
COMPLEXITY OF GRAPH PROBLEMS

BY

P

�

ETER HAJNAL

BOLYAI INSTITUTE, SZEGED, HUNGARY

JANUARY, 1992

ACKNOWLEDGEMENT

I am grateful to my advisors, J�anos Simon and L�aszl�o Babai. They have provided en-

couragement and support, and their insights throughout this research have been invaluable.

It has been a real pleasure to work with them.

Two chapters of this thesis would not have been possible without collaboration with

Endre Szemer�edi. He has been a great and generous collaborator, and deserves very special

thanks for sharing his research.

I owe particular gratitude to L�aszl�o Lov�asz, my former teacher at the University

of Szeged, Hungary, who directed my interest to combinatorics and algorithms. His time

spent on suggesting and discussing problems with me outside class have helped enormously

in starting my own research career.

I should like to thank Howard Karlo� and Gy�orgy Tur�an for listening to my blurbs,

giving many suggestions and helping to clarify ideas in various sections of the dissertation.

I am grateful to fellow graduate student M�ari�o Szegedy for his untiring interest in my

work and for his seless help in many details.

Last but not least, I wish to thank the University of Chicago and professors Robert

Soare and Mike O'Donnell in particular for the opportunity to work here and the active

scholarly atmosphere in the Department under their direction.

This research was supported in part by the National Science Foundation under Grant

number NSF 5-27561.

ii

TABLE OF CONTEST

ACKNOWLEDGEMENT : ii

ABSTRACT : v

Chapter

I. INTRODUCTION : 1

1. Tasks, models, complexities :1

2. A brief descriptions of our models :2

3. Outline of our results : 3

4. Graph theoretical notation, terminology : 5

II. LOWER BOUNDS FOR RANDOMIZED DECISION TREES : : : : : : : : : : : : : : 8

1. Decision trees : 8

2. Previous techniques : 17

3. Using duality: packing :21

4. Surgery on the maximal degree : 24

5. The improved packing theorem for bipartite graphs : 26

6. The improved reduction from general to bipartite graphs : : : : : : : : : : : : : : : : :31

7. Allowing two-sided error :33

III. A LOWER BOUND FOR READ-ONCE-ONLY BRANCHING PROGRAMS

1. Branching programs : 35

2. Read-once-only branching programs: the result : 38

3. Space-complexity: the eraser RAM : 43

IV. BROOKS COLORING IN PARALLEL : 45

1. Models for parallel computation : 45

2. Parallel coloring algorithms :47

3. Outline of the algorithm :49

4. The alternating paths : 51

iii

5. Conclusion : 55

V. A FAST PARALLEL ALGORITHM ON DENSE GRAPHS : : : : : : : : : : : : : : : 56

1. The Hamilton cycle problem :56

2. The outline of the algorithm :57

3. Social paths : 58

4. Introverted paths :59

5. The general case : 60

6. Conclusion and open problems :63

VI. GEOMETRY, GRAPHS AND COMPLEXITY : 66

1. Unit-distances between vertices of a convex polygon :66

2. Unit-distances and excluded con�gurations in matrices : : : : : : : : : : : : : : : : : : : 69

3. A reduction between matrices : 71

4. Matrices with n logn complexity :75

5. A construction with

n logn

log logn

1's : 76

6. More matrices with linear complexity : 77

7. A covering lemma : 78

8. Davenport-Schinzel matrices :81

9. Upper bound on Davenport-Schinzel matrices : 84

10. Conclusions and open problems :86

VII. PARTITION OF GRAPHS : 89

1. Introduction :89

2. Estimating the function f(s; t) :89

3. Estimating the function g(s; t) : 92

REFERENCES : 94

iv

ABSTRACT

We present complexity analysises of graph theoretic problems. We shall seek lower

and upper bounds on various complexity measures of classes of graph problems.

We study several models of computation. A decision tree is a scheme of computing

a boolean function by asking the values of its variables. The choice of question can only

depend on the information gained so far plus, in the randomized model, on the outcome

of coin-tosses. A function is said to be `hard' if in the worst case we are forced to ask at

least a positive constant fraction of the variables.

Branching programs are a generalization of decision trees. Roughly speaking we al-

low two branches in the tree to merge. In the model we consider we make the additional

assumption that the program is allowed to query each variable at most once along any com-

putation path. A function is said to be `hard' in this model if we cannot save considerable

amount of work compared to the decision trees.

A parallel random access machine is set of random access machines communicating

through a shared memory. A problem is said to be `easy' in this model if it is solvable on

a parallel random access machine in time polynomial in the log of the input size and using

a polynomial number of processors.

Lower bounds are the subject of the second and third chapters. In the second chapter

we prove that non-trivial, monotone graph properties require many questions in the ran-

domized decision tree model. The third chapter exhibits a polytime computable function

that is hard in the read-once-only branching program model. In the next two chapters we

present fast parallel algorithms for Brooks coloring graphs and for �nding a Hamiltonian

cycle in graphs that are guaranteed to have one by Dirac's theorem. These algorithms

show that these problems are easy on the parallel random access model.

In the last two chapters we consider some related questions in discrete geometry and

extremal theory of graphs. We investigate how many vertex pair can be unit distance

apart among the vertices of a convex n-gon. Finally we give some algorithms for �nding a

vertex partition with constrains on the connectivity and minimal degree of a given graphs.

v

1. INTRODUCTION

1. Tasks, models, complexities

The Theory of Computing investigates the intrinsic complexity of various classes of

computational tasks on abstract models of computation.

What is a computational task? It is de�ned by a function from the set of possible

inputs to the set of possible outputs. The inputs and outputs can usually be encoded as

(0; 1)-sequences. Thus, the computational task is a function from (0; 1)-strings to (0; 1)-

strings. If the range of this function is simply f 0; 1 g, i.e. the output or answer is `no' or

`yes', then we have a decision problem.

The other component of the computational problem is the `machine'. We need an

abstract device and a set of instructions we are allowed to use in order to solve the task.

Digital computers are physical devices for solving problems. There are several known the-

oretical models that are idealized versions of digital computers. Some of the most often

used ones are: random access machine (RAM), Turing machine, boolean formula, boolean

circuit, algebraic circuit, communication protocol, branching program, decision tree, paral-

lel RAM (PRAM), systolic array [AHU74], [Tu37], [Sh49], [Ma74], [Ya79], [Bor77], [Co85],

[Go77], [FW78], [HB84], etc.

The de�nition of machine usually indicates the de�nition of the `algorithm'. The

algorithm, vaguely, is a `recipe', a set of instructions. Given an input ((0; 1)-string) we

can execute the instructions and reach the output. The problem is to design an algorithm

which computes the given function.

In order to compare di�erent algorithms we need a notion of complexity or a cost mea-

sure for algorithms. In order to de�ne the costs we consider the resources available for the

computation. Some of the most commonly considered resources are: time, space, number

of queries, number of arithmetic operations, number of random bits used, number of paral-

lel processors, chip area, depth and size of boolean circuits. In each model of computation,

we specify one or more of those resources which we shall take into account when calculating

the cost of a computation. Let, informally, c(x) denote the complexity of the computation

on input x. In most of this work we shall be concerned with `worst case' complexity, i.e.

for given n, we shall try to estimate the quantity f(n) = maxf c(x) j x 2 f 0; 1 g

n

g.

We should point out that the same computational task raises di�erent computational

problems depending on the model.

1

Determining the complexity of a problem has two sides.

First, we would like to exhibit an e�cient algorithm, i.e. write a fast program, design

a small circuit, etc. for the problem. This requires insight into the nature of the speci�c

problem. One can interpret this part as giving an upper bound on the complexity.

Second, we want to prove that there is no algorithm with smaller complexity. Usually

the second part is much harder than the �rst. It requires insight into the nature of com-

putation itself. One has to �nd obstructions that prevent any algorithm from violating

the lower bound. While the number of e�cient algorithms published during the last few

decades is tremendous, the area of lower bounds has produced far fewer impressive results.

Lower bounds on general models of computation are virtually non-existent. For example,

in the case of circuits the best known lower bound on the number of gates is 3n (n is the

number of variables) for any explicit function [Bl84], whereas the conjectured lower bound

for a large class of practical problems is exponential. It seems that proving any non-linear

lower bound, for boolean circuit size is beyond current techniques. In practice what hap-

pens is that we restrict our model. In restricted models, like constant depth circuits or

monotone circuits, powerful lower bound techniques are available.

The objective of this thesis is to contribute to both areas, the area of proving lower

bounds and that of exhibiting e�cient algorithms.

2. A brief description of our models

In this section we give a brief description of the models we work with. The exact

de�nitions will be given in the subsequent chapters.

One model we use is the decision tree model. A decision tree evaluates a boolean

function by asking questions of the form `What is the value of variable x

i

?'. The choice

of question may depend only on the information gained so far, and in the randomized

model, on the outcome of random coin-tosses. The cost is the number of queries; we

ignore computation cost. (Imagine that evaluating a variable requires a costly experiment.)

Most previous work in this model was on deterministic computation. While many lower

bounds were found for speci�c problems, like `to be Hamiltonian', `having k-coloring', etc.

([Bo77], [BE78]) much e�ort has been devoted to giving lower bounds not just for speci�c

computational tasks, but to proving a uniform lower bound for a large class of problems.

One class of particular interest is graph properties. In this case the variables correspond

to pairs of nodes (the value of a variable tells us whether or not that pair is adjacent in

the input graph) and the output depends only on the isomorphism class of the graph. For

non-trivial, monotone graph properties it is known that the complexity is
(v

2

) [RV76].

2

We shall consider the randomized model. This means that the solver (the algorithm)

can use coin ips before deciding the next question. We are looking for uniform lower

bounds for all non-trivial, monotone graph properties. In the deterministic case the com-

plexity is known up to a constant factor. Thus one can view our question as investigating

how much can be gained by randomization in this particular model, an instance of a

more general problem that has attracted considerable interest in a number of models of

computation [Ad78], [Ya82], [AW85], [AKSz87], etc.

The second model of computation we examine is branching programs. Branching

programs are a generalization of decision trees. Roughly speaking, we allow two branches

in the tree to merge. The cost of a branching program is the number of nodes in it. A

read-once-only branching program is allowed to test each variable at most once along any

computation path.

Lower bounds on the read-once-only branching programs easily imply space lower

bounds on a restricted RAM model which we call eraser RAM. This is a RAM with a

special read-only input tape. Once an input cell has been read, it is erased.

Our algorithmic results concern e�cient parallel computation. We use the PRAM

model. In this model we have several processors working simultaneously, communicating

through a shared memory. The cost of the computation has two components. One is the

number of processors, the other is time. A parallel algorithm is considered e�cient if it

uses polynomially many processors and its time complexity is polylogarithmic in the size

of the input; in this case we say that our algorithm is an NC algorithm. In the last few

years many authors have considered the additional objective of minimizing the number of

processors used.

3. Outline of our results

In the second chapter we give an
(v

4

3

) lower bound on the randomized decision tree

complexity for all non-trivial, monotone graph properties. This improves A. Yao's and V.

King's previous bounds. The proof follows Yao's approach and improves it in a direction

di�erent from King's. At the heart of the proof is a duality argument combined with a

new packing lemma for bipartite graphs.

3

In the third chapter we give a C

n

lower bound for read-once-only branching programs

computing an explicit Boolean function, for some absolute constant C > 1. For n =

�

v

2

�

,

the function computes the parity of the number of triangles in a graph on v vertices. This

improves previous exp(c

p

n) lower bounds for other graph functions by Wegener and Z�ak.

The result implies a linear lower bound for the space complexity of this Boolean function

on eraser machines.

A theorem of Brooks guarantees that one can properly color a graph of maximum

degree D � 3 with D colors if the graph doesn't contain a complete subgraph on D + 1

vertices. In the fourth chapter we prove that �nding a Brooks coloring is in NC, i.e. we

can construct a coloring guaranteed to exist by Brooks' theorem in polylog parallel time,

using a polynomial number of processors.

In graph theory several su�cient conditions are known for existence of a Hamiltonian

cycle. One of the classical ones is Dirac's condition, which can be stated as follows. If the

minimal degree of a simple graph is at least

v

2

where v is the number of nodes then it has a

Hamiltonian cycle. The known proofs provide a polynomial time sequential algorithm. In

the �fth chapter we give an NC algorithm for �nding a Hamiltonian cycle in such graphs.

Our algorithm uses a linear number of processors (therefore, apart from a polylogarithmic

factor, is optimal).

In the sixth chapter we investigate how many vertex pair can be unit distance apart

among the vertices of a convex n-gon. We give a construction of a convex n-gon determining

9

5

n� 13 unit distances. The upper bound technique of Z. F�uredi leads us to consider the

following question: We say that a matrix M = (m

ij

) does have the con�guration C if one

can �nd u rows i

1

; i

2

; . . . ; i

u

; i

1

< � � � < i

u

and v columns j

1

; j

2

; . . . ; j

v

; j

1

< � � � < j

v

in M

such that the corresponding submatrix contains C, i.e. m

i

�

;j

�

= 1 whenever c

�;�

= 1. Let

f(n;m;C) denote the maximum number of 1's in an n �m matrix M not containing C.

We determine this threshold function for several con�gurations.

In the �nal chapter we prove that there exists a number f(s; t) such that every f(s; t)-

connected graph G admits a proper partition fS; T g of the vertex-set V (G) so that the

induced subgraphs G(S) and G(T) are s-connected and t-connected, respectively.

4

4. Graph theoretical notation, terminology

We mostly use the standard notation of graph theory (cf. [Lo79], [Be73]).

A graph G consists of a �nite set of vertices or nodes V (G) (or simply V) and a �nite

set of edges E(G) (or E). An edge is a pair of nodes. Let e = (x; y) be an edge. We think

of e as joining x and y, and we say x and y are adjacent. We call x and y the endvertices

or endnodes of e. (Note: it is common to allow E to be a multiset and to have singletons,

so called loops. Throughout this thesis we do not use this general notion.) Let us denote

the set of all the 2

(

v

2

)

possible graphs on the vertex set V = f 1; . . . ; v g by G

v

. Two graphs

G and H 2 G

v

are called isomorphic if there exists a permutation � of V = f 1; 2; . . . ; v g

such that G = H

�

, where H

�

= (V; f (x

�

; y

�

)j(x; y) 2 E g). Isomorphic graphs look the

same but in G

v

one can distinguish them by using the `names' of the vertices.

We need some other graph universes. A directed graph is a set of vertices V and a

set of ordered pairs of nodes E, called edges or arcs. For e = hx; yi an edge, x is called

the tail of e and y is called the head of e. Again we don't allow multiplicities and loops.

(In this case the same pair of nodes can be connected by two edges but they must have

opposite orientation.) Let D

v

be the set of all the 2

v(v�1)

directed graphs on the vertex

set V = f 1; . . . ; v g.

We shall also consider the subclass of directed graphs called oriented graphs. A di-

rected graph is an oriented graph if no two edges connect the same pair of nodes. These

graphs are exactly the directed graphs which can be obtained by orienting the edges of

some undirected graph.

An important class of undirected graphs is the class of bipartite graphs. A graph

G is bipartite with bipartition (U;W) if its vertex set can be partitioned into two sets

U;W in such a way that each edge of G joins one vertex from U to a vertex of V . We

refer to U and V as color classes. Let B

u;w

be the set of all the 2

uw

bipartite graphs on

U [W = f 1; . . . ; u g [f

�

1; . . . ; �w g. (Keep in mind that V is the disjoint union of U and

W , in notation: V = U

_

[W .)

A directed bipartite graph with bipartition (U;W) is a directed graph (U

_

[W;E) where

E � (U �W)[(W �U). Let DB

u;w

be the set of all 4

uw

directed bipartite graphs on the

bipartition (U = f 1; . . . ; u g ;W = f

�

1; . . . ; �w g).

For G

v

;B

u;w

, etc. our de�nitions �x the vertex set. Sometimes to avoid confusion,

when we work with two graphs from the same universe we distinguish the two vertex sets

by using primes in one case.

Let us consider some special graphs. A v-node graph which has all the

�

v

2

�

possible

5

edges is called complete graph and denoted by K

v

. If we want to emphasize the vertex set

of the complete graph then we write K

V

. The empty graph, E

v

or E

V

is a graph with

empty edge set. A complete bipartite graph has all the uw edges between U and W . It

is denoted by K

u;w

or K

U;W

. If we take an orientation of the complete bipartite graph

such that the tail of each directed edge is in the same color class than we call it a one-way

complete bipartite graph.

Some more notation.

G

0

= (V

0

; E

0

) is a subgraph of G = (V;E) if V

0

� V , E

0

� E and each element of

E

0

joins two vertices from V

0

. G

0

= (V

0

; E

0

) is the subgraph of G induced by V

0

if it is a

subgraph and E

0

has all the edges of G connecting nodes from V

0

. In this case we use the

notation G

0

= GjV

0

.

If we have a 1� 1 function f de�ned on the vertex set of G then the image of G will

be G

f

= (f(V (G)); f (f(x); f(y))j(x; y) 2 E(G) g). If f is only a partial function on V (G)

then it is de�ned only on a subset of the nodes. For the other nodes we extend it as the

identity map and G

f

will be de�ned according to this.

The disjoint union of G and H is G

_

[H = (V (G)

_

[V (H); E(G)

_

[E(H)).

Let G be a graph and let H be one of its subgraphs. Then G �H = (V (G); E(G)�

E(H)).

The complement of G is G, a graph on the same vertex set having all the pairs of

nodes as edges which are not in G, i.e. K

V (G)

�G.

Let d

G

(x) be the degree of a node x, i.e. the number of edges incident on x. If from

the context it is clear what the underlying graph G is then we shall omit the subscript.

Let D(G) be the maximal degree of G. Let �(G) be the minimal degree of G. Let

�

d(G) be

the average degree of G, i.e.

�

d(G) =

1

v

P

x2V

d(x) =

2e

v

(where e is the number of edges in

G). D

S

(G); �

S

(G) and d

S

(G) denote the maximum, minimum and average degrees, resp.,

over S � V (G). (Here degrees are meant relative to G and not to the induced subgraph

GjS.)

The set of nodes adjacent to x is the neighborhood of x and it is denoted by N

G

(x).

If from the context it is clear that we work with G then we omit the subscript.

A subgraph P of G is a path if P = (fx

1

; . . . ; x

k

g ; f (x

1

; x

2

); . . . ; (x

k�1

; x

k

) g),

for some set fx

1

; . . . ; x

k

g of k distinct vertices.. A subgraph C of G is a cycle if

C = (fx

1

; . . . ; x

k

g ; f (x

1

; x

2

); . . . ; (x

k�1

; x

k

); (x

k

; x

1

) g), for some set fx

1

; . . . ; x

k

g of k

distinct vertices. If a path or cycle goes through all the nodes (i.e. its vertex set is V (G))

then it is called a Hamiltonian path or cycle, respectively. If a graph has a Hamilton cycle

it is called Hamiltonian.

By coloring a graph G with colors f 1; 2; . . . ; l g we mean a function c : V ! f 1; . . . ; l g.

A coloring is proper if for each edge the colors of the endnodes are di�erent.

A set of edges is independent if no two edges from the set share an endpoint. A set

of independent edges is called a matching. A matching M is a perfect matching if the

6

endvertices of the edges in M cover the whole vertex set. A perfect matching de�nes a

pairing of the vertex set.

Finally we de�ne some speci�c graph properties.

A vertex v is a sink in an oriented graph G if it is connected to all other nodes and

each edge incident to it is directed toward v.

A graph G is called a scorpion graph if it contains a vertex adjacent to all but one of

the vertices, and the one to which it is not adjacent has degree 1 and its single neighbor

has degree 2.

