con�guration of 1's. We are going to de�ne two operations on C.

The �rst one is simply deleting an entry. The second one is attaching a new

column or row to the boundary of C and placing an entry 1 in the new column

or row, next to an existing one in C.

Definition 2.1. If D can be constructed from C using one of these operations

we say that D is obtained by an elementary operation from C. We use the

notation C

e

�! D. Let �! be the transitive closure of

e

�!, i.e. C �! D if D can

be constructed from C using a sequence of elemantary operations.

Note that the size of the matrix can decrease by the �rst type of elementary

operation if the deletion of the given entry creates an empty row or column.

Figure 2.2 shows several con�gurations and their relations.

Figure 2.2.

Theorem 2.3. Let C;D be con�gurations such that C �! D by t elementary

steps. Then f(n;m;D) � f(n;m;C) + t �max(n;m).

Proof: It is su�cient to prove the case t = 1, we can assume that C

e

�! D.

If D is constructed by deleting an entry then the claim is obvious. So we can

assume that D is constructed by adding an extra column to the end of C with

an extra 1 (the other cases are very similar). Let M be a matrix of size n �m

with f(n;m;D) many 1's such that it doesn't have D as a subcon�guration. Let

M

0

be the matrix that we get if we delete the last 1 in each row (assuming that

there is any). Easy to realize that M

0

doesn't have C as a subcon�guration. So

the number of remainder 1's in M

0

is at most f(n;m;C).

The natural way to apply Theorem 2.3 is that in the case of C �! D an upper

bound on f(n;C) gives an upper bound on f(n;D) and a construction for a

matrix not having D as a submatrix gives a good construction for C.

Figure 2.4 contains some additional matrices with four 1's and some of their

�! relations.

Figure 2.4.

Let B

2

be (1; 1), a 1� 2 con�guration.
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Proposition 2.5. If B

2

! C and C has at least 2 entries in it then

min(n;m) � f(n;m;C) � c

C

(n+m):

Proof: Trivial. The lower bound comes considering a matrix M with 1's only

in one row or in one column.

The upper bound is immediate from Theorem 2.3.

Figure 2.6.

We remark that Figure 2.2, Figure 2.4 and Figure 2.6 contain all the 37 con�g-

urations with four 1's (not distinguising two if they are the same upto rotations

and reections). The simple reduction principle yields that 22 of them have linear

complexity.

Corollary 2.7.

(1) If M has at most 3 non-zero entries then f(n;m;M) � 2(n+m).

(2) The 22 matrices on Figure 2.6 have linear complexity, f(n;m;C

i

) � 3(n+

m) for 16 � i � 37.

One can extend the �! relations to sets of con�gurations. This will be proven

very useful.

Definition 2.8. Let C

1

; . . . ; C

k

be a set of con�gurations. We are going to

de�ne two operations. One is simply adding a new con�guration to our set. The

second is substitute a C

i

with D if C

i

�! D. The transitive closure of these

relations is �!.

The notation is not in conict with De�nition 2.1, which is a special case of

this. Note that fC

1

; . . . ; C

k

g �! fD

1

; . . . ; D

l

g i� for every i there is a j such

that C

i

�! D

j

according to De�nition 2.3.

The analog of Theorem 2.3 is the following.

Theorem 2.9. If fC

1

; . . . ; C

k

g �! fD

1

; . . . ; D

l

g then f(n;m; fD

1

; . . . ; D

l

g) �

f(n;m; fC

1

; . . . ; C

k

g) + const(n +m), where the constant depends only on the

two systems, and not on n and m.

A few examples:

f

�

1 1

1 1

�

;

0

@

1 1

1

1

1

A

;

�

1 1

1 1

�

;

0

@

1

1

1 1

1

A

g �!

0

B

@

1

1

1

1

1

C

A

;

f

�

1 1

1 1

�

;

0

@

1 1

1

1

1

A

g �!

0

@

1 1

1

1

1

A

:
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3. Matrices with n logn complexity

Theorem 3.1. ([F]) f(n;

�

1 1

1 1

�

) < 6n logn.

The construction in [F] shows that this upper bound is the best up to a constant

factor. Below we give another, a simpler recursive construction.

Construction 3.2. Let

A

1

=

�

1 1

1 0

�

;

and

A

n+1

=

�

E

2

n

A

n

A

n

0

2

n

�

;

where E

n

is an n� n matrix with 1's only in the diagonal connecting the upper

right to the lower left corner, and 0

n

the n� n zero matrix.

Claim 3.3.

(1) A

n

is a 2

n

� 2

n

matrix with (n+ 2)2

n�1

many 1's.

(2) A

n

does not have C

4

=

0

@

1 1

1

1

1

A

as a subcon�guration.

Proof: (1) Easy induction.