The thesis is divided into chapters having sections. If we refer to a theorem then

we use the numbering of chapters and theorems (this includes the section number too) to

identify it, e.g., theorem II.2.9. If we omit the number of the chapter then the reference

in question is in the same chapter.

7

2. LOWER BOUNDS FOR RANDOMIZED DECISION TREES

1. Decision trees

Decision trees are a computational model for boolean functions.

De�nition 1.1. A decision tree is a rooted binary tree with labels on each node and edge.

Each inner node is labeled by a variable symbol. This label represents a query for the value

of the corresponding variable. One of the two edges leaving the node is labeled 0, the other

is labeled 1. The two labels represent the two possible answers. The two subtrees at a

node describe how the algorithm proceeds after receiving the corresponding answer. Each

leaf is labeled 0 or 1. These labels give the output, i.e. the value of the function.

Clearly, each truth-assignment to the variables determines a unique path, the com-

putation path, from the root to a leaf of the tree. The boolean function computed by the

given decision tree takes the label at this leaf as the value on the given input.

De�nition 1.2. Let cost(A; x) be the number of queries asked when the decision tree A

is executed on input x. This is the length of the computation path forced by x.

max

x

cost(A; x) is the worst case complexity of A, i.e. the depth of the tree.

The decision tree complexity of a boolean function f is C(f) = min

A

max

x

cost(A; x), where

the �rst minimum is taken over all decision trees A computing the function f .

It is obvious that the complexity of any function f is at most the number of its

variables.

De�nition 1.3. A function f of n variables is evasive if C(f) = n.

(Sometimes this property is referred to as elusive or exhaustive.)

The �rst step toward understanding decision trees might be to consider speci�c func-

tions and to determine their decision tree complexities. Much e�ort has been spent in this

direction ([Bo77], [BE78], [BBL74], [HR72], [Kir74], [MW74], [MW76]).

It is somewhat surprising that most boolean functions require querying all the variables

in the worst case [RV76].

Theorem 1.4. (R.L. Rivest and S. Vuillemin [RV76]) As n ! 1, almost all boolean

functions of n variables are evasive.

This result gives us hope that one might �nd uniform lower bounds for a broad class

of boolean functions.

8

De�nition 1.5. For a class of boolean functions F let C(F) = min

f2F

C(f).

Let us mention some classes in the literature.

A boolean function is monotone if changing the value of a variable from 0 to 1 cannot

change the value of the function from 1 to 0.

A boolean function is non-trivial if it is not constant.

We can identify graphs in G

v

with (0; 1)-strings of length

�

v

2

�

. Graph properties are

boolean functions f : G

v

! f 0; 1 g taking equal values on isomorphic graphs. Let GP

v

denote the set of graph properties over G

v

.

Along the same lines one can de�ne digraph properties, bipartite graph properties and

directed bipartite graph properties and identify them with classes of boolean functions. Let

us denote the corresponding sets of properties (over a given size of universe) byDP

v

, BP

u;w

and DBP

u;w

. So we can talk about C(GP

v

), C(DP

v

), C(BP

v

) and C(DBP

v

).

The case of oriented graphs is somewhat di�erent. The number of oriented graphs

on v vertices is 3

(

v

2

)

. But we can talk about solving oriented graph properties in the

decision tree model by slightly modifying the model. Each query fx; y g has three possible

outcomes (no edge; edge hx; yi; edge hy; xi). So in the tree describing the decision process,

each inner node has three children. We refer to this as the ternary decision tree model.

First let us see some linear lower bounds.

Theorem 1.6. (B. Bollob�as and S.E. Eldridge [BE78]) For any monotone, non-trivial

oriented graph property P in the ternary model,

C(P) � 2v � blog

2

vc � 2:

Theorem 1.7. (B. Bollob�as and S.E. Eldridge [BE78]) For any non-trivial graph property

P

C(P) =
(v):

Both bounds are tight (the second only up to a constant factor). For Theorem 1.6

this is shown by the property `having a sink' [BE78]. For Theorem 1.7 this is shown by

the property `being a scorpion graph' [BBL74].

We are especially interested in classes of boolean functions where we can't save more

than a constant factor compared to n =

�

v

2

�

. Aanderaa proposed the class of non-trivial

graph properties. Rosenberg was the �rst one to realize the falsity of this conjecture. He

added the condition of monotonicity [Ro73]. That form of the conjecture is referred to as

the Aanderaa�Rosenberg conjecture.

The tightness of Theorem 1.6 and Theorem 1.7 shows that omitting the monotonicity

requirement or allowing oriented graphs creates totally di�erent situations.

The �rst step toward con�rming the conjecture was made by D. Kirkpatrick who

proved the following lower bound.

Theorem 1.8. (D. Kirkpatrick [Kir74]) For any non-trivial, monotone graph property P ,

C(P) =
(v log v):

The Aanderaa�Rosenberg conjecture was subsequently settled by Rivest and

Vuillemin.

9

Theorem 1.9. (R.L. Rivest and S. Vuillemin [RV76]) For any non-trivial, monotone

graph property P ,

C(P) �

v

2

16

:

Re�ning their method D.J. Kleitman and D.J. Kwiatkowski improved the constant of

the lower bound.

Theorem 1.10. (D.J. Kleitman and D.J. Kwiatkowski [KK80]) For any non-trivial,

monotone graph property P ,

C(P) �

v

2

9

:

In fact, no non-trivial, monotone graph property is known which would not require

n =

�

v

2

�

questions in the worst case. The proof method of Rivest and Vuillemin de�nes a

class of evasive functions. Instead of graph properties they considered boolean functions

with `high symmetry'. Let us consider the group of all permutations of the variables of a

given boolean function. Let us consider the subgroup of it which consists of permutations

� of the variables such that f(x) = f(x

�

), where x

�

is the permuted order of the variables.

If this permutation group is transitive, i.e. every variable can be carried to every other by

some element of this group, than the function is called transitive.

Theorem 1.11. (R.L. Rivest and S. Vuillemin [RV76]) Every boolean function f of n

variables such that f is transitive, n is a prime power and f(0) 6= f(1), is evasive.

In ligth of this theorem there is a natural question: can we get rid of the disturbing

assumption that n is a prime power? The answer is no; a counterexample was given by Illies

[Il78]. But nobody knows what happens if we have, instead, a monotonicity assumption.

Conjecture 1.12. Every transitive, non-trivial and monotone boolean function is evasive.

The special case of this conjecture for graph and digraph properties is also open.

Conjecture 1.13. Any non-trivial, monotone graph or digraph property is evasive.

Let us realize that Theorem 1.11 of Rivest and Vuillemine doesn't settle this question

even for special values of v.

�

v

2

�

won't be a prime power except for v = 2 or 3.

There are strong partial results for graph properties. The following results are based

on a topological method of Kahn, Saks and Sturtevant [KSS84].

Theorem 1.14. (J. Kahn, M. Saks and D. Sturtevant [KSS84]) Any non-trivial, monotone

property of graphs and digraphs with a prime power number of vertices is evasive.

Theorem 1.15. (A. Yao [Ya88]) Any non-trivial, monotone bipartite graph property is

evasive.

V. King considered the case of directed bipartite graphs. She noted that we cannot

expect evasiveness because we can express properties depending only on edges starting in

one �xed color class. She obtained an evasiveness result by adding an extra condition to

exclude this possibility.

10

Theorem 1.16. (V. King [Ki88]) Any non-trivial, monotone, directed bipartite graph

property is evasive, assuming that one color class has prime power size and of the two

one-way complete graphs either neither or both have the property.

Some of the results above give lower bounds only for special sizes of the vertex set. In

order to get general lower bounds we need some kind of reductions between di�erent sizes.

Theorem 1.17. (D.J. Kleitman and D.J. Kwiatkowski [KK80])

C(GP

v

) � minf C(GP

v�1

); q(v � q) g ;

where q is the prime power nearest to

v

2

.

Theorem 1.18. (V. King [Ki88])

C(DP

v

) � minf C(DP

v�1

); q(v � q) g ;

where q is the smallest prime power greater than

v

2

.

When we apply these results we lose a constant factor.

Theorem 1.19. (Kahn, Saks and Sturtevant [KSS84]) For any non-trivial, monotone

graph property P ,

C(P) �

v

2

4

+ o(v

2

):

Theorem 1.20. (V. King [Ki88]) For any non-trivial, monotone digraph property P ,

C(P) �

v

2

2

+ o(v

2

):

These are the best known general lower bounds for non-trivial, monotone graph and

digraph properties.

* * *

In the manner common in complexity theory one can introduce decision trees using ex-

tra power like nondeterminism, randomization, alternation (see [MT85], [MH85b], [Sn85],

[Ya77])

De�nition 1.21. A nondeterministic decision tree is a rooted tree. Each of its inner

nodes is labeled by a variable. This label represents a query. Each edge leaving the node

is labeled 0 or 1. The subtrees which can be reached from a given node by an edge labeled

0 are the possible continuations of the algorithm after getting answer 0. The role of the

edges labeled by 1 is symmetric. During the execution of the algorithm the next step will

be chosen nondeterministically.

The de�nition above describes the notion of a nondeterministic decision tree and

its execution on an input. But this execution is nondeterministic. So what function is

computed by this tree? We say that an input is accepted if there exists a computation

path leading to an accepting leaf.

11

De�nition 1.22. The nondeterministic decision tree complexity of a boolean function f is

the minimum depth of the nondeterministic decision trees computing f . This complexity

is denoted by C

ND

(f).

De�nition 1.23. A randomized decision tree is a rooted tree. Each of its inner nodes

is labeled a variable, i.e. by a query. The edges leaving a node are labeled 0 or 1. The

subtrees which can be reached from a given node by an edge labeled 0 are the possible

continuations of the algorithm after receiving answer 0. The role of the edges labeled 1 is

symmetric. During the execution of the algorithm the next step will be chosen randomly.

An alternative de�nition might be the following. Let us say that the random choice

is based on coin tossing. If one �xes the outcome of the coin tosses than we have a

deterministic computation. In this way we can describe the probabilistic decision tree as

a probability distribution on the set of deterministic trees.

Again we face the question: how to de�ne that a randomized decision tree computes

a function?

There are many di�erent ways to answer this questions. We use the simplest conven-

tion when we require that the algorithm always give the correct answer. Using the second

formalization of the randomized decision tree, it computes a function f i� the distribution

is non-zero only on deterministic trees computing f .

De�nition 1.24. Let fA

1

; . . . ;A

N

g be the set of all the deterministic decision trees

computing the function f . LetR = f p

1

; . . . ; p

N

g be a randomized decision tree computing

f , where p

i

is the probability of A

i

.

The cost of R on input x is cost(R; x) =

P

i

p

i

cost(A

i

; x).

The randomized decision tree complexity of a function f is

C

R

(f) = min

R

max

x

cost(R; x);

where the minimum is taken over all randomized decision trees computing the function f .

There are alternative de�nitions in which we allow errors. We obtain di�erent models,

depending on what kind of errors we allow (1-way or 2-way).

De�nition 1.25. Let fA

1

; . . . ;A

N

g be the set of all the deterministic decision trees

(not necessarily computing a given function f). Let R = f p

1

; . . . ; p

N

g be a probability

distribution on deterministic decision trees, where p

i

is the probability of A

i

.

R is �-tolerant for f if

P

A

i

doesn't output f(x) on x

p

i

� �, for all possible inputs x.

The cost of R on input x is cost(R; x) =

P

i

p

i

cost(A

i

; x).

The 2-way error randomized decision tree complexity of a function f with error � is

C

R2

�

(f) = min

R

max

x

cost(R; x);

where the minimum is taken over all �-tolerant randomized decision trees computing the

function f .

Let C

R2

(f) = C

R2

1

3

(f).

The constant

1

3

doesn't have an important role. If we neglect constants in the com-

plexity than we can substitute it with anything less than

1

2

.

12

The possible algorithms can output anything. The mistake can be either way. This

fact is indicated by the superscript 2. If our randomized algorithm is restricted to produce

deterministic trees where the mistake occurs in only one direction (it might output 0 instead

of the real value 1 but not the other way around) then it is called 1-way error computation

(the corresponding complexity measure is denoted by C

R1

). For further information we

refer the reader to A. Yao's [Ya77] and Noam Nisan's papers [Ni].

The main question is this: how much can we save by adding the extra power of

randomization? We mention some basic inequalities.

Theorem 1.26. (M. Blum [BI87]) For any boolean function f

p

C(f) � C

ND

(f) � C

R

(f) � C(f):

Using the C

R1

(f), resp. C

R2

(f) notation for the randomized complexity of f allowing

1-way and 2-way errors, resp. (see [Ni] for details) Noam Nisan obtained the following

results.

Theorem 1.27. (Noam Nisan [Ni]) For any boolean function f

(i)

q

1

2

C(f) � C

R1

(f),

(ii)

1

2

3

p

C(f) � C

R2

(f).

These theorems give a lower bound for the power of randomization. We refer to them

as the basic bounds.

On the other side there are several known examples where randomization does help.

Example 1.28. (M. Saks and A.Wigderson [SW86]) Consider the digraph property `every

vertex has an incoming arc'.

Deterministically, this is an evasive property, so its deterministic complexity is v(v�1).

Let us examine the following randomized algorithm. It considers each vertex one at

a time in random order and it scans the possible incoming edges into that vertex until it

�nds one or realizes that there aren't any. It is easy to see that the complexity of this

algorithm is at most

v(v+1)

2

. So randomization can save a constant factor.

Example 1.29. (M. Saks and A. Wigderson [SW86]) Let f be the following boolean

function on n = 2

d

variables. First let us build a binary tree based on these variables as

leaves. Plug a NAND gate into each inner node. The circuit that we get in this way will

compute f .

It is not hard to see that the deterministic complexity of this function is n (theorem

1.11).

The following randomized algorithm gives an upper bound on the randomized com-

plexity of f . Choose a child of the root at random and evaluate its subtree recursively. If

it evaluates to 0, then the value of f is 1. Otherwise recursively evaluate the other child

of the root.

The complexity of this algorithm is �(n

:753...

). As it turns out this is exactly the

randomized complexity of f . For more details see [SW86].

R. Boppana exhibited another example of a function where randomized and deter-

ministic complexities di�er in the exponent [Bo].

It is conjectured that the examples above are the best possible up to a constant factor.

13

Conjecture 1.30. (attributed to R.M. Karp by [SW86]) For any non-trivial, monotone

graph property P

C

R

(P) =
(C(P)) =
(v

2

):

Conjecture 1.31. (M. Saks and A. Wigderson [SW86]) For any boolean function f

C

R

(f) =
(C(f)

0:753...

):

Only in the case of graph properties are there results better than the basic inequalities

known (theorem 1.26). (In this case we know that the deterministic complexity is of the

order of v

2

. Blum's bound shows that the randomized complexity of any graph property

is at least linear in v.)

Theorem 1.32. (A. Yao [Ya87]) For any non-trivial, monotone graph property P ,

C

R

(P) =
(v log

1

12

v):

Theorem 1.33. (V. King [Ki88]) For any non-trivial, monotone graph property P ,

C

R

(P) =
(v

5

4

):

These results can be extended to the 2-way error version of randomized computation.

(See [Ya87] and [Ki88].)

The main result of this chapter is our improved lower bound for this problem.

Theorem 1.34. For any non-trivial, monotone graph property P ,

C

R

(P) =
(v

4

3

):

Our method can be carried out for the 2-way error model.

Theorem 1.35. For any non-trivial, monotone graph property P ,

C

R2

(P) =
(v

4

3

):

* * *

In the following few paragraphs we summarize the di�erent modi�cations of decision

trees and other related models.

Gy. Tur�an proposed the following generalized decision tree model for deciding graph

properties. The model is the same kind of binary tree except that the queries are more

general. Each inner node is labeled by a subset of the vertex set and the query asks

whether or not there exists at least one edge induced by these vertices. The cost, again, is

the number of queries in the worst case.

A. Hajnal, W. Maass and Gy. Tur�an [HMT88] determined the complexity of a few

graph properties. In particular, they proved that the complexity of connectivity and

bipartiteness in this model is �(n logn).

14

They have results on the oblivious versions of their decision trees.

There are many graph properties with unknown Tur�an-complexity, including `having

perfect matching' and `having Hamiltonian cycle'. Nothing is known about the randomized

version of their model.

Going back to the computation of boolean functions one might ask the question (fol-

lowing the idea of [HMT88]): what happens if in the tree at a given inner vertex we

evaluate functions other than the simplest, one-variable ones?

I don't know any result on this direction. Some natural questions: In the Tur�an-model

our queries are a special kind of disjunctions of variables. What happens if we allow all the

disjunctions of variables (or negated variables) as questions? What happens if we allow

disjunctions of clauses each of which consist of a conjunction of two variables (or negated

variables) as queries.

Other questions arise if we enlarge the domain. So far we have been working with

boolean functions, where the variables have (0; 1) values.

If our variables have values from a linearly ordered set we get the well known com-

parison tree model. Of course changing the domain implies that we have a new type of

problem. The most traditional ones are: sorting, selection, and merging.

There are extensions where the domain is a partially ordered set. We mention a few

papers discussing these questions: [FT88a],[FT88b],[Pr87],[Sa].

We would like to point out one research project that was mentioned in [FT88a]. Let

us consider all possible partial orderings of f 1; . . . ; v g. We can de�ne isomorphism of

partially ordered sets. We are interested in deciding properties of partially ordered sets

(preserved under isomorphism). The model is a ternary tree where at every node we ask a

question about two elements and the answer is their relation (i.e. <,> or incomparable).

Given a property of partially ordered sets how many queries do we need?

There are some known easy properties, where o(v

2

) questions su�ce to decide. Such

problems include `having a unique maximal element', `being a linear order' and `having

bounded width'. Other properties, like `connectivity', `bounded height', `being a lattice',

`being an interval order' are known to be hard in the sense that they require
(v

2

) ques-

tions. What properties are evasive (i.e., require

�

v

2

�

questions in worst case) ?

If our domain is an algebraic structure like the real numbers, then there aer a lot

of possibilities to extend our model. We can query if a linear function of the variables

is positive, negative or zero [Gy81],[DM]. The output (the content of the leaves) can be

a number instead of a boolean value. Again the new domain puts forward several new

problems: knapsack, shortest path, element distinctness, convex hull.

We can further extend the set of possible queries. A. Yao considers quadratic decision

trees [Ya81]. In this model at every node we can compute a quadratic function of the

15

expressions computed already. A query is any expression computed already and the answer

is the comparison of its value and 0.

As an extension of A. Yao's model we can allow computing bounded degree polyno-

mials at a given node [BO83], [KS86].

S. Smale allows computing arbitrary rational expressions at a node. He gives [Sm87]

a lower bound on the total number of nodes (rather than the depth) on the problem of

simultaneous approximation of the roots of the input polynomial.

* * *

Decision trees have relations with other branches of computer science, in particular

with PRAM machines.

We can extend our decision model by allowing integer outputs instead of boolean

ones. This variation of our model can compute functions f : f 0; 1 g

n

! N, like PRAM

machines. A PRAM machine is collection of RAM machines (see [AHU74]) communicating

through a common memory. There are several versions of this model depending on how we

resolve read and write conicts. If we allow simultaneous read but we don't allow di�erent

computers to write into the same cell at the same time then we have the CREW PRAM

model. The following theorem shows that decision tree complexity and CREW PRAM

complexity are closely related.

Theorem 1.36. (Noam Nisan [Ni]) (i) Any function that can be computed by a CREW

PRAM in time t can be computed by a boolean decision tree of depth O(2

t

).

(ii) Any function that can be computed by a boolean decision tree of depth d can be computed

by a non-uniform CREW PRAM in O(log d) steps using O(2

d

) processors.

The connection between another version (namely CROW PRAM's) of PRAM's and

decision trees are also discussed in [Ni].

S. Cook, C. Dwork and R. Reischuk [CDR86] pointed out the connection between

CREW PRAM's and the dependency of boolean function. D � f 1; . . . ; n g is a dependency

set for the function f : f 0; 1 g

n

! N on input x 2 f 0; 1 g

n

if f(x) = f(x

0

) for all x

0

that

agree with x on D. The dependency of f on input x is the minimum size of any dependency

set for f on x. The dependency of f is

max

x2f 0;1 g

n

dependency of f on input x:

Now it is not very surprising that dependency of a function is related to the decision

tree complexity.

Theorem 1.37. (M. Blum) Any function f : f 0; 1 g ! N can be computed by a boolean

decision tree of depth at most (dependency of f)

2

.

Another parameter, block sensitivity, and its connection to decision tree complexity

is discussed in [Ni].

16

Evaluation of game trees is an important problem in arti�cial intelligence. [SW86]

uses the technique developed for analyzing randomized decision trees for (�; �) pruning

procedure (see [KM75],[Pe80],[Pe82],[Roi81],[T]).

* * *

The organization of this chapter is as follows.

In the next section we give a detailed description of the previously used methods

for lower bounds on randomized decision tree complexity for non-trivial, monotone graph

properties.

In the third section we discuss the very important notion of duality. This notion

brings forward a purely graph theoretical question called the packing problem. We give a

short overview on the known graph theoretical results on this subject.

In section 4 we show how one can use Yao's technique to get non-linear lower bounds.

In this section we obtain an
(v

5

4

) lower bound for the bipartite graph properties.

In section 5 we improve the known packing theorems for bipartite graphs. The im-

proved theorem together with the previous proof scheme gives us the
(v

4

3

) lower bound

for the bipartite case.

None of the known reductions is able to convert this result for the general case. In

section 6 we exhibit an improved reduction which �nally gives the main result of the

chapter.

Finally, in section 7, we say a few words about the case of 2-way errors: our result

also hold in this model.

2. Previous techniques

In the previous section we described several graph properties using well-known notions

of graph theory. If we want to say something about all graph properties then it is better

to give a uniform way to describe a property. In the case of monotone graph properties

there is a convenient way to do that.

De�nition 2.1. Let P be any monotone graph property. min(P) denotes the list of

minimal graphs having property P , i.e. G 2 min(P) i� G 2 P but for any proper subgraph

H of G H =2 P .

It is clear that knowing min(P) is equivalent to knowing P .

In previous papers several methods were presented giving lower bounds for the random

complexity of properties. The lower bounds on C

R

(P) given by these methods depended

explicitly on min(P).

17

All the known lower bound methods based on a lemma of A. Yao. This lemma

transforms the lower bound problem on the randomized decision tree complexity into

another problem, where giving lower bounds is much more convenient.

Lemma 2.2. (A. Yao [Ya77]) Let d be a probability distribution on all the possible inputs

and let d(x) be the probability of input x. (In the case of graph properties d describes a

random graph.) We de�ne the average case performance of a deterministic decision tree

A computing f as av(A; d) =

P

x

d(x)cost(A; x).

Then for a boolean function f

C

R

(f) = max

d

min

A

av(A; d);

where the minimum is taken over all the deterministic decision trees computing f .

C

R

(P) is de�ned as a minimum. The statement of the lemma is that C

R

(P) is can

be written as a maximum. So lemma 2.2 is a so-called minimax theorem. In fact this is

basically equivalent to the famous minimax theorem of J. von Neumann [vN28] for game

theory.

The meaning of this lemma is that if one wants to give a lower bound for C

R

(P) then

there is an easy way to do it. Namely �nd a distribution which is concentrated on the

`uniformly hard' instances and for every deterministic algorithm �nd a lower bound on the

average cost over this distribution. The bound will be a lower bound on C

R

(P) too.

Now we give a list of the signi�cant results on lower bound techniques for randomized

decision trees. We shall give a proof of Yao's method since the result is very important for

our proof.

Remember that d(G) and D(G) were de�ned in section I.4 as the average and max-

imum degree of G, respectively. If the average or maximum is taken over nodes coming

from a subset S of the vertex set then we indicate this by a subscript S.

Theorem 2.3. (A. Yao [Ya77]) (i) Let P 2 GP

v

and G 2 min(P) be any minimal graph

for P . Then

C

R

(P) =
(v

�

d(G)):

(ii) Let P 2 BP

u;w

and G 2 min(P) be any minimal graph for P . Then

C

R

(P) =
(ud

U

(G)):

De�nition 2.4. Let L be a list of graphs from B

u;w

. For each G 2 L let us consider

the sequence of degrees in color class U . Let hd

1

; d

2

; . . . ; d

u

i be the sequence of degrees

in non-incresing order. If hd

1

; d

2

; . . . ; d

u

i is the lexicographically �rst sequence among the

ordered lists from elements of L, then we refer to G as the U -lexicographically �rst element

of L.

Theorem 2.5. (A. Yao [Ya87]) Let P 2 BP

u;u

and G 2 min(P) be the U -lexicographically

�rst graph of min(P). Then

C

R

(P) =
(

D

U

(G)

d

U

(G)

u):

18

Proof. (Sketch) Without loss of generality we can assume that D

U

(G) > 100d

U

(G) since

otherwise theorem 1.26 would immediately give the result. The factor 100 is not crucial,

it makes things simpler so we can get a better insight into the proof.

In the �rst half of the proof we construct a distribution on B

u;u

.

The construction starts from the U -lexicographically �rst element G. Let x

0

2 U the

node of maximal degree in U . Let x

1

; x

2

; . . . ; x

u

4

be the vertices of U with smallest degrees.

Let D = D

U

(G) = d(x

0

), d

i

= d(x

i

), for 1 � i �

u

4

and d = d

U

(G). It is easy to see that

d

i

� 2d� D, for all 1 � i �

u

4

. Let N

i

be the neighborhood of x

i

. We refer to N

0

as the

big neighborhood and to N

i

(1 � i �

u

4

) as small neighborhoods.

Let us de�ne G

0

the following way. We add some new edge to G, namely we connect

x

i

to all elements of N

0

and N

i+1

(in the case i =

u

4

we connect x

u

4

only to N

0

). If we

had already an edges between two nodes which we are supposed to join then we do not do

anything.

G

0

has property P since it has G as a subgraph and G is a minimal graph for P .

Recognizing G as a subgraph was very easy. An important property of G

0

is that it has

many other subgraph isomorphic to G. To see this, consider the permutation �

i

of the

vertex set of G

0

: (x

0

; x

i

; x

i�1

; . . . ; x

1

), i.e. a cyclic permutation on fx

0

; x

i

; . . . ; x

i

g and all

the other vertices are �xed. Then G

�

i

is a subgraph of G

0

for all 1 � i �

u

4

. (G

�

i

is a

twisted copy of G.)

As an easy consequence of this property consider the following truncation of G

0

. Delete

4d edges starting at x

i

in parallel, for 0 � i �

u

4

. We have N

G

0

(x

i

) = N

0

[N

i

[N

i+1

, so

N

G

0

(x

i

) is a union of two small sets and a big one. The only restriction on which edges

to delete is that we can't delete edges connecting x

i

to the small neighborhoods. The set

of deleted edges starting at a given x

i

will be called a wedge. The deletion procedure is

not yet well-de�ned, we have many ways to execute it. Let H be any graph which can

be constructed as we described. The remark above shows that by putting back only one

wedge into H we get a graph that has property P . (If we put back the wedge of x

i

then

G

�

i

proves this fact.)

On the other hand in H the degrees of all the x

i

's are smaller than D. The fact that G

was the lexicographically �rst minimal graph shows that H can't have any of the minimal

graphs of P as a subgraph. So H doesn't have property P .

If we input H into any deterministic decision tree A computing P , then it must test

at least one edge from each wedge. So H is a `hard' input. Let d is the distribution on

B

u;u

that is de�ned by the random graph space where the deletion procedure described

above is a random one (i.e. we have the uniform distribution over all possible H).

In the second half of the proof we show that every deterministic algorithm solving P

requires many questions in average, if the input has distribution d. Using lemma 2.2 we

shall obtain the statement of the theorem.

Actually we already have all the remarks that we need for the proof. Let us concentrate

on the neighborhood of one x

i

in input H (let us say that we �x the outside part of the

graph). This neighborhood is N

0

[N

i

[N

i+1

�R where R is de�ned by the deleted edges.

If we consider all possible inputs with the distribution d then R is a random subset of

N

0

� (N

i

[N

i+1

). On the other hand the deterministic algorithm starts to scan the pair

of vertices in a deterministic order. The question is: when does this order hit �rst R? The

19

size of N

0

�(N

i

[N

i+1

) is about D, R is of size 4d. It is easy to compute that the expected

number of questions asked until we hit the random set R is �(

D

d

). Knowing this for

u

4

nodes we easily get the result.

Theorem 2.5 is very powerful. The only problem with it is that we can apply it only

for a very speci�c graph of the list min(P). We need a slight extension of this method. In

our extension we shall have some structural knowledge about the minimal graph which is

pointed out by the lemma.

Lemma 2.6. Let P 2 BP

u;u

and let us assume that there is a graph in min(P) which

has at least

u

2

isolated nodes in U . Let G be the U -lexicographically �rst graph among the

graphs having at least

u

2

isolated nodes in U . Then

C

R

(P) =

�

D

U

(G)

d

U

(G)

u

�

:

Proof. The proof is a simple modi�cation of the proof of theorem 2.5. In that proof we

chose the node of maximal degree from U and some other points of degree at most twice

the average degree. Now we do the same but we carefully leave

u

2

isolated nodes out of the

consideration. (This way we might loose a constant factor, but it will disappear within
.)

The only point where we used that the graph G of theorem 2.5 is the lexicographically

�rst is when we showed that that none of the elements of our random graph space has

property P . We concluded this from the fact that these graphs do not have any subgraph

from min(P).

This is still true for the random graph space constructed from the new graph de�ned

in our lemma. For any element of min(P) having

u

2

isolated nodes this follows from the

fact that G was the U -lexicographically �rst among these kind of graphs. For the other

graphs it is true because they have less than

u

2

isolated nodes in U .

V. King gave the following lower bound method.

Theorem 2.7. (V. King [Ki88]) (i) Let P 2 GP

v

and G 2 min(P) be any minimal graph

for P . Then

C

R

(P) =

�

(

jV (G

0

)j

d(G

0

)D(G)

)

2

�

;

where G

0

is the subgraph of G induced by the non-isolated nodes.

(ii) Let P 2 BP

u;w

and G 2 min(P) be any minimal graph for P . Then

C

R

(P) =

�

(

jU

0

j

d

U

0

(G)D

U

(G)

)

2

�

;

where U

0

is the subset of U of nodes with positive degree.

We note that in the previous claims about bipartite universe the roles of U and W

are exchangeable.

None of these methods works for every graph property, but for any property one of

them gives a good lower bound. Combining all of them one get a superlinear lower bound

for bipartite graphs. Unfortunately Yao's method doesn't seem to work on general graph

properties. This is the reason that the known lower bounds handle the bipartite properties

�rst.

20

Theorem 2.8. (V. King [Ki88]) The randomized decision tree complexity of any non-

trivial, monotone bipartite graph property P 2 BP

v;v

is
(v

5

4

), i.e.,

C

R

(BP

v;v

) =
(v

5

4

):

* * *

In order to get a lower bound for general graph properties we need a reduction from

general graphs to bipartite graphs. The two strongest known reductions are due to V.

King.

Theorem 2.9. (V. King [Ki88]) For any q such that 1 � q �

v

2

and for any non-trivial,

monotone graph property P 2 P

v

C

R

(P) =

�

min

�

v

2

q

; min

q�r�

v

2

C

R

(BP

v�r;r

)

�

�

:

Theorem 2.10. (V. King [Ki88]) The randomized decision tree complexity of any non-

trivial, monotone graph property P 2 P

v

is

C

R

(P) =

�

min

n

v

6

5

; C

R

(BP

v

2

;

v

2

)

o

�

:

3. Using duality: packing

A. Yao's original paper [Ya87] had to treat specially the case when all the elements

of min(P) have small number of edges. V. King had problems with graphs with many

isolated nodes (because of lemma 2.7). In both cases the problem was solved using the

notion of duality.

De�nition 3.1. G 2 P

�

i�

�

G 62 P . P

�

is the dual of the property P .

It is easy to check that if P is non-trivial, monotone graph property then so is P

�

.

Let

�

P be the complement property of P , i.e. the property such that G 2 P i� G 2 P .

If we have a deterministic decision tree A for P then let A be the decision tree where at

each inner node the labels of the two edges leaving that node are exchanged. It is clear

that A computes P . If in addition we complement the label of each leaf then we get a

decision tree A

�

computing P

�

. This argument shows that there is an `nice' 1 � 1 map

21

between decision trees computing P and P

�

. In particular we get that the deterministic

and randomized decision complexities of P and P

�

are the same.

In the proof we shall utilize our ability to choose between the properties P and P

�

,

each having the same complexity. In this section we investigate the dependence between

min(P) and min(P

�

). The dependence will be very useful for us because it gives guidance

in choosing the right list to work with.

De�nition 3.2. (a) Let G;H 2 G

v

. Let us assume that G has vertex set V and H has

the vertex set V

0

. A packing is a bijection f : V

0

! V such that the edge set of G and H

f

are disjoint.

(b) Let G;H 2 B

u;w

. Let us assume that G has color classes U and W and H has color

classes U

0

and W

0

. A bipartite packing is a bijection f that maps U

0

to U and W

0

to W

such that the edge set of G and H

f

are disjoint.

The following lemma shows the importance of packing.

Lemma 3.3. ([Ya2]) (i) If P 2 P

v

, G 2 min(P) and H 2 min(P

�

) then G and H cannot

be packed.

(ii) If P 2 BP

u;w

, G 2 min(P) and H 2 min(P

�

) then G and H cannot be packed as a

bipartite graphs.

Packing graphs is a heavily studied subject in graph theory. A good survey of this

research can be found in [Bo78]. Bellow, we summarize the known results on packing.

Much e�ort has been spent for packing sparse graphs [SS78], [TY87], [BS77], [BS78],

[HHS81], [STY85], [FRSS81]. An typical theorem from this area is:

Theorem 3.4. (N. Sauer and J. Spencer [SS78]) If jE(G)j; jE(H)j � v�2 (where jV (G)j =

jV (H)j = v) then G and H can be packed.

One can extend packing to packing several graphs. We just refer the reader to [GyL].

We mention a nice conjecture from this paper.

Conjecture 3.5. (A. Gy�arf�as and J. Lehel [GyL]) Let T

k

be any tree with vertex set of

size k (k = 1; . . . ; n). Then there is a packing of T

1

; T

2

; . . . ; T

n

into the complete graph on

n vertices.

The following few theorems give su�cient conditions on the number of edges for the

existence of a packing.

Theorem 3.6. (B. Bollob�as and S.E. Eldridge [BE78]) If jE(G)j+ jE(H)j � b

3

2

(v � 1)c

(where jV (G)j = jV (H)j = v) then there is a packing of G and H.

For improvements (but still with a linear upper bound in the condition on the sum of

the number of edges) see [BE78].

Theorem 3.7. (B. Bollob�as and S.E. Eldridge [BE78])

(i) If G;H 2 G

v

and jE(G)jjE(H)j <

�

v

2

�

then G and H can be packed.

22

(ii) If G;H 2 B

u;w

and jE(G)jjE(H)j < uw, then G and H can be packed as bipartite

graphs.

Theorem 3.8. (B. Bollob�as and S.E. Eldridge [BE78]) (i) If G;H 2 G

v

, jE(H)j <

v

3

and

jE(G)j <

1

15

v

3

2

then G and H can be packed.

(ii)If G;H 2 B

u;u

, jE(H)j <

u

3

and jE(G)j <

1

15

u

3

2

then G and H can be packed as

bipartite graphs.

For us the most important su�cient conditions will be the following ones on the

maximal degrees.

Theorem 3.9. (Conditions on the maximal degree [SS78],[Ca74]) (i) If G;H 2 G

v

and

D(G)D(H) <

v

2

then G and H can be packed.

(ii) If A;B 2 B

u;w

and D

U

(A)D

W

(B) +D

W

(A)D

U

(B) < u, then A and B can be packed

as bipartite graphs.

In the last two statements the bounds in the conditions are tight (up to negligible

factors). For theorem 3.9.(ii) (the bipartite case) this can be easily shown using the proba-

bilistic method in [SS78]. For theorem 3.9.(i) there is an easy construction [BE78] showing

that one cannot improve the condition with more than a factor 2. This example suggests

the following conjecture.

Conjecture 3.10. (B. Bollob�as and S.E. Eldridge [BE78]) Let G and H be two graph on

a vertex set of size v. If (D(G) + 1)(D(H) + 1) � v + 1 then there is a packing of G and

H.

Our proof will heavily use the conditions of theorem 3.9. So any strengthening of the

results might be valuable for us. Unfortunately, even if conjecture 3.10 were to be proven,

as we will see the constant improvement would disappear in the
. Instead, we extend

these results, proving the following improved packing theorem for bipartite graphs, which

is very helpful.

Theorem 3.11. Let G;H 2 G

u;w

. Assume that

(a) u � w � 2u,

(b) d

U

0

(G)D

W

(H) �

u

100

,

(c) d

U

(H)D

W

0

(G) �

u

100

,

(d) D

U

(G); D

U

0

(H) �

u

1000 log u

.

Then G and H can be packed.

We will prove this theorem in section 5.

The following remark is an example of the power of these theorems.

If our goal is to prove a lower bound not better than v

3

2

than we can assume that

min(P) contains only graphs with at least

v

3

edges. This follows from theorem 3.8 and

theorem 2.3.

23

>From the packing property one can get the following useful information for bipartite

property P 2 BP

u;w

: at least one of min(P) and min(P

�

) contains a graph where the

class U has at least

u

2

nodes of positive degree.

The packing property does not give all the dependences between the two minimal lists.

Actually min(P

�

) is the set of minimal graphs which can't be packed with any element of

min(P). The maximality gives us further information about the lists.

Lemma 3.6. Let P 2 P

u;w

. Then min(P) or min(P

�

) has a graph G such that it has at

least

u

2

isolated nodes in U .

Proof. G = K

u

2

;w

_

[E

u

2

2 B

u;w

is a graph with

u

2

isolated nodes in U and with all

the possible edges among the other nodes. If G 2 P then the statement is clearly true.

Otherwise

�

G = G 2 P

�

and again the statement is clearly true.

4. Surgery on the maximal degree

For simplicity, in this section we restrict ourselves to the bipartite universe where the

two color classes have the same cardinality. (Only this case is needed for the proof of

theorem 1.33.) In this case d(G) = d

U

(G) = d

W

(G).

The basic idea of this section is the following. Let us �x a bipartite property P . Let us

consider min(P). If we have a graph of high average degree in min(P) then we get a good

lower bound by theorem 2.3. If theorem 2.5 points out a graph from min(P) such that its

average degree is low and its maximal degree in the corresponding color class is high then

Yao's technique gives us a good bound. In some sense we can interpret these statements

as follows: if we cannot get a good lower bound on C(P) by these two techniques then we

have an upper bound on the maximal degree in one of the color classes of a special graph

from min(P). Let us assume that this happens to both min(P) and min(P

�

). Now we

are left with two graphs. We have bounds on the maximal degree in some color classes.

That gives us the possibility to force a contradiction using packing theorems. The �rst

step in this program is to choose graphs to which we can apply Yao's method.

De�nition 4.1. Let P 2 P

u;u

and let, as before, U and W be the two color classes in this

universe. Assume that min(P) has some graphs with at least

u

2

isolated nodes in U .