(2) Using induction. The initial case is obvious. Let us assume that the claim

is veri�ed for A

k

, when k < n.

Suppose on the contrary that A

n

has the forbidden con�guration. A

n

is, by

de�nition, divided into 4 submatrices. We distinguish di�erent cases depending

on which submatrix has the upper left corner of the forbidden con�guration. If

one of the A

n�1

's is the one, then our inductional hypothesis gives the contra-

diction. If E

2

n�1
has that entry then easy to verify that the bottom right corner

of the con�guration must be in 0

2

n�1
. This contradicts the fact that 0

2

n�1
has

no 1 entry at all.

Corollary 3.4.

(1) f(n;C

2

); f(n; fC

2

; C

T

2

g); f(n;C

4

) = �(n logn).

(2) f(n;C

i

) < 10n logn, for 4 � i � 15.

Proof: (1) Both the lower and upper bound comes from the following relations.

C

2

�! fC

2

; C

T

2

g �! C

4

.

(2) See Figure 2.2 and Figure 2.4.
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4. A construction with

n logn

log logn

1's

In the previous section we saw an n logn upper bound on f(C

5

). Now we

construct a matrix with �(

n logn

log logn

) 1's and not having C

5

as a subcon�guration.

This section is a slightly simpli�ed version of [BGy]. Our construction will be

recursive and it de�nes N(s; t), a matrix of size st� st, where s; t � 1.

First we discuss a few properties of N(s; t) what we need for the formal def-

inition of the matrix. The st rows are divided into s blocks, each having t

consecutive rows. In each block we have a column such that each of its entries

are 1's and these are the �rst 1's in the corresponding rows. This column is the

leading column of that block.

Let N(s) be a s� s matrix without the con�gurations:

(4:1) C

5

=

0

@

1 1

1

1

1

A

;

�

1 1

1 1

�

;

0

@

1 1

1

1

1

A

;

�

1 1

1 1

�

:

Definition 4.2. N(1; t) is a t� t matrix with t 1's in the �rst column and 0's

everywhere else.

N(s; 1) is the s� s identity matrix.

The construction of N(s; t+ 1) is the following (we assume that N(s; t

0

) and

N(s

0

; t

00

) are already constructed for t

0

� t, s

0

< s and t

00

arbitrary). Take a copy

of N(s; t) and insert an extra row after each block. In each extra row put a 1 at

the leading column of the block just above it. Add s new columns at the end of

the already constructed part. At the intersection of extra rows and new columns

we have an s� s space. Put a copy of N(s) with maximum number of ones.

The promised propeties are maintained so our recursion is correct.

Theorem 4.3. N(s; t) doesn't have the con�gurations given in (4.1).

Proof: An easy induction by case by case check.

The previous theorem gives lower bounds on the complexity of several con�g-

urations and sets of con�gurations.

Corollary 4.4. ([BGy]) f(n;C

5

) = 
(

n logn

log logn

).

Proof: Let f(s; t) = jjN(s; t)jj and f(s) = max jjN(s)jj. We have

f(s; t+ 1) � f(s; t) + f(s) + s;

and for s � ab

f(s) � f(a; b):

These inequalities imply that

f(l

a

; t) � (t� 1)l(l

a

+ l

a�1

� (l� 1)

a

) + l

a

;

6



especially

f(l

a+1

) � f(l

a

; l) � l

a+2

� l(l� 1)

a+1

:

Letting a = l� 1, n = l

l

we obtain the desired bound.

5. More matrices with linear complexity

Recall that C

11

=:

�

1 1

1 1

�

. In this section we prove, that the com-

plexities of C

11

; . . . ; C

15

are all linear, at most 9n. As one can see from Fig. 2.4,

and Theorem 2.3 the above result implied by the following theorem.

Theorem 5.1. f(n;C

11

) � 7n.

Proof: Let A

0

= (a

0

ij

) be an n�m 0{1 matrix without C

11

. Delete the �rst and

the last entry in each row, and delete all entries in that row if jj(a

0

ij

)

1�j�m

jj � 3.

For the obtained matrix A = (a

ij

) we have

(5.2) jjA

0

jj � jjAjj+ 3n:

A does not contain the following con�gurations either:

�

1 1

1 1

�

;

�

1 1

1 1

�

;

�

1 1

1 1

�

:

For the i'th row (if it is non-empty) let m(i) (M(i)) denote the minimum

(maximum, resp.) index in that row, i.e. m(i) := minfj : a

ij

= 1g. Then

[m(i);M(i)] � [m(i

0

);M(i

0

)] implies i � i

0

.

The element a

ij

is called type � if a

ij

= 1, it is not the �rst neither the last one

in its row (m(i) < j < M(i)), � < i, j 2 [m(�);M(�)], and i is minimal with

respect to these constraints. By de�nition, there are no two entries of type � in

distinct rows. But there are no two 1's of type � in the i'th row either, otherwise

together with a

�;m(�)

and a

�;M(�)

they form a forbidden subcon�guration. So

the number of entries in A which are

(1) �rst or last in their row,

(2) on the top of their column, or

(3) have a type �

is at most 4n. We claim that all the entries of A fall one of the above 3 categories,

implying jjAjj � 3n+m. Then (5.2) �nishes the proof of the Theorem.

Suppose that the entry a

ij

= 1 is not the �rst or the last one in the i'th row,

and that there exists a t � i with a

tj

= 1. Then j 2 [m(t);M(t)]. Let � be the

maximum index, such that � < j, and j 2 [m(�);M(�)]. Then a

ij

has type �.

7



Indeed, suppose on the contrary, that some entry a

i

0

j

0

has type �, with � <

i

0

< i. Then, j 2 [m(�);M(�)] � [m(i

0

);M(i

0

)], so the existence of i

0

contradicts

the de�nition of �.

Let C

t

be a 2� (t+ 2) con�guration with 1's in the positions (1; 1); (1; t+ 2)

and (2; 2); . . . ; (2; t + 1). C

11

= C

2

. Deleting from every row the middle t � 2

entries, Theorem 5.1 implies

Corollary 5.3. f(n;

�

1 . . . 1

1 1 . . . 1 1

�

) = f(n;C

t

) � (t+ 5)n.

Finally we mention a generalization of this idea in the direction of sequences

with forbidden subsequences. The following corollary is a special case of the

result in [AKV].

Corollary 5.4. Suppose that the seqence s = x

1

; x

2

; . . . ; x

l

with x

i

2 [n], does

not have two identical consecutive members, and does not contain the subse-

quence abba, where a < b, then l � 100n.

Proof: (sketch) Split s into n equal parts s = s

1

s

2

. . . s

n

, jjs

i

jj = 100. Then

there is a subset s

0

i

� s

i

containing only distinct elements with js

0

i

j � 9. Put 1's

into the i'th column of an n� n matrix A according to s

0

i

. Finally, apply 5.1 to

A to get a C

11

, and then to get an abba in s.

6. A covering lemma

In this section we prove a covering lemma about 0 � 1 matrices. As an easy

application of our lemma we get several new matrices with linear complexity.

We start with a de�nition. An intersection of s consecutive rows and t consec-

utive columns is called a rectangle. The horizontal size of R is t and it is denoted

by h(R), the vertical size of R is s and it is denoted by v(R). M , itself is an

example for a rectangle.

Lemma 6.1. Let M be arbitrary 0 � 1 matrix. Then there is a system of rect-

angles fR

i

g such that

(1) R

i

's cover all the 1's,

(2)

P

i

h(R

i

) � 4h(M) and

P

i

v(R

i

) � 4v(M),

(3) each R

i

has a 1 in the upper left or bottom right corner.

Proof: Let us de�ne a partial order between the positions in a given matrix.

We say that a � b, if the row of a is not later than b's one and a's column is not

later than b's one. a� b if a � b and a 6= b.

There are incomparable positions. For two incomparable positions c and d we

say that c � d if c's row is earlier than d's.

Take M and consider only the positions where we have a 1. Let m

1

� m

2

�

. . . � m

k

be the set of minimal 1's for the partial order�. LetM

1

�M

2

� . . . �M

l

8



be the set of maximal 1's for the partial order �. We can assume that m

1

is in

the �rst column, m

k

is in the �rst row, M

1

is in the last row and M

l

is in the

last column of M .

Let m

i+

1

2

(for i = 1; . . . ; k � 1) be the position in the intersection of the row

of m

i

and the column of m

i+1

. Let m

1

2

be the lower left corner of M . Let

m

k+

1

2

be the upper right corner of M . Let M

j+

1

2

(for j = 1; . . . ; l � 1) be

the position in the intersection of the column of M

i

and the row of M

i+1

. Let

M

1

2

= m

1

2

and M

l+

1

2

= m

k+

1

2

. Let h

i

= [m

i

;m

i+

1

2

] be a horizontal interval of

positions in the row of m

i

, with endpoints at m

i

and m

i+

1

2

. Let v

i

be the vertical

interval [m

i�

1

2

;m

i

]. We de�ne the corresponding intervals for maximal 1's. Let

V

i

= [M

i

;M

i+

1

2

] and H

i

= [M

i�

1

2

;M

i

]. It is clear that v

1

; h

1

; v

2

; :::; v

k

; h

k

and

H

1

; V

1

; H

2

; V

2

; :::; H

l

; V

l

de�nes two stair shaped curves. Let us denote them by s

and S. By de�nition it is straightforward that there are no 1 above s and below

S.