(a) Let G be the U -lexicographically �rst among the graphs from min(P) having at least

u

2

isolated nodes in U .

(b) Let H be the W

0

-lexicographically �rst element of min(P

�

). To avoid confusion, we

24

shall think of the vertex set of H as being disjoint from U [W and denote the color classes

of H by U

0

and W

0

.

We would like to use G and H in the strategy described above. We have an upper

bound on the maximal degrees in their color classes. In order to apply Catlin's packing

theorem (theorem 3.9.(ii)), we need bounds on the maximal degree in all other color classes.

We proceed as follows. We start to build a packing between G and H. This partial packing

leaves us with some leftover, unpacked nodes. These nodes de�ne a new packing problem

which, in some sense, is independent from the original one. At the same time we will have

a more complete knowledge about the maximal degrees in the color classes. Eventually

this will yield the desired contradiction.

De�nition 4.2. (Prepacking) We are going to de�ne sets U

0

� U , W

0

�W , U

0

0

� U

0

and

W

0

0

� W

0

(jU

0

j = jU

0

0

j; jW

0

j = jW

0

0

j) and a packing between the corresponding induced

subgraphs of G and H.

(a) Let U

0

be the set of

u

2

isolated nodes in G.

(b) Let W

0

0

be the set of min

n

u

8d(H)

;

u

2

o

nodes of lowest degree in H.

(c) Let U

0

0

be the neighborhood of W

0

0

and plus as many of the highest degree nodes from

U

0

as needed in order to get a set of size

u

2

. (We will see that the size of the neighborhood

of W

0

0

is at most

u

4

.)

(d) Let W

0

be the set of min

n

u

8d(H)

;

u

2

o

nodes in W of highest degree in G.

Let G

0

and H

0

be the subgraphs of G and H induced by the sets de�ned above. Note that

G

0

is empty. Let U

1

, W

1

, U

0

1

and W

0

1

the leftover parts of the corresponding vertex sets.

Let G

1

and H

1

be the subgraphs induced by these leftover sets.

Any pair of bijections U

0

0

! U

0

and W

0

0

! W

0

gives a packing of G

0

and H

0

. Choose

arbitrarily one of these, and call it prepacking.

Lemma 4.3. (i) If G

1

and H

1

can be packed then the packing and the prepacking together

yield a total packing.

(ii) D

U

1

(G

1

) � D

V

(G).

(iii) D

W

0

1

(H

1

) � D

W

0

(H).

(iv) D

U

0

1

(H

1

) � 4d(H):

(v) D

W

1

(G

1

) � 8d(G)d(H):

Proof (i) There are no edges in G between U

0

and W

1

and in H between W

0

0

and U

0

1

.

Thus we won't have any conict putting together the two packings.

(ii) and (iii) are obvious because G

1

is a subgraph of G and H

1

is a subgraph of H.

(iv) U

0

1

= U

0

�U

0

0

. We are going to show that the neighborhood of W

0

0

has at most

u

4

nodes. This implies that U

0

0

has the

u

4

highest degrees in U

0

. The claim about the size of

the neighborhood of W

0

0

is clear because all degrees in W

0

0

are not greater then 2d(H).

(v) If the statement were not true then the contribution of the edges having an end-

point in W

0

to the total number of edges in G would be greater than jW jd(G).

Theorem 4.4. The randomized decision tree complexity of any non-trivial monotone bi-

partite graph property P 2 BP

u;u

is
(u

5

4

), i.e.,

C

R

(BP

u;u

) =
(u

5

4

):

25

Proof Let us �x an arbitrary P 2 BP

u;u

. Let G 2 min(P) and H 2 min(P

�

) be the

two graphs de�ned in de�nition 4.1.

Case 1. d(G) or d(H) is at least

1

10

u

1

4

.

In this case theorem 2.3 gives the lower bound.

Case 2. D

U

(G) or D

W

0

(H) is at least

1

10

u

1

2

and case 1 does not hold.

Without loss of generality we can assume that D

U

(G) is at least

1

10

u

1

4

. Because of

the choice of G we can apply Yao's method and we get the lower bound

(

D

U

(G)

d(G)

u):

We know that d(G) is at most

1

10

u

1

4

. Thus we get the desired lower bound.

Case 3. None of the previous cases holds.

Let G

1

and H

1

be the graphs de�ned in de�nition 4.2. It is easy to check that the

condition of theorem 3.9.(ii) is satis�ed. So G

1

and H

1

can be packed. Using lemma 4.3.(i)

we get that G and H can also be packed, which is a contradiction.

5. The improved packing theorem for bipartite graphs

In the previous section we used Catlin's simple packing theorem for bipartite graphs.

In this section we improve this result and derive an improved lower bound on our problem,

too.

First, we review Catlin's idea. Given G;H 2 G

u;w

with color classes U;W and U

0

;W

0

,

resp. We want to �nd a su�cient condition for existence a packing. We take an arbitrary

bijection f : U

0

! U . De�ne a bipartite graph between W and W

0

based on whether

two nodes can be identi�ed or not. Now the problem is simply �nding a matching in this

auxiliary graph.

De�nition 5.1. Let G;H 2 G

u;w

. Let U;W;U

0

andW

0

be the corresponding color classes.

Given f , a bijection U

0

! U , we de�ne a bipartite graph B

f

with color classes W and W

0

.

We make x 2W and y 2W

0

adjacent i� x and y can be identi�ed, i.e., the neighborhoods

of x in G and of y in H

f

are disjoint subsets of V .

Now it is easy to show that if G and H satisfy the condition of Theorem 3.9.(ii) then

for any bijection f B

f

satis�es the condition of K�onig's theorem (see e.g. [Lo79], Chap. 7,

prob. 4.) and therefore possesses a perfect matching along which we can map W

0

to W

to obtain a packing. It is worth to state this fact as a separate lemma. Remember that

�(G) is the minimal degree of G and �

S

(G) is the minimal degree among nodes from S

(see section I.4.).

26

Lemma 5.2. (i) Let G 2 B

u;u

. If �

U

(G); �

W

(G) �

u

2

then G has a perfect matching.

(ii) Let G 2 B

u;u

. If �

U

(G) + �

W

(G) � u then G has a perfect matching.

The condition in theorem 3.9.(ii) restricts the product of the maximum degrees of G

and H. Our improvement comes from relaxing one of the terms to average degree.

Theorem 5.3. Let G;H 2 G

u;w

. Assume that

(a) u � w � 2u,

(b) d

U

0

(G)D

W

(H) �

u

100

,

(c) d

U

(H)D

W

0

(G) �

u

100

,

(c) D

U

(G); D

U

0

(H) �

u

1000 log u

.

Then G and H can be packed.

The proof of this result is probabilistic. The probabilistic method for proving existence

of a combinatorial object was introduced by P. Erd}os [Er47]. Since then it has been a very

useful tool in combinatorics [ES74], [Sp87], [Bo85], etc. The basic idea of this method

that if a property has positive probability then at least one element of the probabilistic

space must have that property. In our case the goal is to show that there exists a bijection

f : U ! U

0

such that B

f

has a perfect matching. We are going to show that for a random

bijection this is true.

Let f d

1

; . . . ; d

u

g be all the degrees in U , and let f e

1

; . . . ; e

u

g be all the degrees in

U

0

.

Lemma 5.4. Let f : U ! U

0

be a random bijection, all bijections being equally likely.

Prob(B

f

has perfect matching) � 1� w Prob(

X

i2R

d

i

�

w

2

)� w Prob(

X

i2S

e

i

�

w

2

);

where S is a random subset of U

0

of size D

W

(G), all such subsets being equally likely, and

R is a random subset of U of size D

W

0

(G), all such subsets being equally likely.

Proof. We are interested in the event

E = B

f

has a perfect matching :

By lemma 5.2 the following event is a subset of E.

F = Each node of B

f

has degree at least

w

2

:

One elementary bad event is

F

x

= x has degree in B

f

less then

w

2

(for x 2W [W

0

):

Using this notation

E � F =
� [

x2W[W

0

F

x

:

27

Thus

Prob(E) � 1�

X

x2W[W

0

Prob(F

x

):

For x 2 W , F

x

is exactly the event that the image f(N(x)) of N(x) (f(N(x)) � U

0

)

has a neighborhood in W

0

of size more than

w

2

. The event that the sum of the degrees in

f(N(x)) is at least

w

2

is a superset of F

x

. If x 2 W then f(N(x)) is a random set of size

jN(x)j and its size is at most D

W

(G). This completes the proof.

Our conditions on G and H are symmetric. So it is enough to show that

Prob(

X

i2R

d

i

�

w

2

) <

1

2w

:

R is a random subset of U

0

. There are di�erent models for random sets. In our case

R is a random set of a given size. Another model is that each element of our universe will

be in the set with a given probability. This model is more convenient. It is well-known in

the theory of random graphs [Bo85] that by choosing the right parameters the two models

yield basically the same theorems. So our next step is to change to the second model. For

this we need some inequality for Bernoulli random variables.

Lemma 5.5. (Cherno� [Ch52]) Let X

1

; X

2

; :::; X

N

be independent 0-1 random variables

such that Prob(X

i

= 1) = p. If m � Np is an integer then

Prob(

X

N

i=1

X

i

� m) �

�

Np

m

�

m

exp(m�Np):

An easy consequence of this is the following.

Lemma 5.6. ([ES74], [AV79]) Let X

1

; X

2

; :::; X

N

be independent 0-1 random variables

such that Prob(X

i

= 1) = p. Then for every 0 < � < 1,

(i) Prob(

P

N

i=1

X

i

� b(1� �)Npc) � exp

�

�

�

2

Np

2

�

:

(ii) Prob(

P

N

i=1

X

i

� b(1 + �)Npc) � exp

�

�

�

2

Np

3

�

:

And now let us see the reduction.

Lemma 5.7. Let X

1

; . . . ; X

u

be independent random variables such that Prob(X

i

= d

i

) =

p > 2

D

W

(G)

u

and Prob(X

i

= 0) = 1� p. Let � be a random subset of f 1; 2; . . . ; u g of size

D

W

(G). Then

Prob(

X

i2�

d

i

�

w

2

) < 2 Prob(

u

X

i=1

X

i

�

w

2

):

Proof. Let �

i

be a random subset of f 1; 2; . . . ; u g of size i, all i-subsets of f 1; 2; . . . ; u g

being equally likely. Let P

i

= Prob(

P

j2�

i

d

j

>

w

2

). Then P

0

� P

1

� ::: � P

u

.

28

Then

Prob(

X

u

i=0

X

i

d

i

>

w

2

) =

X

u

k=1

�

u

k

�

p

k

(1� p)

u�k

P

k

�P

b

1

2

upc

X

b

1

2

npc�k�b

3

2

upc

�

u

k

�

p

k

(1� p)

u�k

�

1

2

P

b

1

2

upc

�

1

2

P

D

W

(G)

=

1

2

Prob(

X

i2�

d

i

>

w

2

):

So at this point using the notation of the previous lemma we should give an upper

bound on Prob(

P

u

i=1

X

i

�

w

2

).

Let us �x the value of p to be 10

D

W

(G)

u

. Notice that the conditions of theorem 5.3

imply

w

2

� E(

P

u

i=1

X

i

) =

P

i

10

D

W

(G)

u

d

i

= 10D

W

(G)d

U

0

. So we need an upper bound

on the probability of that a sum of independent random variables is much greater than

their expected sum. Cherno� bound is that kind of result but it is about Bernoulli random

variables. We use the method of the proof of Cherno�'s theorem to get the desired upper

bound. For that we need the notion of characteristic function.

De�nition 5.8. Let X be a random variable. Its characteristic function is e

tX

, a random

variable depending on the real parameter t.

The following lemma shows an important property of the characteristic function.

Lemma 5.9. Let X

1

; . . . ; X

N

be independent random variables. Then

E(

N

Y

i=1

e

tX

i

) =

N

Y

i=1

E(e

tX

i

):

Now we have everything in order to prove the last lemma that we need.

Lemma 5.10. Let 0 � d

1

; d

2

; :::; d

u

� L =

u

1000 logu

be integers and de�ne d by

P

u

i=1

d

i

=

du. Let X

1

; X

2

; :::; X

u

be independent random variables such that Prob(X

i

= d

i

) = p and

Prob(X

i

= 0) = 1� p. Then Prob(

P

u

i=1

X

i

> 10pdu) �

1

u

2

.

Proof. For all positive t

Prob(

X

i

X

i

> 10pdu) = Prob(e

(

P

i

X

i

)t

> e

10pdut

):

29

Let us compute E(e

P

i

X

i

t

).

E(e

P

i

X

i

t

) = E(

Y

i

e

X

i

t

) =

Y

i

E(e

X

i

t

)

=

Y

i

(1� p+ pe

d

i

t

) =

Y

i

(1� p(1� e

d

i

t

)):

An easy calculation shows that this product is maximal if all d

i

's are 0 or L, the maximal

value of them. So

E(e

P

i

X

i

t

) � (1� p(1� e

Lt

))

du

L

< (1� p(1� (1 + 2Lt)))

du

L

< (1 + 2pLt)

du

L

< e

2pdut

;

assuming that Lt < 1.

Using Markov's inequality

Prob(

X

i

X

i

> 10pdu) = Prob(e

P

i

X

i

t

> e

10pdut

) �

e

2pdut

e

10pdut

= e

�8pdut

:

Fixing the value of t to be

1

L

our bounds are still true and we obtain the desired upper

bound.

We obtain the promised packing theorem (theorem 5.3) as corollary.

Proof of Theorem 5.3. Applying lemma 5.10, lemma 5.7 and lemma 5.4 we obtain

that for a random f with positive probability B

f

has a perfect matching. This proves

that there exists a concrete bijection f such that for the corresponding B

f

has a perfect

matching. This perfect matching is an identi�cation of W and W

0

, which together with f

gives us a packing.

The improved packing theorem yields the following improved lower bound on the

randomized complexity of bipartite graph properties.

Corollary 5.11. The randomized decision tree complexity of any non-trivial monotone

bipartite graph property P 2 BP

u;u;

is
(u

4

3

), i.e.,

C

R

(BP

u;u

) =
(u

4

3

):

Proof. Let P 2 BP

u;u

be an arbitrary graph property. Let G and H be the graphs

de�ned in de�nition 4.1. We are going to consider three cases.

Case 1. d(G) or d(H) is at least

1

100

u

1

3

.

Applying theorem 2.3 we get the lower bound.

Case 2. D

U

(G) or D

W

0

(H) is at least

1

100

u

2

3

and case 1 does not hold.

Because of the choice of G we can apply Yao's method and we get the lower bound

(

D

U

(G)

d(G)

u): In this case we know that d(G) is at most

1

100

u

1

3

. These imply the lower

bound.

Case 3. None of the previous cases holds.

30

Let us consider G

1

and H

1

, the graphs de�ned in de�nition 4.2. It is easy to check

that the conditions of the new packing theorem (theorem 5.3) are satis�ed. So G

1

and H

1

can be packed. This leads to a contradiction that proves our theorem.

6. The improved reduction from general to bipartite graphs

Given a graph property P one can construct other graph properties, that are useful

for proving lower bounds on the complexity of P .

Let P 2 P

v

be a non-trivial, monotone graph property, viewed as a set of graphs with

vertex set V . Divide V into equal parts V = U

_

[W , where jU j = jW j =

v

2

De�nition 6.1. Assume that K

U

_

[E

W

=2 P and K

V

�K

U

2 P . Let

~

P 2 BP

v

2

;

v

2

be the

following property. G 2

~

P i� adding all the possible edges between the nodes of U to G

gives us a graph having property P .

De�nition 6.2. Let P 2 P

v

. Let us assume that K

V

� K

U

=2 P . Let

^

P 2 P

v

2

be the

following property. G 2

^

P i� adding

v

2

new nodes and all the possible edges incident to a

new node to G gives us a graph having property P .

Considering these problems helps us because of lemma 6.3 below. Basically it says

that it is enough to give a lower bound on the constructed property. In the case when the

�rst de�nition might be applied the advantage is obvious, since we get a reduction to the

bipartite case.

Lemma 6.3. Let P 2 P

v

be an arbitrary non-trivial graph property. Let us assume that

~

P and

^

P are the properties de�ned in 6.1 and 6.2. Then the following are true.

(i)

~

P is a non-trivial, monotone bipartite graph property.

(ii) C

R

(P) � C

R

(

~

P).

(iii)

^

P is a non-trivial, monotone graph property.

(iv) C

R

(P) � C

R

(

^

P).

Another advantage is that we might have "nice" critical graphs for the constructed

property. This way it is easier to handle a lower bound on that property.

Lemma 6.4. Let P 2 P

v

be a graph property and

^

P be the property de�ned in 6.2. Let

G 2 min(P). Then there is an H 2 min(

^

P) such that the following are true.

(i) D(H) � 4d(G).

(ii) H has at least

v

10d(G)

isolated nodes.

Proof. Let V be the vertex set of G, (jV j = v). Let us take any subset V

0

of V of size

v

2

. Then the subgraph of G induced by V

0

, GjV

0

has the property

^

P . Thus min(

^

P) has

31

an element that is a subgraph of GjV

0

. So it is enough to show that for an appropriate set

V

0

, GjV

0

has the properties (i) and (ii).

Choose min

n

v

2

;

v

10d(G)

o

nodes by the following greedy algorithm. Choose the node

of minimum degree in G. Throw away that point and its neighborhood. Choose the node

of minimum degree in the remaining graph and continue this procedure. The set that we

shall get will be an independent set and its neighborhood will have size less than

v

4

. Let

us refer to this independent set as A. Let us extend N(A) to a set of size

v

2

by adding

some nodes of largest degree. Notice that we add at least

v

4

new nodes. Let B be the set

obtained after this extension of N(A). Let V

0

be the complement of B. Let us remark

that A � V

0

.

It is easy to see that V

0

de�ned above is a good set. (i) follows from the fact that B

has the set of nodes of the greatest

v

4

degrees. (ii) is true because A � V

0

.

Now we are ready to prove the improved reduction to the bipartite case.

Theorem 6.5. The randomized decision tree complexity of any non-trivial, monotone

graph property P 2 P

v

is

C

R

(P) =

�

min

n

v

4

3

; C

R

(

v

2

;

v

2

)

o

�

:

Proof Let P 2 P

n

be arbitrary graph property. We consider two cases.

Case 1. K

v

2

_

[E

v

2

=2 P and K

v

�K

v

2

2 P .

Then C

R

(P) � C

R

(

~

P) � (C

R

(

v

2

;

v

2

)).

Case 2. Case 1. does not hold.

Without loss of generality we assume that K

v

�K

v

2

=2 P . (This must hold for P or

P

�

.)

Let us consider

^

P . For any G 2 min(P) construct an H 2 min(

^

P) guaranteed to

exist by lemma 6.4. Choose any F 2 min(

^

P

�

). We know that F and H have no packing.

Start a prepacking the following way. Pack all the nodes of the top

v

10d(G)

degrees of F

into isolated nodes of H. Let the unpacked nodes span the graphs F

1

and H

1

.

It is easy to see that F

1

and H

1

can't have a packing. F

1

has maximal degree at most

10d(G)d(F). From 6.4 H

1

has maximal degree at most 4d(G).

We �nish the proof by considering the following two subcases.

Subcase 1. d(F) �

1

10

v

1

3

or d(G) �

1

10

v

1

3

.

Then lemma 2.3 gives us that C

R

(P) � C

R

(

^

P) =
(v

4

3

).

Subcase 2. The hypothesis of subcase 1 is not satis�ed.

Then Catlin's theorem (theorem 3.9.(ii)) gives us a contradiction.

Combining Corollary 5.10. and Theorem 6.5 we get the following improved lower

bound on general graph properties.