Now we are starting to construct our covering system of rectangles. This

system is containing two sequences of rectangeles: fQ

i

g and fP

i

g. The Q

i

's are

going to have an entry 1 at the bottom left corner, the P

i

's are going to have a

1 at the upper left corner. We de�ne them recursively.

Let Q

1

be a rectangle with lower right corner at M

1

, with lower left corner at

m

1

2

. So its right vertical side is on the vertical half line starting at M

1

, going

up. The missing corner of Q

1

on this line is where it �rst hits s.

Q

1

might cover several h

i

intervals. Let h

i

the �rst one which is not covered

by Q

1

. Let P

1

be a rectangle with upper left corner at m

i

. This fact gives us

two half lines starting at m

i

and going down and to right. They hit S at two

positions. They will be two other corners of Q

1

.

Next, we will explain the general step in the de�nition.

Let us assume that we already de�ned Q

1

; P

1

; . . . ; Q

i

; P

i

. Let V

j

be the �rst

vertical interval of S which is not covered by Q

1

[ . . . [ P

i

. Let M

j

be bottom

right corner of Q

i+1

. That de�nes two half lines starting at M

j

, one going up

(let us say e

i+1

) and one going to the left. They hit s at two positions. They

give us two other corner of Q

i+1

. This completes the de�nition of Q

i+1

.

Let us assume that we already de�ned Q

1

; P

1

; . . . ; Q

i

; P

i

; Q

i+1

. Let h

j

be the

�rst horizontal interval of s which is not covered by Q

1

[ . . . [ P

i

[ Q

i+1

. Let

m

j

be upper left corner of P

i+1

. That de�nes two half lines starting at m

j

, one

going down and one going to the right (f

i+1

). They hit S at two positions. They

give us two other corner of P

i+1

. This completes the de�nition of P

i+1

.

The procedure stops when the already constructed rectangles cover all the V

j

's

(or all the h

j

's).

Now we prove that the constructed system of rectangles satisfy (1)-(3).

(3) is immediate.

In order to prove (1) we need a few remarks.

9



It is immediate from the de�nition that as i is increasing the lines, e

i

's are

moving to the left and the lines f

i

's are moving up.

The de�nition also implies that the upper left corner of P

i

is on e

i

or is left

from e

i

. Similarly the lower right corner of Q

i+1

is on f

i

or is below f

i

. This

guarantes that Q

1

[ . . .[P

i

[Q

i+1

covers everything left from e

i+1

in the region

between s and S. Similarly Q

1

[ . . . [ P

i

[Q

i+1

[ P

i+1

covers everything below

f

i+1

in the region s and S. This proves (1).

For (2): From the de�nition the top side of Q

i

(and this way the whole rectan-

gle) is not above f

i

. The lower right corner of Q

i+1

(let us say M

j

) is not above

f

i

, but it is the last maximal 1 with this property. This guarantees that Q

i+2

's

lower right corner (and this way the whole rectangle) is above f

i

. So the rows of

Q

i

and Q

i+2

are completely disjoint. One gets the corresponding statements for

the columns and for the P

i

's similarly. (2) is an easy consequence of this.

This completes the proof.

Corollary 6.2.

(1) f(n;m;C

10

) is linear.

(2) f(n;m;

0

B

B

B

@

1

1

1

1

1

1

C

C

C

A

) is linear.

(3) f(n;m; f

0

@

1 1

1

1

1

A

;

0

@

1

1

1 1

1

A

g) is linear.

Proof: (1) Take the cover guaranted by Theorem 6.1. Count the 1's separately

in di�erent covering rectangles. We know that in the upper leftcorner or in the

lower right corner there is a 1. So we can bound the number of 1's using that

f(n;m;

0

@

1

1

1

1

A

) and f(n;m;

0

@

1

1

1

1

A

) are linear. If we add up

these bounds we obtain the claim in (1).

The same proof works for (2), but there we use Theorem 5.1.

(3) follows the same way.

7. Davenport-Schinzel matrices

In this and the next section we consider the complexity of C

6

=

�

1 1

1 1

�

.

Definition 7.1. A matrix M is called Davenport-Schinzel matrix if it does not

have C

6

as a subcon�guration.

The naming is based on the analogy between this kind of matrices and

Davenport-Schinzel sequences (see [DS]).

10



The main result in this section is to construct a Davenport-Schinzel matrix

with 
(n�(n)) many 1's. Finally we discuss other con�gurations, missing from

our matrix.

Our construction is very similar to known constructions of Davenport-Schinzel

sequences (see [HS],[W]). We use the same double induction. But instead of

sequences we work with matrices.

The matrices we are constructing have two parameters s and t. We refer to

them as M(s; t). First we describe a few properties of M(s; t). The recursive

de�nition of these matrices is assuming these properties so we need to maintain

them.

(a) The size of the matrix is tC(s; t) � tC(s; t), where C(s; t) is de�ned as

follows. C(s; t) = C(s; t�1)C(s�1; C(s; t�1)) and C(1; s) = 1 and C(s; 1) = 2,

for s > 1.

(b) The tC(s; t) many rows are divided into blocks. We will refer to them

as horizontal blocks. One block contains t rows (hence we have C(s; t) many

blocks). Let H

i

be the set of the ((i � 1)t + 1)

st

,...,(it)

th

rows, i.e. the i

th

horizontal block.

(c) Inside H

i

the appearance of the �rst 1 happens in the same column (con-

sidering di�erent rows). Let us say this is the (c

i

)

th

column. The 1's in these

columns are called leading 1's.

(d) 1 = c

1

< c

2

< c

3

< . . . < c

C(s;t)

. These columns divide the matrix into

vertical blocks. Let V

i

be the set of columns from the (c

i

)

th

, through (c

i+1

�1)

st

,

i.e. the i

th

vertical block.

The de�nition of M(s; t) is going to use the matrices S = M(s; t � 1) and

B = M(s� 1; C(s; t� 1)). (Think about S as a small matrix and about B as a

big matrix.) B has C(s�1; C(s; t�1)) many horizontal blocks of size C(s; t�1).

B has C(s � 1; C(s; t � 1)) many vertical blocks too. Let v

i

be the number of

columns contained in the i

th

one. S has C(s; t � 1) many blocks (one for each

row in a block of B).

The following de�nition assumes properties (a)-(d). (So one must check that

these properties are maintained.)

Definition 7.2. M(1; s) is an identity matrix of size s� s. M(s; 1) is

�

1 1

1 0

�

(for s > 1).

In order to de�ne M(s; t) take C(s� 1; C(s; t� 1)) many copies of S (one for

each horizontal block of B). The construction of M will be completed in C(s�

1; C(s; t�1)) many stages. In the i

th

stage we add (t�1)C(s; t� 1)+C(s; t�1)

many new rows and (t�1)C(s; t�1)+v

i

many new columns to the part already

built. The construction starts with the empty matrix. The general (i

th

) stage is

the following.

(1) We put (t�1)C(s; t�1)many new rows and new columns after the already

11



existing ones. In the intersection of the new rows and columns we place a copy

of S.

(2) We insert an extra row after each horizontal block of the new copy of S.

In these extra rows we place one extra 1, under each leading column.

(3) Finally we add v

i

new columns (after the old ones). In the new space we

place a copy of the i

th

vertical block of B using the extra rows.

The constructed matrix M = M(s; t) has properties (a)-(d).

Let us introduce a few notations. Ordinary rows and ordinary columns are the

rows and columns introduced in step (1). Extra rows are the rows introduced in

step (2). Extra columns are the ones introduced in step (3). The 1's introduced

in step (1) are the ordinary 1's. The 1 entries introduced in step (2) are called

the extra 1's. The 1's introduced in step (3) are the new 1's.

The previous notations give a partition of 1's into new, ordinary and extra 1's.

There are similar partitions for rows and columns.

Any extra 1 is in an ordinary column and in an extra row.

The next lemma summarizes a few simple statements about the matrixM(s; t).

Lemma 7.3.

(1) If s and t are chosen appropriately and n = sC(s; t) then M(s; t) is an

n� n matrix with n�(n) many 1's.

(2) The (c

i

)

th

column contains 1's inside H

i

and no other 1's.

(3) Inside H

i

, after the leading column the 1's are decreasing, i.e. if k and l

are two 1's in the same horizontal block and they are not leading 1's then

k � l or l � k. (Recall that q � p vaguely means that p is south, east or

south-east direction from q.)

(4) If l is a new 1 and k is a 1 such that l � k then k is a new 1 too. (Recall

that q � p vaguely means p is north, east or north-east direction from q.)

(5) If l is an ordinary 1 and k is a 1 in l's column or in l's row then k is an

ordinary 1 in the same horizontal block with the one exception when l is

a leading 1 and k is the extra 1 in its column.

(6) If l is an extra 1 or an ordinary 1 and k is an ordinary 1 such that l � k

then l and k is in the same horizontal block.

Proof: For (1) we refer the reader to [HS] or [W].

The proof of (2)-(6) is easy induction following the de�nition of M(s; t).

Now we are ready to discuss the missing con�gurations in M(s; t).

Theorem 7.4. M(s; t) does not have the following con�gurations: (i)

�

1 1

1 1

�

,

(ii)

�

1 1

1 1

�

, (iii)

0

@

1

1

1 1

1

A

, (iv)

�

1 1

1 1

�

, (v)

0

@

1 1

1

1

1

A

, (vi)

�

1 1

1 1

�

,

12



(vii)

0

@

1 1

1

1

1

A

, (viii)

0

@

1 1

1

1

1

A

.