Theorem 6.6. The randomized decision tree complexity of any non-trivial, monotone

graph property P 2 P

v

is
(v

4

3

), i.e.,

C

R

(P

v

) =
(v

4

3

):

32

7. Allowing two-sided error

In this section we consider how one can extend our result to the case when we allow

two sided errors. Recall that C

R2

�

(P) denotes the randomized decision tree complexity of

property P when two-sided error is allowed (see de�nition 1.25). Remember that the coin

tossing can result in an arbitrary decision tree. (Each tree has an associated probability.)

Computing a function means that for each input the probability of error is small.

Again the basic questions and methods were described in [Ya77]. In the errorless

case the proof started by a saddle-point transformation (see lemma 2.2). The important

observation is that that transformation can be carried out in the 2-sided error case too.

Lemma 7.1. Let d be a probability distribution on all the possible inputs and let d(x) be

the probability of input x. (In the case of graph properties d describes a random graph.)

We say that a deterministic decision tree A computes f with error � over the input

distribution d if

P

A outputs f(x) on x

d(x) � �.

We de�ne the average case performance of a deterministic decision tree A over an

input distribution d as av(A; d) =

P

x

d(x)cost(A; x).

Then for a boolean function f

C

R2

�

(f) �

1

2

max

d

min

A

av(A; d);

where the minimum is taken over all the deterministic decision trees computing f with

error 2�.

Again the lemma suggests a proof scheme for giving lower bound on C

R2

(f) as follows.

We de�ne a `hard' input distribution and prove that any algorithm that computes f for

the majority of the inputs must ask many queries.

It is clear that if we have theorem 2.5 and lemma 2.6 for the two sided case that by

plugging them into the rest of the proof we obtain the same lower bound. So the crucial

question is what can we substitute for these theorems in the more general model. In

this section we sketch the proof of the fact that theorem 2.5 and lemma 2.6 remain true

even in the 2-sided error model. We follow the proof given in section 2 and explain what

modi�cation we need. We assume familiarity with the proof of theorem 2.5.

Let A be any 2-sided error algorithm computing a monotone, non-trivial bipartite

graph property P . Repeating the algorithm several times and �nally outputting the ma-

jority of the outputs we obtain a

1

10

-tolerant algorithm. The price of this is a constant

factor in the complexity of the tree.

33

As lemma 7.1 suggest, �rst we de�ne a distribution d on the bipartite graph universe.

The de�nition of the distribution of the possible inputs is based on the same observation

as in the original proof. Take the lexicographically �rst element from the list of minimal

graphs for P . By adding edges to it we obtain G

0

. By deleting enough edges we obtain

a graph not having property P (this is the point where we use the fact that G is the

lexicographically �rst graph). Let G

del

be the set of graphs which can be constructed this

way. By putting back one `wedge' we obtain a graph having the property P . Let G

add

be the set of graphs which can be obtained this way. Our distribution is zero outside

G

del

[G

add

, prob(G 2 G

del

) = prob(G 2 G

add

) =

1

2

and the elements in G

del

are equally

probable and so are the elements of G

add

.

The �nal step in the proof is to prove that any algorithm A which is correct most of

the time when the inputs have the distribution just described must ask many queries. In

order to see this we concentrate on the neighborhood of a given x

i

node. For this reason we

�x which edge set to delete from the neighborhood of x

j

, where i 6= j. Restricting the edges

not adjacent to x

i

de�nes a unique element of G

add

. For most of the possible restrictions

A works correctly on this graph. We consider only these kinds of restrictions. After �xing

the outside part let us take a look at the neighborhood of x

i

. This neighborhood is (using

the notation of the proof for theorem 2.5) N

0

[N

i

[N

i+1

�R, where R is a set of size 4d

or R is an empty set. To show that algorithm A asks many questions we must see that

for most of the possible neighborhoods it outputs the right answer on the corresponding

input. This can be easily shown by throwing away a constant fraction of restrictions. For

the remaining ones now an easy calculation gives us the analysis that we need: even if R

doesn't run over all possible subsets but only over a constant fraction then the average

time that a �xed order of N

0

� (N

i

[N

i+1

) hits R is still �(

D

d

). That completes the proof

of the 2-sided version of theorem 2.5.

With the same technique we obtain the 2-sided error version of lemma 2.6. That gives

that our lower bound stands even when we allow 2-sided errors.

7.2 Theorem. For any non-trivial, monotone graph property P

C

R

(P) � C

R1

(P) � C

R2

=
(v

4

3

):

34

3. A LOWER BOUND FOR READ-ONCE-ONLY BRANCHING PROGRAMS

1. Branching programs

Branching programs are a model generalizing decision trees.

De�nition 1.1. A branching program is a directed acyclic graph. To avoid confusion we

will use the terms nodes and arcs to refer to the elements of this digraph. (We will use

branching programs to do computation on graphs; these graphs (input objects) will have

vertices and edges.)

One of the nodes of the branching program is a source (has fan-in zero) and is called

START; other nodes are sinks (fan-out zero) and are called terminal nodes. All non-

terminal nodes have fan-out two. The two arcs leaving a non-terminal node are labeled 0

and 1. Each non-terminal node is labeled by an input variable and each terminal node is

labeled 0 or 1.

Each input string � = �

1

:::�

n

2 f 0; 1 g

n

de�nes a unique path from START to

a terminal node: the computation path determined by �. This path, after entering a

nonterminal node labeled x

i

, proceeds along the arc labeled �

i

. The path ends at a

terminal node. The function f computed by this branching program is de�ned by setting

f(�) equal to the label of this terminal node.

The size of a branching program is the number of nodes. The length is the maximum

length of the computation paths. The multiplicity of reading is the maximum number of

times any particular variable is encountered as a node label along any computation path.

In the case when the program is leveled, i.e. START is on level one and arcs only go from

each level to the next level, we can introduce another complexity measure: the width of

the program is the maximum number of nodes on any level.

* * *

An easy counting argument shows that most Boolean functions require exponential

size branching programs. It is desirable to �nd nontrivial lower bounds for explicit Boolean

functions (functions that belong to P or at least to NP).

The only known lower bound for the size of an unrestricted branching program com-

puting an explicit Boolean function is due to Ne�ciporuk [Ne66], [Sav76] and is
(n

2

= log

2

n).

35

P. Beame and S. Cook observed [BC85] that Ne�ciporuk's technique actually applies to the

\element distinctness" problem in the following sense. Let x

1

; . . . ; x

m

be m integers be-

tween 1 and m

2

. Written in binary, they form the input string of length n = 2m logm.

Any branching program deciding whether or not all the x

i

are distinct must have size

(m

2

) =
(n

2

= log

2

n).

* * *

Another approach that has recently gained popularity is proving lower bounds for

branching programs with bounds on various \resources" (width, multiplicity of reading).

A similar approach to Boolean circuits has been quite successful recently [Ya85], [An85],

[Ra85a], [Ra85b], [Ha86], [AB87], [Be86], [Ra87], [Sm87].

Our aim is to present a result of this kind.

Bounded width branching programs were introduced by Borodin, Dolev, Fich and

Paul [BDFP83]. Their main result, completed by Yao [Ya83] , is a superpolynomial lower

bound for width-2 branching programs computing the majority function. Shearer [Sh]

recently proved an exponential lower bound for width-2 branching programs computing

the \0 mod 3" function. These functions are symmetric (invariant under permutations

of the variables). Interest in such functions was in part motivated by the conjecture

stated in [BDFP83] that any bounded width branching program computing the majority

function would require exponential size. This conjecture has been proved false by David

Barrington's surprising result [Ba86] that the class of Boolean functions computed by

polynomial size, width-5 branching programs coincides with nonuniform NC

1

(log-depth,

fan-in 2 Boolean circuits) and thus contains all symmetric functions. This may be part of

the reason why it is so di�cult to �nd even nonlinear lower bounds for bounded width

branching programs for symmetric functions.

The �rst such lower bound was derived using a beautiful Ramsey argument by Chan-

dra, Furst, and Lipton [CFL83] for the function

P

n

i=1

x

i

= n=2. Unfortunately, as it is

often the case with Ramsey arguments, the bound is barely nonlinear: it is
(nw(n))

where w(n) is the inverse function of the van der Waerden numbers (see [GRS80]).

A more e�ective lower bound was obtained by P. Pudl�ak [Pu84]. Using a di�erent

Ramsey argument, he proves
(n log logn= log log logn) lower bounds for threshold func-

tions and separates (by the same amount) the power of width k and width k+1 branching

programs for each k. He also proves a nonlinear lower bound under no width constraint for

the majority function as well as an
(n log logn= log log logn) lower bound for bounded

width branching programs for all but a bounded number of symmetric Boolean functions.

The result of Babai, Pudl�ak, R�odl and Szemer�edi [BPRSz] gives more e�ective,

(n logn= log logn) and
(n logn) lower bound for bounded and unbounded width resp.

branching programs computing any member of a large class of symmetric Boolean func-

tions.

N. Alon and W. Maass [AM86] using similar techniques obtain similar results.

36

A read-k-times-only branching program is allowed to encounter each variable at most

k times along any computation path. This hierarchy of classes of branching programs was

introduced by Masek [Mas76]. Wegener [We84] conjectures an exponential gap between the

levels of this hierarchy and gives candidate Boolean functions computable with polynomial

size read-k-times-only programs but conjectured to require exponential size read (k � 1)-

times-only programs.

No superpolynomial lower bounds are known, however, even for read-twice-only

branching programs computing an explicit Boolean function, and no such bound will ap-

pear in this paper.

In connection with the history of read-once-only branching programs, we should men-

tion a paper by Fortune, Hopcroft and Schmidt [FHS77]. In the context of program

schemes, they gave an exp(c

p

n) lower bound for computing an explicit function by read-

once-only branching programs satisfying the additional restriction that the variables have

to be examined in precisely the same order along each computation path. Without this

restriction, however, their function is computable by a read-once-only branching program

of polynomial size and is indeed de�ned by such a program.

Wegener [We84], Z�ak [Z�a84] and Dunne [Du85] independently prove an exp(c

p

n)

lower bound for read-once-only branching programs computing certain, clique related graph

properties. Wegener's property is NP -complete (presence of a clique of size v=2 where v is

the number of vertices), Z�ak's is polynomial time decidable (recognizing the graphs that

consist of a clique of size v=2 and v=2 isolated vertices.) We shall improve the lower bound

to C

n

(for a di�erent function, also a polynomial time decidable graph property) (section 2

and 3).

Let n =

�

v

2

�

and x 2 f 0; 1 g

n

representing a graph G(x). Let f

n

(x) denote the number

of triangles in G(x) modulo 2.

Theorem 1.1. There exists a positive constant � such that every read-once-only branching

program computing f

n

has size at least 2

�n

.

This result was obtained with co-authors and it appeared in [ABHKPRSzT86] and

[BHST87].

Since then K. Kriegel and S. Waack [KW86] and M. Krause [Kr86] have obtained

exponential lower bounds for di�erent functions. For M. Kriegel and S. Waack's function

the lower bound remains true even in a more general model. Their restriction on the

branching program is that each computation path has length at most n. Krause [Kr88]

and S.P. Jukna [Ju87] also relax the restriction on the branching program and obtain an

exponential lower bound. Still, no nontrivial lower bound is known in the case of read-

twice-only branching programs

* * *

The organization of the chapter is as follows.

The proof our main theorem will be presented in the next section. In the third

section we discuss the relation between branching programs and space complexity. Our

lower bound on read-once-only branching programs implies a lower bound on the space

37

complexity of the same function on a restricted Turing machine.

2. Read-once-only branching programs: the result

First we �x some notation.

We shall use the term \edge" to mean any of the

�

v

2

�

pairs of vertices. (These are the

edges of the complete graph K

v

.) Let P be a path in a branching program. We shall say

that an arc of P labeled 1 from a node labeled x

e

has the e�ect of accepting the edge e; the

arc labeled 0 from the same node rejects e. The edges accepted by P form the graph A(P),

the rejected edges form the graph R(P). The union of these two edge sets constitutes the

set D(P) of edges determined by P . The depth of a node is its distance from START.

The strategy of our proof is the following.

Assume f

n

is computed by a read-once-only branching program of size less than 2

"n

for some appropriately selected small positive constant ". From this assumption we shall

derive

(1) the existence of a node w in the program, two paths P

0

and P

1

both leading

from START to w, and an edge e not determined by either P

i

, such that the parity of the

number of triangles containing e in the graph A(P

i

) [e is i.

The read-once-only property implies that after w, the program follows the same path

of computation for input graphs A(P

0

) [e and A(P

1

) [e and thus leads to the same

terminal node. This means these two graphs have the same number of triangles mod 2;

the same observations hold for A(P

0

) and A(P

1

). This contradicts the choice of the P

i

and

e.

We proceed to showing how w, e, P

0

, and P

1

satisfying (1) are found.

Proposition 2.1. Let P be a path from START to a terminal node. If three edges are

undetermined by this path, they cannot form a triangle.

Proof. Suppose, to the contrary, that the edges e

1

; e

2

; e

3

of a triangle are left unde-

termined by P . Then the parity of the number of triangles in each graph A(P) [e

i

must

agree with the parity of the number of triangles in A(P). But then adding all the three

edges at once will change the parity, a contradiction.

38

Corollary 2.2. The depth of each terminal node is at least v(v � 2)=4.

Proof: by Tur�an's Theorem in graph theory (cf. [Lo79, Probl.10.30,34]). Any path of

length less than v(v � 2)=4 leaves more than v

2

=4 edges undetermined, forcing the graph

of undetermined edges to contain a triangle.

It follows that for any constant c < 1=4, there are precisely 2

cn

computation paths of

length cn beginning at START. Since the branching program has size less than 2

"n

there

exists a node w such that at least 2

(c�")n

paths of length cn connect START to w.

Let us �x c at a quite small value; any c � 10

�5

will be safe. Then, " must be even

smaller; let us set " = c

3=2

. At the same time we assume that v is su�ciently large.

Using w as a \checkpoint", we shall classify the edges according to their status at the

time various computation paths pass through w. We shall see that these classes exhibit a

strong structure.

Let D denote the set of edges determined by at least one path from START to w. Let

U denote the set of the remaining (undetermined) edges; jDj+ jU j = n.

Proposition 2.3. Let P be any path from START to w. It is impossible that three edges

e

1

, e

2

, e

3

form a triangle, where e

1

2 D �D(P), e

2

; e

3

=2 D(P).

Proof. The proof is similar to that of proposition 2.1. Suppose the contrary. The

read-once-only property implies that e

1

is not tested along any path starting at w and

therefore the parity of the number of triangles in A(P) and A(P) [f e

1

g is the same. In

other words, e

1

is contained in an even number of triangles in A(P) [f e

1

g. Similarly

we infer that the number of triangles containing e

1

in the graph A(P) [f e

1

; e

2

; e

3

g is

even. But this number is precisely one greater than the number just shown to be even, a

contradiction.

Let AR denote the set of those edges which are accepted along some path from START

to w and are rejected along some other. Clearly, AR � D.

Proposition 2.4. There is no triangle e

1

; e

2

; e

3

with e

1

2 AR, e

2

; e

3

2 U .

Proof: The proof is a parity argument similar to the proofs of propositions 2.1 and

2.3. Suppose the contrary. Let be P be any path from START to w, accepting e

1

and let

Q be some other path from START to w, rejecting e

1

. Then the parity of the number of

triangles in A(P) must agree with the parity of the number of triangles in A(Q). Similarly

the parity of the number of triangles in A(P) [f e

2

g and in A(Q) [f e

2

g is the same.

In other words the number of triangles containing e

2

in A(P) [f e

2

g and the number of

triangles containing e

2

in A(Q)[f e

2

g have the same parity. The same holds for e

3

. Clearly

the number of triangles in A(P)[f e

2

; e

3

g and the number of triangles in A(Q)[f e

2

; e

3

g

are the same mod 2. One can divide the triangles in A(Q) [f e

2

; e

3

g into three classes,

namely the triangles in A(Q), the triangles containing e

2

in A(Q)[f e

2

g and the triangles

containing e

3

in A(Q) [f e

3

g. In the case of the triangles in A(P) [f e

2

; e

3

g one must

add the triangle f e

1

; e

2

; e

3

g to the corresponding classes. This contradicts the parity

arguments above.

One can deduce from proposition 2.3 that most edges determined along any path

between START and w are actually determined along P , i.e. the set D � D(P) is small.

39

Moreover, most edges determined by some path to w are both accepted and rejected along

paths to w, i.e. D � AR is a small set. More speci�cally:

Lemma 2.5. (a) jD �D(P)j � 3c

3=2

n.

(b) jU j > (1� c� 3c

3=2

)n:

(c) jARj � (c� ")n:

(d) jD � ARj � 4c

3=2

n:

Proof. For a set A of edges, let deg

A

(p) denote the degree of p with respect to the

graph formed by A.

(a) Let e = pq be any edge in D�D(P). By proposition 2.3, every vertex is adjacent

in D(P) to at least one end of e. Therefore,

deg

D(P)

(p) + deg

D(P)

(q) � (v � 2):

Adding up these inequalities for all pq 2 D �D(P) we obtain

(2)

X

p

deg

D�D(P)

(p)deg

D(P)

(p) � (v � 2)jD �D(P)j:

On the other hand, also by proposition 2.3, the neighborhood in D �D(P) of any vertex

p induces a clique in D(P). Therefore

�

deg

D�D(P)

(p)

2

�

� jD(P)j = cn = c

�

v

2

�

:

Consequently,

(3) deg

D�D(P)

(p) � 1 + c

1=2

v:

Combining (2) and (3),

jD �D(P)j �

1 + c

1=2

v

v � 2

X

p

deg

D(P)

(p) =

2 + 2c

1=2

v

v � 2

jD(P)j � 3c

3=2

n:

(b) follows immediately from (a) since jU j = n� jDj.

(c) Clearly, the logarithm of the number of START-to-w paths is a lower bound for

jARj.

(d) By (a), jDj = jD�D(P)j+ jD(P)j � 3c

3=2

n+ cn. Combining this inequality with

(c) we obtain jD �ARj � ("+ 3c

3=2

)n = 4c

3=2

n:

Lemma 2.5(b) implies that the graph U has a vertex p

0

of degree greater than d =

(1 � c � 4c

3=2

)v. Let S be a set of precisely d neighbors of p

0

in U and let T be the

complement of S (jT j+ jSj = v).

Proposition 2.4 implies that no edge in AR has both of its endpoints in S. From

this, it follows that AR is \mostly" bipartite, with bipartition (S; T). We can actually

deduce even more structure: most vertices in T are adjacent in AR to either almost all or

to almost no vertices in S (about half of the vertices will satisfy each alternative). More

precisely, let us divide T into three classes, T

0

; T

1

; T

2

. We shall refer to a moderately large

constant K, 20 � K � 1=(8c

1=2

).

Let T

0

consist of those p 2 T which have more thanKc

1=2

v neighbors in S in the graph

D�AR. We put p 2 T � T

0

into T

1

or T

2

according to whether p has more AR-neighbors

in S than U -neighbors or not. Let deg

S

AR

(p) denote the number of AR-neighbors of p in

S and analogously for other classes.

40

Lemma 2.6. (a) jT

0

j < 2cv=K:

(b) For each p 2 T

1

, deg

S

U

(p) � 5c

3=2

v:

(c) For each p 2 T

2

, deg

S

AR

(p) � 5c

3=2

v:

Proof. By lemma 2.5(d),

jT

0

jKc

1=2

v � jD �ARj � 4c

3=2

n:

Claim (a) is now immediate.

To prove (b) and (c), let p 2 T � T

0

. Let N

1

and N

2

denote the sets of U -neighbors

and AR-neighbors of p in S, respectively; let n

i

= jN

i

j. Since p 62 T

0

, we have

(4) n

1

+ n

2

� jSj �Kc

1=2

v > 6v=7:

On the other hand, by proposition 2.4, all edges between N

1

and N

2

belong toD�AR.