Proof: Each con�guration in the statement has four 1's in it. Let us order

these 1's. A 1 is earlier than an other if its row is earlier or if they are in the

same row and it is left from the other. In the case of each con�guration name

the four 1's as a, b, c and d following the previously de�ned order.

Our proof is by induction following the de�nition of M(s; t). The initial case

is s = 1 or t = 1. Then the statement is clear.

The induction step is proved by contradiction. Let us assume that in M(s; t)

we can �nd four di�erent 1's: the image of a, b, c and d, such that they obey the

con�guration. The individual con�gurations are considered separately.

(i) We distinguish cases depending on what kind of entry corresponds to c.

Now on we don't distinguish a; b; c; d and their images.

Case 1: c is an extra 1. Then d is a new 1. a is in a leading column but it is

not an extra 1. So a's row is an ordinary row. On the other hand c � b, hence

(by 7.3.(4)) b is a new 1. So b's row (what is the same as a's row) is an extra

row. Contradiction.

Case 2: c is a new 1. Using 7.3.(4) the whole con�guration consists of new

1's. So it can be recognized inside M(s� 1; C(s; t� 1)). Contradiction with the

inductional hypothesis.

Case 3: c is an ordinary 1. Using 7.3.(5) the whole con�guration consists

of ordinary 1's from the same horizontal block. So our con�guration can be

recognized in a copy of M(s; t� 1).

(ii) Case 1: c is an extra 1. Then a, b and d are new 1's. Let c

0

the �rst 1

after c in its row (that row is an extra row and c

0

is a new 1). Easy to check that

a, b, c

0

and d give us a con�guration C

1

or one what is the same as the original

con�guration. So using (i) or the inductional hypothesis we get a contradiction.

Case 2: c is a new 1. a, b, c and d are all new 1's. So our con�guration is in a

copy of M(s� 1; C(s; t� 1)).

Case 3: c is an ordinary 1. Using 7.3.(5) our con�guration is inside a copy of

M(s; t� 1).

(iii)-(vi) Using the same case analysis based on he bottom left 1 (what is not

necessarily c).

(vii) Case1: d is an extra 1. Then a, b and c are ordinary 1's in the same

horizontal block (using 7.3.(5) and the fact that ordinary columns and rows in the

same block are consecutive ones). Then the positions of b and c are contradictory

with 7.3.(3).

Case 2: d is a new 1. The same as the previous second cases.

Case 3: d is an ordinary 1. The same as the previous third cases.

(viii) Case 1: d is an extra 1 and c is a new 1. c � b hence b is a new 1 too,

in particular a's and b's row is an extra row. d � a so a cannot be an extra 1.

13



Hence all four 1's are new except d. Move d right to the �rst 1 in its row. Then

we obtain four new ones (hence they are in a copy of M(s� 1; C(s; t� 1)) such

that their con�guration is the one described in (vii) or in (viii).

Case 2: d is an extra 1 and c is an ordinary 1. Using similar arguments as

before we have that all four 1's are ordinary except d and they are in the same

horizontal block. Move d up by one position. We obtain four ordinary 1's (inside

a copy of M(s; t� 1)) such that their con�guration is the one described in (vi)

or in (viii).

Case 3: d is not an extra 1. In this case take the bottom left 1 (d) and replace

it with another 1 by shifting it to the leading 1 in its row and sinking it to the

bottom 1 in that column. This way we obtain the same con�guration but the

new d is an extra 1. That was handled in the previous cases.

The previous theorem gives lower bounds on the complexity of several con�g-

urations and sets of con�gurations.

Corollary 7.5.

(1) f(n;C

6

) = 
(n�(n)),

(2) f(n;C

8

) = 
(n�(n)),

(3) f(n; f

�

1 1

1 1

�

;

0

@

1

1

1 1

1

A

;

�

1 1

1 1

�

;

0

@

1 1

1

1

1

A

g) = 
(n�(n)).

8. Upper bound on Davenport-Schinzel matrices

In this section we prove that

Theorem 8.1. f(n;

�

1 1

1 1

�

) � O(n�(n)):

Proof: Let A

0

= (a

0

ij

) be an n�m 0{1 matrix not having a subcon�guration of

C

6

=

�

1 1

1 1

�

. Delete the �rst and the last 1 in each row, and keep only

the columns with at least 2 entries. The obtained matrix is denoted by A = (a

ij

),

and obviously, for the number of entries we have jjA

0

jj � jjAjj+ 2n +m. Form

a sequence s

j

from the j'th column (a

ij

)

1�i�n

of length jj(a

ij

)jj =: l(j) in the

following way

s

j

= (s

j

1

; s

j

2

; . . . ; s

j

l(j)

);

where s

j

1

< s

j

2

< � � � < s

j

l(j)

and a

s

i

j

= 1 for 1 � i � l(j). Form one sequence

s

0

=: s

1

s

2

. . . s

m

in this order. Delete from s

0

the element s

j

l(j)

if it equals to

s

j+1

1

. In the obtained sequence, s, there are no equal consequtive elements. We

claim that s does not contain a subsequence ababa, i.e. it is a DS

5

(n) sequence.

Suppose on the contrary. Then there exists a subsequence abab of s with a < b.

So there are j

1

� � � � � j

4

such that a 2 s

j

1

, b 2 s

j

2

, a 2 s

j

3

, b 2 s

j

4

. Here

14



j

2

< j

3

, otherwise the �rst b in abab could not preceed the second a in s. Consider

the submatrix de�ned by the rows a and b and the columns fj

1

; . . . ; j

4

g. There

are four possibilities.

j

1

< j

2

< j

3

< j

4

�

1 1

1 1

�

j

1

= j

2

< j

3

< j

4

�

1 1

1 1

�

j

1

= j

2

and j

3

= j

4

�

1 1

1 1

�

j

1

< j

2

< j

3

= j

4

�

1 1

1 1

�

:

In each cases A will contain a C

6

, a contradiction.

So jjAjj � 2n+ 2m+ ds

5

(n).

Corollary 8.2. f(n;C

7

); f(n;C

9

) = O(n�(n)).

In the very same way we can obtain the following theorem. Let C

2k

be a

partial 2� 2k matrix with c

1;2i�1

= 1, c

2;2i

= 1 for 1 � i � k.

Theorem 8.3. f(n;C

2k

) � O(ds

4k�3

(n)):

It is not di�cult to give a lower bound for f(n;C

2k

) which is probably closer

to f as the upper bound.

Theorem 8.4. f(n;C

2k

) � 


�

ds

2k+1

(n)

�(�(n))

O(�(�(n))

2k�4

)

�

.

Remark: Here the right hand side is superlinear. For the best bound on

ds

2k+1

(n) see [ASS].

Proof: Let s be a Davenport-Schinzel sequence s 2 DS

2k+1

(n) of length

ds

2k+1

(n) such that the element i appears earlier than j for i < j. It is well-

known [S], that

ds

2k+1

(n) = O(n�(n)

O(�(n)

2k�4

)

):

Split s into n almost equal parts s = s

1

. . . s

n

. Let s

0

i

be a set of distinct values

of s

i

, jjs

0

i

jj = x. We have that

y =:

ds

2k+1

(n)

n

� 1 � jjs

i

jj � xO(�(x)

O(�(x)

2k�4

)

) � xO(�(y)

O(�(y)

2k�4

)

):

Here y = O(�(n)

O(�(n)

2k�4

)

), so �(y) = �(�(n)) + O(1).

Finally, forming the i

th

column of an n � n matrix A from s

0

i

we obtain the

desired con�guration without C

2k

.
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9. Conclusions and open problems

The next table summarizes our results.

Con�gurations Lower bound Upper bound

�

1 1

1 1

�

�(n

3

2

)

see Theorem 1.1.

�

1 1

1 1

�

,

0

@

1 1

1

1

1

A

�(n logn)

see Theorem 3.1. and Corollary 3.4.

0

@

1

1

1 1

1

A


(

n log n

log log n

) O(n logn)

see Corollary 4.4. see Corollary 3.4.

0

@

1 1

1

1

1

A


(n) O(n logn)

see Corollary 3.4.

�

1 1

1 1

�

,

0

@

1

1

1 1

1

A

�(n�(n))

see Corollary 7.5. and Theorem 8.1.

0

@

1

1

1 1

1

A

,

0

B

@

1

1

1

1

1

C

A


(n) O(n�(n))

see Corollary 8.2.

All the other 28 matrices with 4 entries �(n)

Finally we mention several open problems. The �rst few ones are suggested

by the previous table. Even in the case of con�gurations with four 1's there are

several unknown complexities.
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Is it true that the complexity of all permutation con�gurations are linear?

What is the characterization of con�gurations with linear complexity? In ex-

tremal graph theory the forbidden subgraphs with linear threshold are exactly

the trees.

Is it true, that if G is the (bipartite) graph corresponding the con�guration C

then

(9:1) f(n;C) < O(T (n;G) logn)?

Does (9.1) hold at least for trees?

There are several combinatorial structures with an underlying order where the

similar extremal question is interesting. An example is a set of intervals on a

given line. How many intervals (over n endpoints) guarantee the existence of a

given interval con�guration? Similar question can be asked about diagonals in a

cycle. Davenport and Schinzel's original question can be extended to arbitrary

forbidden subsequence. As far we know there is no organized account of these

questions.