By lemma 2.5(d) it follows that n

1

n

2

� 4c

3=2

n < 2c

3=2

v

2

. Consequently,

minfn

1

; n

2

g �

2n

1

n

2

n

1

+ n

2

< 5c

3=2

v: �

Let X denote the set of AR-edges between T

1

and S.

Corollary 2.7. (a) (1�

8

K

)cv=2 � jT

1

j � (1 + 4c

1=2

)cv=2:

(b) jAR�Xj <

3c

K

v

2

:

Proof. We begin with (b). Clearly,

jAR�Xj < jT j

2

+ jT

2

jmax

p2T

2

deg

S

AR

(p) + jT

0

jjSj:

By de�nition, jT

2

j � jT j � (c+4c

3=2

)v. We use lemma 2.6(c) to estimate the second term

and lemma 2.6(a) and the fact jSj < v for the last term.

For the upper bound in (a), we obtain from lemma 2.6(b) that

jT

1

j �

jDj

min

p2T

1

deg

S

D

(p)

�

jDj

jSj � 5c

3=2

v

:

Lemma 2.5(a) provides the bound jDj � (c + 3c

3=2

)n. By the de�nition of S (after the

proof of lemma 2.5), jSj = b(1� c� 4c

3=2

)vc. A combination of these estimates yields the

desired upper bound.

For the lower bound we �rst observe that jXj > (c�"�7c=K)v

2

=2 > (1�8=K)cv

2

=2.

This follows from lemma 2.5(c) and part (b) of this corollary. On the other hand, trivially,

jT

1

j � jXj=v.

The structural consequence of lemma 2.6 and corollary 2.7 for the AR graph is that

the subgraph X induced between T

1

and S is a nearly complete bipartite graph, and X

contains almost all edges of AR.

41

In order to focus on X, let us make a decision on the value of each input variable

(edge) in AR�X. There are 2

jAR�Xj

< 2

(3=K)cv

2

possible outcomes (by corollary 2.7(b)).

Let us choose the one that is the most frequent among the START to w computation

paths. Having �xed these values,we still have at least

(5) 2

(c�")n�(3=K)cv

2

> 2

c

2

v

2

(1�8=K)

computation paths left. Let � denote the set of these paths:

(6) log j�j �

c

2

v

2

(1� 8=K):

(The base of the log is 2.)

Let t = jT

1

j and s = jSj. We see, that log j�j is nearly ts. In order to complete the

proof, we show, that, unless situation (1) arises, the number of subgraphs of X arising

from paths P 2 � must be substantially less than 2

ts

: only about 2

ts=2

. This is impossible

because di�erent paths de�ne di�erent subgraphs of X. (This in turn is true since the

possible branchings on variables in AR�X have been eliminated.)

The proof is based on a linear algebra counting lemma for GF (2).

Let A;B;C be (0; 1)-matrices of the same dimensions.

We shall say that A � C mod B if for every i; j, B[i; j] = 0 implies A[i; j] = C[i; j].

Lemma 2.8. Let A

1

; . . . ; A

N

be di�erent t�s matrices over the two-element �eld GF (2).

Furthermore, let B and C be s� s matrices over GF (2). Let � be the number of 1's in B.

Assume that A

T

i

A

i

� C mod B for every i. Then

(7) logN < � +

t

2

(s+ t+ log s):

Proof. First we estimate the number of t � s matrices of rank � t=2 over GF (2).

There are less than 2

t

2

=2

possible choices of the column space. Given the column space of

dimension � t=2, there are � 2

t=2

choices for each column, giving a total of � 2

t(s+t)=2

matrices.

Next, we estimate the number of those A

i

having rank > t=2. Such a matrix has

a set of t=2 linearly independent columns; they are positioned in any of

�

s

t=2

�

< s

t=2

ways. Let us �x their positions, say columns 1; . . . ; t=2, and decide their entries. Let us

estimate, how many ways the remaining columns can be �lled. For each pair (i; j) where

1 � j � t=2 < i � s and B[i; j] = 0, we have a linear condition

P

t

k=1

x

ik

A[k; j] = C[i; j]

for the prospective entries x

ik

. All these equations are linearly independent and their

number is � t(2s� t)=4 � �. This reduces the number of candidates (2

ts

) by a factor of

2

�t(2s�t)=4+�

. The number of those A

i

of rank > t=2 is thus

(8) < s

t=2

2

ts�t(2s�t)=4+�

= 2

�+

t

2

(s+

t

2

+log s)

:

Add the bound 2

t(s+t)=2

on the number of low rank matrices to this; the �gure in (7) is a

generous overestimate of logarithm of the sum.

42

Now we can complete the proof of our theorem.

Proof of theorem 1.1. Let now s = jSj, t = jT

1

j and for each P 2 � let A

P

be the

t � s adjacency matrix of the bipartite subgraph of X de�ned by P . (This graph is the

restriction to T

1

�S of A(P).) Let B be the s�s adjacency matrix of the induced subgraph

of D�AR on S. (Recall that the complement, relative to S, of this graph belongs entirely

to U by proposition 2.4.) Observe that the entries of A

T

P

A

P

count modulo 2 the number

of common neighbors of each pair of vertices in S. The falsity of (1) implies the statement

that all the A

T

P

A

P

� C mod B mod 2 for some �xed s� s matrix C. The number of 1's

in B is � = 2jD � ARj � 8c

3=2

n < 4c

3=2

v

2

by Lemma 5(b). Using the upper bound of

Lemma 7(a) for t we now infer from Lemma 8 that

(9) log j�j < � +

t

2

(s+ t+ log s) < � +

t

2

(v + log v) <

c

4

v

2

(1 + 20c

1=2

+

2 log v

v

):

This contradicts (6) for large v, completing the proof of the Theorem.

3. Space-complexity: the eraser RAM

It has been noted ([Mas76], [BFKLT81], [Pu84]) that a lower bound S(n) on the size

of the smallest branching program computing a Boolean function f

n

of n variables implies

an
(logS(n)) lower bound on the space complexity of the family f f

n

: n = 1; 2; . . .g on

any reasonable model of computation.

Theorem 3.1. W. Masek [Mas76] For S(n) > logn, if A 2 SPACE(S(n)) then A has

branching program complexity c

S(n)

for some constant c.

The converse of this theorem is not true. This has several resons. First, branching

programs are a non-uniform model of computation as opposed to Turing machines. Second

branching program complexity is bounded by 2

n

while the space complexity on Turing

machines can be arbitrary high. But for the non-uniform SPACE(logn) class the converse

remains true. For de�nitions and details see [BoS88].

We might try to convert lower bound results on restricted branching programs for lower

bound on the space complexity of restricted class of Turing machines or even RAM's.

The Fortune-Hopcroft-Schmidt result mentioned above corresponds to on-line space

complexity: the input bits are read once and in a given order only. The [FHS77] result

provides an
(

p

n) space lower bound for such computation (independently of the given

order of input bits).

General read-once-only branching programs suggest the following machine model

which we call eraser RAM. This is a RAM with a special read-only input tape. The

43

machine decides in the course of the computation in what order to read the input but

once an input cell has been read, it is erased. Let us measure the space required by a

computation by the number of bits stored at any given time on the worktape.

The following is immediate.

Proposition 3.2. If a language L can be recognized by an eraser RAM in space S(n) then

the set L

n

= L \ f 0; 1 g

n

can be recognized by a read-once-only branching program of size

c

O(S(n))

for some constant c.

The results of Wegener and Z�ak thus imply an
(

p

n) lower bound for the eraser RAM

space complexity of their respective Boolean functions. Our result implies a linear lower

bound on the same model.

Theorem 3.3. Let L be the language containing all graphs of even number of triangles.

Then the eraser RAM space complexity of L is O(n).

44

4. BROOKS COLORING IN PARALLEL

1. Models for parallel computation

In the last few years parallel computation has attracted a great deal of attention in

the theory of algorithms. In this section we describe the two models most often used by

theoretical computer scientists investigating parallel computation.

The �rst is parallel random access machines [Go77], [FW78]. A random access machine

(RAM) (see [AHU74]) is more similar to a high level computer than Turing machines or

circuits are. A RAM has its own local random access memory, each cell of which can

store an arbitrarily large integer. The instructions for RAM's are multiplication, division,

addition, substraction, conditional branches based on predicates `=',`<',`and',`or' and `not'

and reading and writing into its memory. A parallel random access machines is a collection

of RAM's R

1

; R

2

; R

3

. . . operating synchronously in parallel. The RAM's have access to

an in�nite common memory. All of the processors execute the same program in lock-step

fashion, except that each processor R

i

knows its unique processor number i, and this can

be used in the instructions.

We need to specify what happens when two processors want to write into the same

memory cell at once. There are several possible conventions for resolving this problem,

de�ning di�erent parallel RAM's. We list a few of these models: if concurrent writing

is forbidden, we refer to the model as the CREW PRAM (concurrent read, exclusive

write). In the CRCW PRAM model two processors can write into the same cell. Again,

there are di�erent possible conventions for what should happen when two processors want

to write into the same location. One possibility is to allow concurrent write only when

the processors want to write the same data. Another possibility is to let the the lowest

numbered processor succeed in writing. These distinction are mostly technical. One can

simulate a program following a conventions by another one following di�erent convention

at a cost which is O(logn) parallel steps, where n is the size of the input. This factor is

negligible for our purposes.

The input, an n bit number, is placed in the memory before the execution of an

algorithm begins (the i-th bit is in the i-th cell). The output will be the contents of the

�rst cells, when the execution halts.

We charge for several computational resources. One is the number of processors used.

The other one is the time. The time of the computation is the total cost of instructions

45

executed by the processors. There are several conventions for measuring the time of an

operation. The problem is that if we charge `one' for every operation then we can produce

large numbers very cheaply, such large numbers that to output them on a Turing machine

takes a long time. But we don't want our time complexity to be far from the Turing

machine complexity. What we can do is to charge to an arithmetic operation an amount

proportional to the number of bits in the operands. Another solution is to require that

any cell can hold only a number whose length is bounded by a polynomial in the input

size. If we have programs satisfying this condition than the `unit-cost' criterion gives us a

complexity measure compatible with the one for Turing machines. In this case we de�ne

the computation time of a single run as the number of steps T executed during the run.

The time complexity of an algorithm is a function T (n), the maximum value of T over all

2

n

possible size n inputs.

A PRAM algorithm is said to be e�cient if it runs in time polynomial in the log of the

input size and uses polynomially many processors. A problem solvable by such a PRAM

algorithm is said to be NC. We refer to the algorithm as an NC algorithm.

A major goal in parallel computation is to prove that a given problem belongs to

NC. An additional objective might be minimizing the number of processors used. In some

situations we may also want to look at the precise parallel time bounds.

Our notion of uniform circuits is the one used in Cook [Co85].

A circuit is a directed acyclic graph with nodes (called gates) labeled as follows. A

circuits has nodes distinguished as the inputs. They are of indegree 0 and are labeled

x

1

; x

2

; Other nodes of indegree 0 are labeled 1 or 0, representing boolean values.

Nodes of indegree 1 are negation gates. All other nodes have indegree two and have a

label, either AND or OR. Some distinguished nodes are output nodes and have labels

y

1

; y

2

;

If the circuit has n inputs and m outputs then it computes a function f : f 0; 1 g

n

!

f 0; 1 g

m

in the obvious way.

A circuit family is a set fC

i

g

i2N

of circuits, where C

i

has i inputs. This computes a

function f : f 0; 1 g

�

! f 0; 1 g

�

.

A circuit family is logspace uniform if there exists a Turing machine which can compute

the circuit C

i

, given i in binary, in logarithmic space.

Theorem 1.1. f 2 NC if and only if there exists a logspace uniform family of circuits

computing f .

Actually Cook's work [Co85] provided uniform circuits (with a di�erent uniformity

condition) as the de�nition of NC. The more convenient PRAM model was introduced

later. We use PRAM's which are more convenient to program.

46

2. Parallel coloring algorithms

In I.4. we de�ned a proper coloring of a graph. Now we extend that de�nition

to the case when some of the nodes are uncolored. A partial k-coloring is a function

c : V (G)! f 1; . . . ; k g[f � g for which no two adjacent nodes have the same integer label.

The set of nodes with image � is the set of uncolored nodes.

If we have an unbounded number of colors then we can use di�erent colors for di�erent

nodes and obtain a proper coloring. The problem arises if we want to use fewer colors.

Let G be a given graph. The problem of determining the minimal number of colors for

which a proper coloring exists (the chromatic number) is NP-complete [GJ79]. It is widely

accepted that there is no hope of �nding a fast sequential algorithm to solve this problem.

A possible plan of attack might be to relax our objective. We can look for an approx-

imation for the optimum instead of the real value. For close approximation (better than

a factor 2) the problem remains NP-complete. There are no known good approximate

coloring algorithms. If we restrict ourselves to 3-regular graphs, then the best coloring

algorithm uses O(

p

v) colors [Wi].

Thus, we are forced to relax our objective again, to seek an upper bound for the

chromatic number, and to �nd a corresponding coloring. Several theorems of this kind

are known. It is very easy to show that any graph can be vertex colored with a number

of colors at most one greater than its maximum degree. The proof gives a very simple

sequential algorithm too. Usually though, colorings with fewer colors exist.

Theorem 2.1. (Brooks, see [Lo79]) A simple graph G of maximum degree D can be colored

with D colors i� either D � 3 and G contains no clique on D + 1 nodes, or D <= 2 and

G has no odd cycle.

The proofs in [Lo79], and [Be73], although not trivial, are algorithmic. Converting

the standard algorithms to parallel algorithms seems di�cult. M. Luby remarked that

from the maximal independent set algorithm ([KW84],[Lu86]), it is easy to get an NC

algorithm which colors a graph with D + 1 colors where D is the maximum degree of

the graph. He de�ned the following `maximal coloring' problem and stated the theorem

below.The input is a graph, and associated with each vertex, a set of allowable colors.

The answer is a partial coloring in which every point is colored with one color from its

given color set in such a way that the output coloring can't be extended to additional

nodes (while still insisting that the color of each node is chosen from its color set). By

reducing the maximal coloring problem to the maximal independent set problem, M. Luby

(in [Lu86]) exhibited an NC algorithm to �nd a maximal coloring. >From this algorithm

one can easily conclude that we can �nd a maximal extension of a given coloring in NC,

where a maximal extension of a coloring c is a coloring c

0

which uses the same number of

colors and for which each uncolored node is adjacent to a point of each color.

(To do so, we apply M. Luby's maximal coloring algorithm to the graph induced by

points not colored by c, and the allowable color set at point v is the set of colors not

represented among v's neighbors.) We will apply this form of Luby's algorithm, so we

state it in a separate lemma.

47

Theorem 2.2. (M. Luby [Lu86]) Given a graph with a partial coloring, we can �nd a

maximal extension of it in NC.

Another expression of this result is that the following NC procedure exists.

Procedure Extend (S)

Given: A graph G, a partial coloring c with exactly t colors and a subset S of the points.

Let C be the set of colored vertices.

Compute: A partial coloring c

0

, using exactly t colors, that is an extension of c. Nodes not

in C [S are still uncolored and every uncolored point in S is adjacent to a point of each

of the t colors.

Luby's maximal coloring algorithm did not settle the question of �nding a Brooks

coloring. In his thesis [Ka85], H. Karlo� gave an algorithm for the case when the maximum

degree is three. Using this result and the fact that the case D � 2 is easy we can assume

that D � 4.

The main result of this chapter is to establish the parallel complexity of �nding a

Brooks coloring.

Theorem 2.3. Given a graph G of maximum degree D, with no clique on D + 1 nodes

(D � 4), we can �nd a D -coloring of G in NC.

This result was obtained with E. Szemer�edi and it is published in [HSz88]. Recently

H. Karlo� [Ka88] and M. Karchmer and J. Naor [KN88] have announced alternative NC

algorithms for Brooks' theorem. The proof will be given in the next few sections.

In the rest of this section we summarize what is known about parallel algorithms for

other coloring problems.

Another way to relax a very hard problem is to restrict the inputs. There are several

classes of graphs where better bounds are known on the chromatic number than the one

in Brooks' theorem.

The best known class is the planar graphs. The famous four color conjecture says

that every planar graph can be properly colored with 4 colors. The known proof of this

theorem (and thus the known algorithm for �nding a 4-coloring) is quite complicated. If

we want only a 5-coloring, then simple proofs and algorithms are available. The parallel

complexity of this problem is discussed in [BK]. They give an NC algorithm for �nding a

5-coloring of planar graphs. There are other faster algorithms for this now [GPS87].

A theorem of Vizing shows that line graphs can be colored with very few colors.

An obvious lower bound on the colors needed is the maximal degree of the original graph.

Vizing's theorem says that one more color su�ces. The parallel complexity of this problem

is open.

A partition theorem of Lov�asz [Lo66] implies that graphs G without triangles can be

colored with b

3D(G)

4

c colors. The parallel complexity of �nding such a coloring is unknown.

48

3. Outline of the algorithm

Using the procedure Extend, one can �nd a (partial) D � 3-coloring such that every

uncolored vertex is adjacent to a node of each color. Since we seek a D-coloring, we can

assume that our coloring uses exactly D � 3 colors; from this point until section 5 we

assume that our coloring uses exactly D � 3 colors. From the maximality it follows that

the uncolored graph's maximum degree is at most 3. This is not enough for us - if this part

contains a K

4

as a subgraph then we cannot extend our coloring to a total D-coloring of

the whole graph. In this section we resolve this problem by modifying the original coloring.

Let denote the color classes by C

i

(i = 1; . . . ; D � 3) and the set of uncolored points

by U . As stated above, it is easy to see that in GjU every vertex has degree at most 3. The

de�nition of maximal coloring gives a stronger result, namely that every point u of degree

3 in GjU has exactly one neighbor in every C

i

. For every point of degree two in GjU ,

there are two possibilities: it has exactly one neighbor in every C

i

or there is exactly one

exception where it has two. These remarks are true not only for the initial coloring but for

every maximal coloring. CN

u

will denote the colored neighborhood of the uncolored point

u : CN

u

= f colored nodes adjacent to u g. (The de�nitions of this paragraph depend on

the current coloring. During the algorithm we will be changing it many times.)

To color U with three colors we need to get rid of K

4

's in GjU . We can get rid of an

uncolored K

4

by coloring one of its vertices. Using this method we will get an edge inside

a color class so we have to remove the color from its other endpoint. If we are unlucky then

we can create a new K

4

in GjU . In this case we must continue this procedure until we reach

another con�guration where we have the hope of using the color extension theorem. So

the modi�cation goes along a path which alternates between colored points and uncolored

triangles. The procedure that �nds this path, and the method that cleans up after every

exchange phase are described in section 4.

In section 5 we �nish the coloring and mention some open questions.

Before we start the procedure outlined we must overcome some problems. If we have

a K

4

in GjU all of whose vertices have the same colored neighborhood then our method

will get stuck in an in�nite loop.

This suggests the following de�nition of `bad' K

4

.

De�nition 3.1. A K

4

A in GjU is a bad K

4

i� for all v; u 2 A, CN

u

= CN

v

. If a K

4

is

not bad then we say that it is good.

If A is a bad K

4

then its common colored neighborhood contains two non-adjacent

vertices, as otherwise G would have K

D+1

as a subgraph. Using these two points and

two points from the K

4

we can perform an exchange procedure which will improve our

situation. The parallel implementation is the following procedure.

49

Procedure Eliminate

Given: A graph G with maximum degree D � 4, not having K

D+1

as a subgraph, and a

maximal D � 3-coloring of G.