10. Acknowledgments

The authors are grateful to M�ari�o Szegedy for his valuable remarks and sug-

gestions.

References

[A] W. Ackermann, Zum Hilbertschen Aufbau der reelen Zahlen, Math. Ann., 99 (1928),

118-133.

[AKV] R. Adamec, M. Klazar and P. Valtr, Forbidden words, Preprint, Department

of Mathematics, Karlovy University, Prague, Czechoslovakia.

[ASS] P. Agarwal, M. Sharir and P. Shor, Sharp upper and lower bounds on the

length of general Davenport-Schinzel sequences, Preprint.

[Bo] B. Bollob

�

as, Extremal Graph Theory, Academic Press, London - New York, 1978.

[B] W.G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull., 9

(1966), 281-285.

[BGy] D. Bienstock and E. Gy

}

ori, An extremal problem on sparse 0 � 1 matrices, to

appear in SIAM J. Disc. Math.

[DS] H. Davenport and A. Schinzel, A combinatorial problem connected with di�er-

ential equations, I and II, Amer. J. Math., 87 (1965), 684-694 and Acta Arithmetica, 17

(1971), 363-372.

[ERS] P. Erd

}

os, A R

�

enyi and V.T. S

�

os, On a problem of graph theory, Studia Sci.

Math. Hungar., 1 (1966), 215-235.

[ESi] P. Erd

}

os and M. Simonovits, A limit theorm in graph theory, Studia Sci. Math.

Hungar., 1 (1966), 51-57.

[ESt] P. Erd

}

os and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math.

Soc., 52 (1946), 1087-1091.

17



[F] Z. F

�

uredi, The maximum number of unit distances in a convex n-gon, to appear in J.

Combinatorial Th., A.

[HS] S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of gener-

alized path compression schemes, Combinatorica, 6 (1986), 151-177.

[K] P. Komj

�

ath, A simpli�ed construction of nonlinear Davenport-Schinzel sequences, J. of

Comb. Theory, A 49 (1988), 262-267.

[KST] T. K

}

ov

�

ari, V.T. S

�

os and P. Tur

�

an, On a problem of Zarankiewicz, Colloq. Math.,

3 (1954), 50-57.

[M] J. Mitchell, Shortest rectilinear paths among obstacles, SORIE Technical report No.

739, Cornell University, 1987.

[S] M. Sharir, Almost linear upper bounds on the length of generalized Davenport-Schinzel

sequences, Combinatorica, 7 (1987), 131{143.

[Sz] E. Szemer

�

edi, On a problem by Davenport and Schinzel, Acta Arithmetica, 15 (1974),

213{224.

[W] A. Wiernik, Planar realizations of Nonlinear Davenport-Schinzel sequences by segments,

in Procedings, 27th IEEE Found. of Comput. Sci., (1986), 97-106; to appear in Discret and

Comput. Geom.

18



C

1

=

�

1 1

1 1

�

#

C

2

=

�

1 1

1 1

�

. # &

C

3

=

 

1

1

1 1

!

C

4

=

 

1 1

1

1

!

C

5

=

 

1

1

1 1

!

C

6

=

�

1 1

1 1

�

.&

C

7

=

 

1

1

1 1

!

C

8

=

 

1

1

1 1

!

# #

C

9

=

0

@

1

1

1

1

1

A

C

10

=

0

@

1

1

1

1

1

A

Figure 2.2.

19



C

11

=

�

1 1

1 1

�

.&

C

12

=

 

1 1

1

1

!

C

13

=

 

1

1

1 1

!

# #

C

14

=

0

@

1

1

1

1

1

A

C

15

=

0

@

1

1

1

1

1

A

Figure 2.4.

20



C

16

=

0

@

1

1

1

1

1

A

; C

17

=

0

@

1

1

1

1

1

A

; C

18

=

0

@

1

1

1

1

1

A

;

C

19

=

 

1

1 1

1

!

; C

20

=

 

1 1

1

1

!

; C

21

=

 

1 1

1

1

!

;

C

22

=

 

1

1 1

1

!

; C

23

=

 

1

1 1

1

!

; C

24

=

 

1

1 1

1

!

;

C

25

=

 

1 1

1

1

!

; C

26

=

 

1 1

1

1

!

; C

27

=

 

1 1

1

1

!

;

C

28

=

 

1 1

1

1

!

; C

29

=

 

1

1 1

1

!

; C

30

=

 

1

1 1

1

!

;

C

31

=

�

1 1 1

1

�

; C

32

=

�

1 1

1 1

�

; C

33

=

�

1 1 1

1

�

;

C

34

=

�

1 1 1

1

�

; C

35

=

�

1 1 1

1

�

; C

36

=

�

1 1

1 1

�

;

C

37

= ( 1 1 1 1 ) :

Figure 2.6.

21