Compute: A new coloring of G, not having any bad K

4

's, for which every uncolored K

4

was also uncolored when the procedure was called.

1) Let U be the set of uncolored nodes.

Let A

1

; . . . ; A

r

be the bad K

4

's in GjU .

Let A

r+1

; :::; A

t

be the good K

4

's in GjU .

2) Let U

0

be the empty set.

For all i, 1 � i � r, do in parallel:

Let CN

i

= the common colored neighborhood of nodes in A

i

.

CN

i

does not induce a clique, so there exist u

i

6= v

i

2 CN

i

that are nonadjacent. Add

u

i

; v

i

to U

0

.

Let x

i

6= y

i

be in A

i

(arbitrarily). Color x

i

with c(u

i

) and y

i

with c(v

i

). Uncolor u

i

and v

i

.

(It is worth noting that several processors may simultaneously be uncoloring a node.)

U

0

consists of the newly uncolored nodes. The new coloring is proper because every

new node with the same color came from a di�erent component ofGjU and its neighbor

in this color class lost its color.

3) Call procedure Extend(A

r+1

[. . . [A

t

).

4) Call procedure Extend(U

0

).

5) Call procedure Extend(V (G)).

End Eliminate

The following claim shows that we achieved our goal.

Claim 3.1. When Eliminate terminates, the D � 3-coloring of G is maximal, every un-

colored K

4

was also uncolored when procedure Eliminate was called and there are no bad

K

4

's.

Proof. That the coloring of G is maximal is obvious.

Assume K is a currently-uncolored K

4

that was not completely uncolored when pro-

cedure Eliminate was called. Hence z 2 K lost its color during execution of step 2 of

procedure Eliminate.

Case a) z 2 CN

i

\ CN

j

for 1 � i < j � r.

So z is adjacent to every node in A

i

and every node in A

j

. So after step 2, z has at

least 4 uncolored neighbors, none of which is colored in step 3. Hence step 4 colors z, a

contradiction.

Case b) z 2 CN

i

for exactly one i, 1 � i � r.

The same argument shows that after step 4, z has exactly 2 uncolored neighbors in

A

i

. Because no node in a bad K

4

had an uncolored neighbor outside of that K

4

, the 4th

node w in K must have been colored before procedure Eliminate was called. So w 2 CN

j

for some 1 � j � r. If j 6= i, w is adjacent to two uncolored nodes in A

j

just before step 4

50

is run. So step 4 will color w. If i = j, fw; z g = fu

i

; v

i

g, yet u

i

and v

i

are nonadjacent,

a contradiction.

The only thing that remains to be shown is that there are no bad K

4

's. Because all

the currently-uncolored K

4

's were good when the procedure was called, it is enough to

show that the corresponding colored neighborhoods didn't change. This is clear from the

fact that otherwise step 3 would have colored the node.

4. The alternating paths

After executing Eliminate we can execute our procedure which decreases the number

of uncolored K

4

's by a constant fraction.

Procedure Modify Coloring

Given: A graph G of maximum degree D, and a maximalD�3-coloring without bad K

4

's.

Let U be the set of uncolored nodes.

Compute: A maximal coloring of G for which if U

0

is the set of uncolored nodes, and such

that

] of K

4

's in GjU

0

�

3

4

] of K

4

's in GjU:

1) Let Q = fK

4

's in GjU g.

Let Q be the set of nodes in Q. (Q stands for "quadrilaterals".)

Let T = fK

3

's that are components in GjU g. (T stands for "triangles".)

Let T be the set of nodes in T .

Let T

i

=

�

K

3

's in T such that each node in the K

3

has two neighbors colored i

	

,

for 1 � i � D � 3. (Note that each node in such a K

3

has two neighbors colored

i and exactly one colored j, for all j 6= i.)

Let T

0

= T � (T

1

[. . . [T

D�3

).

For 0 � i � D � 3, let T

i

be the set of nodes in T

i

.

Let R = U � (Q [T). (R - which stands for "remainder" - is the part of the set of

uncolored nodes lying in components that are neither K

4

's nor K

3

's.)

Let C

i

be the set of nodes colored i.

2) For 1 � i � D � 3 build an auxiliary digraph H

i

on C

i

[T

i

as follows:

Start with no arcs.

For each triangle L 2 T

i

, choose a representative node.

For all u 2 C

i

and t 2 T

i

, add arc (u; t) i� u is adjacent to every node in t, and there

is no t

0

2 T , t

0

6= t, every node of which is adjacent to u.

51

Then, for each arc (u; t) 2 E(H

i

), add to E(H

i

) an arc from t to the node v 2 C

i

, that

is di�erent from u and adjacent to t's representative. The outdegrees of nodes in C

i

are at most one. A node t in T

i

either has indegree = outdegree � 1, or there are two

nodes a 6= b 2 C

i

, and the only arcs in H

i

incident with t are (a; t); (t; b); (b; t); (t; a).

Motivation: If one removes the color of a node colored by i then this node may create a

new uncolored K

4

with a previously uncolored triangle. If this triangle doesn't belong

to T

i

then we can handle the problem by using the coloring extension procedure.

Otherwise we must continue the exchange method. We color the representative of

this triangle with color i and uncolor its neighbor in C

i

. The edges of H

i

tell the

exchange procedure what to do next after we remove a color or color a representative.

2a) We need the following notation. Say v 2 C

i

is an endpoint i� v's outdegree in H

i

is 0, and an inner point otherwise.

3) For each K 2 Q (K is a K

4

), choose a colored vertex v such that v has 1,2 or 3

neighbors in K - such a vertex always exists, because K is a good K

4

- and if there

are several such points choose one among them which has the most neighbors in K.

(Why we choose the vertex with the most neighbors in K will become clear only at

the end of the proof of lemma 4.1.) Node v is an initial point with respect to K. It

is the initial point i� it is an initial point with respect to some K. If v is the initial

point with respect to K, choose one of v's neighbors in K. We will refer to this chosen

point as K's representative.

Let Q

i

=

�

K 2 Qj the initial point with respect to K lies in C

i

	

.

Label K with `color the representative with color i' where K 2 Q

i

.

4) For each i, label x 2 C

i

with `remove color' i� there exists a path in H

i

from an initial

point in C

i

to x, and label y 2 T

i

with `color the representative with color i' i� there

exists a path in H

i

from an initial point in C

i

to y.

5) For each i in parallel do:

Uncolor each node labeled `remove color'.

Next, color with color i the representative of any K

3

or K

4

labeled with `color the

representative with color i'.

Note that the coloring remains proper.

6) For each i, 1 � i � D � 3, do:

Let E

i

=

�

T � (representative of T) j T was a labeled K

3

in T

i

	

. (E

i

consists of the

uncolored K

2

's that remain after each labeled K

3

's representative is colored.)

Let T

i

0

=

�

unlabeled T 2 T

i

	

.

Let Q

i

0

=

�

K � representative of K) j K 2 Q

i

	

.

Let E

i

; T

i

0

; Q

i

0

be the respective sets of points.

Let N

i

= f labeled vertices in C

i

g. (The N stands for `newly uncolored'.) The

nodes in N

i

can be either inner points or endpoints. It is easy to see that

] of endpoints in N

i

� jQ

i

j.

Note that the uncolored vertices of G are exactly R[T

0

[

�

[

i

[E

i

[T

i

0

[Q

i

0

[N

i

]

	

.

7) For each L 2 [

i

(T

i

0

[Q

i

0

[E

i

), �nd a vertex in L, if it is exists, not having a neighbor

of every color (�nd only one, even if 2 or 3 exist). Color that vertex with some color

not occurring on its neighbors. Note that the coloring remains proper.

52

8) Apply procedure Extend ([

i

N

i

).

Now every completely uncolored quadrilateral K either contains 2 endpoints, or con-

tains one endpoint v and K � f v g � R. We prove this fact below. (If the �rst

case held for every completely uncolored K

4

, we would have succeeded in halving the

number of uncolored K

4

' s.)

9) For each completely uncolored quadrilateral K containing exactly one endpoint v (so

thatK�f v g � R), choose one node y 2 K�f v g with 4 or more uncolored neighbors.

(This y must exist.) Let Y � R be the set of chosen y's. GjR has maximum degree

at most 3. Find a maximal independent set of GjY . (Because of the degree bound on

GjR the cardinality of this independent set must be at least

jY j

4

.) Color each node in

the independent set with some color not occurring on its neighborhood.

10) Apply procedure Extend(V).

End Modify Coloring

In order to prove the correctness of the algorithm we must �rst prove the lemma

mentioned under step 8.

Lemma 4.1. Just after step 8 of Modify Coloring, every completely uncolored quadrilat-

eral K either contains 2 endpoints, or contains 1 endpoint v and K � f v g � R .

Proof. Each uncolored quadrilateral K, just after step 8, must fall into (at least) one of

the following classes.

a) K contains exactly one newly uncolored node z, and z is an inner point.

b) K contains at least two inner points.

c) K contains exactly one endpoint and exactly one inner point.

d) K contains exactly one endpoint, and the remaining nodes are in T .

e) K contains exactly one endpoint, and the remaining nodes are in Q.

f) K contains exactly one endpoint, and the remaining nodes are in R.

g) K contains at least 2 endpoints.

We now prove cases a)-e) cannot occur. We will be making heavy use of the following

two simple facts.

Remark 1. Just after step 5, every inner point originally colored with color i has, in

its uncolored neighborhood, an edge in E

i

. At least one of these points remains uncolored

after steps 7 and 8 are executed.

Remark 2. Immediately after step 8 every newly uncolored node in an uncolored

K

4

has exactly D � 3 colored neighbors, and its 3 uncolored neighbors are exactly the

remaining nodes of the K

4

.

Case a) cannot occur, because if z is the only newly-uncolored node in an uncolored

K

4

K, then z's uncolored neighbors span a K

3

, yet by remarks 1 and 2, this can't occur.

If, instead, any uncolored quadrilateral K contained distinct inner points u, v just

after step 8, u and v must have originally had colors i and j, respectively, i 6= j. As for

case a), by remarks 1 and 2, after step 8 u has one uncolored neighbor from E

i

in K. The

same goes for v, with `E

i

' replaced by "E

j

". A contradiction, because no node in E

i

is

adjacent to a node in E

j

. So case b) is impossible.

53

Now we discuss case c). Let x be K's lone endpoint, and y, its lone inner point. Node

x originally has color i, and y, color j. Again, i 6= j. Let z and t be the remaining two

vertices of K. By remarks 1 and 2, z or t came from E

j

. In fact, both must be in E

j

.

By the de�nition of T

j

, z and t have exactly one neighbor colored i, namely x. Step 5

uncolored x so that after step 5, z and t had no neighbor colored i. This is a contradiction,

since step 7 will color either z or t.

Let K be a case d) K

4

; z, its lone endpoint; and i, its original color. If K�f z g � T

j

,

j 6= i (possibly j = 0) , for one of those three nodes w, z was w's only neighbor colored i

(otherwise K would be in T

i

). After color i is removed from z, step 7 will color at least

one of those three nodes. Hence the other three nodes are in T

i

. Since z is an endpoint, z

had to have three pairwise adjacent neighbors, none of which is in K, all of which are in

T . At least one of these, s, will remain uncolored after step 7. Hence, after step 7, s and

all of K are still uncolored, and step 8 will color z.

Let K be a case e) K

4

; z, its lone endpoint; and i, its original color. If the other

three nodes are in Q

j

, j 6= i, then the argument in case d) produces a contradiction. So

K �f z g � A, where A is a K

4

in Q� i. By the method used to choose an initial point in

step 3, z must be the initial point with respect to A, and therefore some node in K �f z g

is A's representative and is colored in step 5.

Using this lemma the proof of correctness is easy.

Lemma 4.2. The procedure Modify Coloring decreases the number of uncolored K

4

's to

at most

3

4

of its previous value.

Proof. All the uncolored K

4

's existing when the algorithm terminated were uncolored after

step 8. Using lemma 4.1 we divide the uncolored K

4

's into two classes. This implies a

classi�cation of endpoints: in an uncolored K

4

an endpoint is ugly if immediately after

step 8 it is the lone endpoint of its uncolored K

4

, and nice otherwise. Using this notation

it is easy to see the following inequalities.

] of old uncolored K

4

's �] of endpoints =] of ugly endpoints +] of nice endpoints.

But we know that

3

4

] of ugly endpoints �] of uncolored K

4

having exactly one endpoint,

and

1

2

] of nice endpoints �] of uncolored K

4

having at least two endpoints.

So

3

4

] of old uncolored K

4

's �] of uncolored K

4

's.

54

5. Conclusion

Using the previous result we can �nd in NC a partial coloring with D � 3 colors

such that the uncolored part has maximum degree 3 and doesn't contain any K

4

's. So

completing the coloring involves solving the original question on maximum-degree-3 graphs,

which is an easier problem. We use H.Karlo�'s NC algorithm [Ka85] for 3-coloring a

maximum-degree-3 graph without K

4

's. So the �nal algorithm is the following:

Program Brooks Coloring

Given: A graph G with maximum degree D � 4, not having K

D+1

as a subgraph.

Compute: A D-coloring of G.

1) Using procedure Extend get an initial maximal (D � 3)-coloring.

2) Call procedure Eliminate.

3) Call procedure Modify Coloring.

4) If there are four pairwise-adjacent uncolored nodes then go to 2.

5) Color the set of uncolored nodes with 3 new colors.

End Brooks Coloring

The correctness of the algorithm easily follows from the lemma 4.2.

The main result of this chapter is an application of the maximal coloring algorithm.

The essence of our Brooks coloring algorithm is a procedure designed to get rid of the

troublesome K

4

's, and we perform a natural exchange procedure along alternating paths

to do so. The extension lemma takes care of the messy uncolored part after the exchange.

The natural question is whether there are further applications of the maximal coloring

algorithm.

55

5. A FAST PARALLEL ALGORITHM ON DENSE GRAPHS

1. The Hamiltonian cycle problem

In this chapter we consider the problem of �nding a Hamiltonian cycle. Recall that a

Hamiltonian cycle of a graph G is a cycle going through all nodes of G. Deciding whether

a graph has a Hamiltonian cycle is a classical NP-complete problem [GJ79]. As we saw in

the previous chapter it is often very fruitful to relax the requirements of a problem. First

let us consider some related problems which will help us later.

The maximum independent set problem is NP-complete. On the other hand, if we

simply want to �nd a non-extendible independent set (a maximal independent set) then it

becomes an NC problem ([KaW85],[Lu86],[ABI86],[GS87]).

The deterministic parallel complexity of other very important problems like matching

is still not known. There is a method ([Lo79b], [KUW86],[Ka86]) which shows that match-

ing is in RNC (random parallel polylog time), but it is still unknown whether matching

is in NC. One relaxation of the matching problem is maximal matching. This obviously is

in NC, as implied by the result for maximal independent set. An easier and more e�cient

algorithm can be found in [II86].

The Hamiltonian path problem can be relaxed to the maximal path problem. R.

Anderson [And87] presented a reduction of this problem to matching. The reduction

implies that the maximal path problem is in RNC. His algorithm starts out from a system

of paths and glues them together. He and A. Aggarwal [AA88] extended this method to

the problem of �nding a depth �rst search tree. With M.Y. Kao they applied the same

method to �nd a depth �rst search tree in directed graphs [AAK].

Now let us return to the Hamiltonian cycle problem. There are known classes of

graphs for which all the members of the class are Hamiltonian. One su�cient condition for

being Hamiltonian is Dirac's condition ([Di52], [Be73],[Lo79]): if a graph G has minimal

degree at least

n

2

where n is the number of vertices then G has a Hamiltonian circuit. At

STOC'87 M.Goldberg proposed the problem: Is there any NC algorithm which �nds a

Hamiltonian cycle for graphs lying in the class de�ned by Dirac's theorem? In this paper

we present an NC algorithm which uses methods similar to Anderson's. In our case we

have the advantage that the input graph has many edges. Thus it is relatively easy to

merge di�erent paths.

56

The algorithm as described here was published as a technical report. Meanwhile I

learned that M. Karpinski and E. Delhaus obtained the same result. A joint version will

be submitted for publication.

2. The outline of the algorithm

First, our algorithm �nds a Hamiltonian path in the given graph. Having the Hamil-

tonian path it will be very easy to �nish the algorithm, i.e., to �nd a Hamiltonian cycle.

The main idea of �nding a Hamiltonian path is to maintain a path system that covers

the graph, i.e., a set of paths such that the vertex sets of the paths are pairwise disjoint

and their union is the whole vertex set. The algorithm consists of phases. In each phase

we try to merge di�erent paths: this way we can reduce the number of paths by a constant

factor.

In order to merge paths we use a special operation. The operation merges two paths

P , and Q. (In our case every path contains at least one edge.) Let u; v be the two endpoints

of P . Let us assume that u and v have distinct neighbors in Q and these neighbors are

consecutive nodes in Q. In this case one can easily merge P into Q. The endpoints of the

new path will be the same as Q's endpoints.

We want to merge several paths into others in parallel. We might have conicts during

the parallel merging. To overcome this problem we want to �nd for each path several ways

to merge it into another path. The main observation is the following. Let us assume that

we have a path system and a �xed path on it. If the endpoints of the given path have high

degree toward the outside of the path, then we can �nd many ways to merge it into other

paths.

As the idea above suggests, we will handle the paths di�erently depending on whether

the endpoints have high degree toward the outside. We will refer to these paths as "social".

We say that a path is "introverted" if it is not social. The exact de�nitions will be given

in the next section.

We use standard graph theoretical notation. We refer the reader to [Lo79]. G is the

input of the algorithm, i.e., it is a simple graph, with minimal degree at least

n

2

where n

is the number of nodes. d(u) is the degree of the node u. d

S

(u) is the number of edges

going from node u to the set of vertices S. fP

i

g

k

i=0

will denote a set of paths in G such

that [

i

V (P

i

) = V (G) and the V (P

i

)'s are disjoint. We will refer to this as a path-cover of

G.

57

3. Social paths

In this section we give the formal de�nition of our elementary merging operation and

introduce the notion of di�erent types of paths. The basic idea of these types comes from

Lemma 3.3, which says that if the endpoints of a path are connected with many edges to

another path then there are several possible ways to merge that path into the other one.

De�nition 3.1. Let P and Q be two paths whose vertex sets are disjoint. Let their vertex

sets (corresponding to the order on the paths) be fu

1

; :::; u

l

g and f v

1

; :::; v

m

g. If u

1

v

i

and

u

l

v

i+1

are edges of the graph then v

1

:::v

i

u

1

:::u

l

v

i+1

:::v

m

is a path. If u

1

v

i+1

and u

l

v

i

are

edges of the graph then v

1

:::v

i

u

l

:::u

1

v

i+1

:::v

m

is a path. If in a path system we transform

two paths into one using one of the remarks above then we'll say that we performed an

elementary merging operation. We'll say that we merged P into Q along the edge v

i

v

i+1

.

De�nition 3.2. Let P be a path in G. Let u; v be the two endpoints of P . We call P

social if

d

V (P)

(u) + d

V (P)

(v) + 1 � jV (P)j:

We say a path P is introverted if it is not social.

We need the following lemma.

Lemma 3.3. Let P be a path with endpoints u; v. Let Q be a path with vertex set disjoint

from P 's. If there are no edges from any endpoint of P to an endpoint of Q then there are

at least

max

�

d

V (Q)

(u) + d

V (Q)

(v) + 1� jV (Q)j; 0

	

edges on Q along which we can merge P into Q via an elementary merging operation.

Proof. Let f q

1

; q

2

; :::; q

l

g be the vertex set of Q (q

1

and q

l

are the endnodes and the indices

follow the order on the path) . So l = jV (Q)j. Let d = d

V (Q)

(u) and e = d

V (Q)

(v). Let

f q

i

1

; :::; q

i

d

g be the neighborhood of u on Q. Because of our assumption 1 < i

1

and i

d

< l.

Let F = f q

i

1

�1

; q

i

1

+1

; q

i

2

+1

; :::; q

i

d

+1

g. F contains d + 1 nodes not in Q. If v is adjacent

to one of them then one can easily �nd an edge where our elementary operation can be

performed. Actually we can assign di�erent edges of Q to di�erent elements of F in such

a way that an edge between v and an element of F gives a possible elementary merging

operation along the corresponding edge. If the degree of v toward Q is greater than jQ�F j,

then one can �nd a way to merge. Actually there will be at least e � (l � (d + 1)) edges

going from v to F . This implies the statement of the lemma.

The lemma above has the following important consequence for the path covering.

Consequence 3.4. Let fP

i

g

k�1

i=0

be a path-cover of G. We assume that P

0

is social and

there are no edges going from its endpoint to the endpoints of other covering paths. Then

there are at least k edges on one of the paths, i.e. on [

k�1

i=1

P

i

along which one can merge

P

0

into another path.

58

Proof. Let u; v be the endpoints of P

0

. Let d

i

(i = 0; . . . ; k � 1) be the degree of u toward

P

i

and let e

i

(i = 0; . . . ; k� 1) be the corresponding degrees of v. Let n

i

be the number of

nodes on P

i

. Using this notation we have

k�1

X

i=0

d

i

+

k�1

X

i=0

e

i

= d(u) + d(v) �

n

2

+

n

2

= n =

k�1

X

i=0

n

i

:

After rearrangment we get

k�1

X

i=0

(d

i

+ e

i

+ 1� n

i

) � k:

We can delete the nonpositive terms in the sum and the inequality remains valid. We

assumed that P

0

is social so during the simpli�cation above the term d

0

+ e

0

+ 1� n is at

most 0 and will be deleted. After the deletion we have

k�1

X

i=1

max f d

i

+ e

i

+ 1� n

i

; 0 g � k:

By lemma 3.3 we get the result.

In the case of introverted paths we need a little trick. The truth of the generalization

of consequence 3.4 stated below, easily follows from the proof we just presented. It will be

used in the next section.

Lemma 3.5. Let S be a subset of V (G) and fP

i

g

k�1

i=1

be a path-cover of V (G)�S. Let P

be a path in S with endpoints u; v. Let us assume that d

S

(u)+d

S

(v)+1�jSj � 0 and that

there are no edges going from u or from v to any endpoints of the path-cover. Then there

are at least k edges on [

k�1

i=1

P

i

along which P can be merged into a covering path.

The lemmas above show that if we have a path-cover such that there are no edges

between endpoints of di�erent paths and all paths are social then we have many options

for performing the merging operation. An easy application of matching theory (to be

shown later) shows that in this case we can assign a merging operation to each path in

such a way that the corresponding edges are di�erent for di�erent paths. We will see that

these operations can be performed in parallel and in this way the number of paths can be

reduced by a factor of 2. In order to apply this idea for the case of introverted paths we

need a little trick.

4. Introverted paths

First we prove that a introverted path can be closed to a cycle, i.e., the graph induced

by the vertex set of an introverted path has a Hamiltonian cycle.

59

Lemma 4.1. Let P be an introverted path between endpoints u and v. Then one of the

following three statements is true:

(a) The number of nodes on P is at most 2, i.e., every node on P is an endpoint.

(b) There exists an edge between the two endpoints of P .

(c) There exists a neighbor u0 of u on P and a neighbor v0 of v on P such that u0 and v0

are adjacent via an edge of P and u0 is between v0 and v on P .

Proof. Let us assume that P has more than 2 nodes. Let fw

1

; :::; w

l

g be the vertex

set of P (w

1

= u and w

l

= v). The order on the path is the same as the order of the

indices. Let d = d

V (P)

(u) and e = d

V (P)

(v). We can assume that there is no edge between

u and v. Let fw

2

; w

i

2

; :::; w

i

d

g be the neighborhood of u. If (c) does not hold then

fw

1

; w

i

2

�1

; :::; w

i

d

�1

; w

l

g cannot be adjacent to v. This means that l� (d+ 1) � e. So P

is social. This contradicts our assumption.

In the �rst case of the lemma above the path has only endvertices, in the other two

cases one can easily �nd a Hamiltonian cycle in the graph induced by the introverted path.

This allows the possibility of doing another kind of merging. What we are going to do is

the following. We make pairs of the introverted paths. If there is an edge between two

matched paths then we can merge them along this edge. After repeating this step we are

left only with pairs of independent paths. If we have an independent pair of introverted

paths then the shorter path will behave like a social path. What we mean is that if we

consider the union of the two underlying vertex sets and the shorter path in it then we

can apply lemma 3.5. In this way we can use the method developed in section 3.

5. The general case

We need only a few additional tricks to handle the general case. So now we are able

to present the complete algorithm.

The algorithm starts with an initial path-covering. Because of our technique each

path in the cover must have two di�erent endnodes. Because of this, the initialization step

is not totally obvious. After initialization, using the results of the previous sections, we

reduce the number of paths by a factor

3

4

. Having these two procedures we can easily get

the complete algorithm.

Procedure Initialization

Given: G, a graph of minimal degree at least

n

2

where n is the number of nodes in G.

Compute: A path-cover of G such that each path in the cover has at least two points.

1) Find in parallel a maximal mathing M in G.

60

2) Find in parallel a maximal matching N between the nodes not covered by M

and the nodes covered by M .

3) The edge set M [N will be fP

i

g

i

, the initial path-covering.

f Lemma 2.5.2. proves that M [N is really a path-cover of G.g

End Initialization

Procedure Reduce path cover

Given: G, a graph of minimal degree at least

n

2

where n is the number of nodes in G, and

a path-cover of G with at least 2 paths.

Compute: A new path-cover with at most

3

4

as many paths.

1) Classify each path as social or as introverted in parallel.

2) Pair up the introverted paths with at most one leftover.

3) Repeat until there are only pairs of independent introverted paths.

For all connected introverted path pairs do a)-d):

a) Find all the pairs where there is an edge between the two paths (we will refer to

these two paths as connected paths).

b) Find a Hamiltonian cycle in each introverted path having at least 3 nodes.

c) Merge the pair of cycles and possible edges by a connecting edge.

d) Pair up the unmatched introverted paths.

f Exiting this loop we have a path-cover of G. The cover consists of social paths and

pairs of independent introverted paths. We will refer to the social paths and to the

pairs of introverted paths as generalized components of the cover. Sometimes we'll

omit the word generalized.g

4) Find a maximal matching in parallel between the edges connecting endpoints of dif-

ferent paths. Connect these paths by this edges. Kill all the cycles by deleting one

new edge of each.

fAt this point we have a path-cover such that there are no edges between endpoints of

di�erent paths. Let us consider the path-cover after step 3. We refer to a generalized

component that was not changed in step 4 as an untuoched component. The idea is

that the part of the old cover which was changed by step 5 got the advantage that we

seek. So we need to work with the untouched part, where we can use our technique.g

5) For every untouched component do the following: If it is a pair of introverted paths

then take the smaller one, otherwise take the corresponding social path. Now we have

a path and we want to merge it into another one. Find all the edges on the path

system such that an elementary merging can be performed along it.

6) For each untouched component we have many possible merging operations. For di�er-

ent untouched components �nd a merging from step 5 which uses di�erent edges. We

will see that this can be solved in the following way. We construct an auxiliary bipar-

tite graph H

1

between the untouched components and the edges along the paths. A

component will be connected to an edge i� along it there is a possible merging (found

in step 6) into the corresponding path. A maximal matching of H

1

will give the 1-1

map from untouched components into edges.

61

7) Perform as many elementary operations as possible. This can be done as follows.

Make the following auxiliary directed graph H

2

. The nodes will correspond to paths

in the cover. There is an edge going from a path P to a path Q i� one of the merging

operations, found in step 6 merges P into Q. In this digraph every node has outdegree

1 or 0. So it will contain rooted trees, edges directed toward the root and directed

cycles with trees connected to it, the edges of the trees directed toward the cycle. If

we delete exactly one edge from each directed cycle then we get a system of rooted

directed trees. The corresponding merging operations can be performed in parallel.

End Reduce path cover

Program Find Hamiltonian circuit

Given: G, a graph of minimal degree at least

n

2

where n is the number of nodes in G.

Compute: A Hamiltonian circuit of G.

1) Initialization

2) Repeat while there are at least two paths

a) Reduce path cover

fAt this point of the algorithm we have a Hamiltonian path f v

1

; :::; v

n

g of G.g

3) If v

1

v

n

is not an edge of G then �nd a pair of edges of the form v

1

v

i+1

and v

n

v

i

.

fWe will see that in this speci�c case this kind of edge pair exists in the graph.g

4) Output the cycle v

1

:::v

n

v

1

or v

i�1

:::v

1

v

i+1

:::v

n

v

i

v

i�1

according to the case in step 3.

End Find Hamiltonian circuit

At several points of the proof of correctness we will need the following crucial idea.

Let us assume that we have a bipartite graph between the sets A and B such that all the

nodes in A have degree at least jAj. Then each maximal matching covers the whole set A.

It is worthwhile to state this statement as a separate lemma.

Lemma 5.1. Let H be is a bipartite graph between sets A and B. Assume that every node

in A has degree at least jAj. Then every maximal matching of H covers the whole set A.

Lemma 5.2. The procedure Initialize constructs a path-covering of the graph.

Proof. Let A be the set of nodes not covered by M . We can assume that A is not empty.

Let B be the complement of A (i.e., the set of nodes covered by M). M is a maximal

matching so A is an independent set. Every point in A has degree at least

n

2

, so the size of

B must be at least

n

2

. This implies that the size of A is at most

n

2

. So the bipartite graph

between A and B satis�es the condition of lemma 5.1. Therefore the matching constructed

in step 2 of procedure Initialization covers the whole set A. This proves the result.

The following lemma shows how the number of paths in the path-cover changes during

the procedure Reduce path cover.

62

Lemma 5.3. Let us run the procedure Reduce path cover once. Let p be the number of

paths at the beginning. Let p0 be the number of paths and c be the number of generalized

components after executing step 3. Let t be the number of components touched in step 4.

Then

(i) In step 4 after log p = O(logn) iterations we stop with c �

p

0

2

generalized components.

(ii) The procedure outputs a path-cover with at most

3

4

p paths.

Proof. (i) Let a be the number of paths, coming from a connected pair of introverted paths.

Then after executing one round of the loop in step 3 these paths will be merged into

a+1

2

paths (counting a possible unmatched introverted path). If a generalized component is

a social path or a pair of independent introverted paths then it remains that way. This

proves (i).

(ii) After executing step 4 we have at least

t

2

fewer paths then p0 (i.e., the number of

paths before step 4). In step 6 for all untouched components we found an edge along which

one can merge it into another path. This is true because the auxiliary bipartite graph H

1

we built up has the property of lemma 4.1. (See lemma 3.5). So the number of edges in H

2

is exactly c� t. We delete some of them. But this deletion kills only one edge from each

cycle. It is easy to see that we still have at least

c�t

2

edges remaining. The corresponding

merging operations will reduce the number of paths by at least

c�t

2

. So the �nal number

of paths is at most

p0 �

t

2

�

c� t

2

= p0 �

c

2

� p0 �

p0

4

=

3

4

p0 �

3

4

p:

The previous lemma easily implies the correctness of the algorithm.

Lemma 5.4. The program Find Hamiltonian cycle terminates in polylog steps, uses poly-

nomial number of processors and outputs a Hamiltonian cycle of G.

Proof. It follows from that step 2 we have a Hamiltonian path of G. The fact that we can

also �nd a Hamiltonian cycle follows from an argument similar to lemma 4.1. The analysis

of the number of processors and time is easy for any straightforward implementation of

the algorithm.

6. Conclusion and open problems

If the number of nodes is even, by constructing a Hamiltonian path we obtain a perfect

matching too. So we have an NC algorithm to �nd a perfect matching in dense graphs.

63

The same problem on general graphs is not known to be in NC. As we saw there is a

striking di�erence between the general case and the case of dense graphs in the case of

Hamiltonian cycle problem.

In this section we consider the question what happens if we enlarge the class of possible

inputs. In both case (matching and Hamiltonian cycle) we obtain `hardness' results.

Let G be an �-dense graph if the minimal degree of G is at least �jGj, where � <

1

2

.

Theorem 6.1. For � <

1

2

the existence problem for a perfect matching restricted to �-

dense graphs G = (V;E) is NC-hard for the general matching problem. This means that

an NC-algorithm for the matching problem restricted to �-dense graphs would imply an

algorithm for the general perfect matching problem.

Proof. Let G = (V;E) be any graph. We construct a graph G

0

= (X

_

[Y

_

[V;E

0

) as

follows: X and Y are sets of equal size, Y is an independent set in G

0

and G is an induced

subgraph of G

0

. Every node in X is adjacent to all nodes in G

0

. We choose the size of X

to be jXj = d

�

1�2�

jV je.

A similar proof technique was used by A. Broder [Br86], when he showed that deter-

mining the permanent on \dense" bipartite graphs is #P -hard.

The same reduction works for the Hamiltonian cycle problem. But in this case the

di�erence (NP-completeness and NC) is more striking.

Theorem 6.2. For every � <

1

2

, the Hamiltonian cycle problem restricted to �-dense

graphs is NP -complete.

Proof. We reduce the existence problem of a Hamiltonian path in a graph G to

the existence problem of a Hamiltonian cycle in an �-dense graph G

0

. We construct

G

0

= (V

0

; E

0

) from a given G+ (V;E) as follows:

� the vertex set of G

0

is a disjoint union of the vertex set of G and two other sets,

V

0

= V

_

[X

_

[Y , where jXj = jY j+ 1 = k = d

�

1�2�

(jV j+ 1)e.

� the edge set of G

0

consists of: (i) the edge set of G, (ii) the complete bipartite graph

between V and X, (iii) the complete bipartite graph between X and Y

Each Hamiltonian cycle in G

0

must have a subpath x

1

y

1

x

2

y

2

. . .x

k�1

y

k�1

x

k

, where

X = fx

1

; . . . ; x

k

g and Y = f y

1

; . . . ; y

k�1

g. The rest of the Hamiltonian path passes

through G. Therefore G has a Hamiltonian path if and only if G

0

has a Hamiltonian cycle.

Easy to check that G

0

is �-dense by setting the size of X and Y as we did.

Finally we mention some open problems.

There are more su�cient conditions for having Hamiltonian cycles ([Be73],[Lo79]).

Some of them are weaker than Dirac's condition, in the sense that they de�ne a wider

class of graphs. I don't know anything about NC algorithms for �nding a Hamiltonian

cycle in these classes.

Another relaxation similar to the Hamiltonian path problem is the maximal cycle

problem. One can �x some elementary operations for enlarging a cycle. One example is

the following. Let us assume that we have a situation in which a node not on the cycle has

two neighbors that are consecutive on the cycle. One can easily merge this node into the

64

cycle. In this case we can de�ne the notion of maximal cycle, i.e., a cycle for which the

operation above can not be applied. Is there any NC algorithm which �nds a maximal

cycle in a graph?

65

6. GEOMETRY, GRAPHS AND COMPLEXITY

1. Unit-distances between vertices of a convex polygon

This chapter is motivated by the following question of Erd}os: What is the maximal

multiplicity of a distance in all distances between vertices of a convex n-gon. We can

assume that the most common distance among the vertices is the unit-distance.

Let S be any n element point set on the plane.

d(S) = max

d2R

+

�

�

�

f (P;Q) : P;Q 2 S and d(P;Q) = 1 g

�

�

�

:

We call S a convex set if S is the vertex set of a convex polygon.

d(n) = max

S is an n element convex set

d(S):

Our goal is to consider the d(n) function. It is known that

cn logn � d(n) �

5

3

n� 3:

In this section we are going to give a construction what improves the previous lower

bound. To do so we will de�ne a convex point set which contains many unit-distances.

First we describe a con�guration of eight points with many unit-distances. Finally we blow

up our set to get the improved lower bound.

We start with the construction of the eight element set. We take a PQR4 from the

plane such that d(P;Q) = d(P;R) = 1 � � and d(Q;R) = 1 � � where 0 < � < � small

parameters. We remark that our assumptions on the order implies that PQR4 close to an

equilateral triangle and its two angles on the side QR are a little bit greater then

�

3

(Figure

1.1). To make easier the references we introduce some notations. We will refer to the line

RQ as horizontal line. This determines the vertical direction too. The RQ line de�nes

two halfplanes. The one which doesn't contain the point P will be called the bottom half

plane. This allows us to use the expressions under and above. Let PT be a unit-interval,

with T as a lower endpoint. We draw a TRU triangle to the top of the interval TR. Its

two unknown sides have length 1.

We do the same with interval TQ. The new point what we get is denoted as V .

Finally we rotate the point U around R as a center with angle

�

3

to get U

0

. The same kind

of rotation (around Q with angle �

�

3

) maps V to V

0

.

66

Figure 1.1.

Now we have our full con�guration which is totally determined by the two parameters.

We call it CONF(�; �) = fP;Q;R; T; U; V; U

0

; V

0

g.

Lemma 1.2. If � and � are small enough then fP;Q;R; T; U; V; U

0

; V

0

g spans a convex

octagon.

Proof. If one varies the parameters then all the distances and angles change a con-

tinuous way. We are going to study the � = 0 situation (for small � our picture is "close"

to this one). This con�guration is on the Figure 1.3 (the corresponding points have a 0

index).

Figure 1.3.

U

0

0

; Q

0

; T

0

; R

0

; V

0

0

are all on the unit-circle drawn around P

0

as a center. Since

U

0

0

RP

6

=

�

3

< QRP

6

the order of the points on the arc is the same as we wrote. So

the consecutive triples on this arc determine a convex angle. U

0

U

0

0

Q

0

6

= V

0

V

0

0

R

0

6

and

both of them are an angle of a triangle. This implies that they are convex. From this

follows that the corresponding angles are convex too in the original con�guration if � is

too small. When we vary � P

0

splits into three points. It is easy to see that this doesn't

cause a problem. The PT vertical line is symmetric axe of the whole picture. If we start

from CONF(0; �) and increase � a little bit then UV becomes a short horizontal interval

symmetric to the PT line. P will a little bit above this interval. U; P; V are on an arc

drawn around T as center. So UPV

6

is a convex angle close to �. The angle between U

0

0

U

and V

0

0

V lines is about

�

3

. This facts prove our lemma.

This con�guration contains eight points and determines nine unit-distances. To get

our �nal construction we substitute some points of this set with n-tuples of points. During

this substitution we multiply the number of unit-distances and preserve convexity.

67

Let C = CONF(�; �), where � and � small numbers, such that the conclusion of Lemma

1.2 is true. Now we draw a unit-circle around P . This circle goes through T . We take

a length � arc starting at T to both direction. Let A

T

be the union of these two arcs

(the length of A

Y

is 2�). We do the same with the unit-circle around R and points U;U

0

0

and �nally with the unit-circle around Q and points V; V

0

0

. Let the corresponding arcs are

denoted as A

U

;A

U

0

;A

V

and A

V

0

. Let C(�) be the point set that we obtain when we add

all these arcs to C (Figure 1.4.).

Figure 1.4.

Lemma 1.5. If � is small enough then any �nite subset of C(�) is a vertex set of a convex

polygon.

Proof Easy consequence of our previous remarks

We consider C(�) with a small �. Let take an n-element subset T = fT

1

; T

2

; . . . ; T

n

g

of A

T

. We choose the T

i

's to be very close to T . We draw a unit-circle with center T

i

. This

circle has a unique intersections with A

U

and A

V

. We denote these intersections as U

i

and V

i

. For di�erent points from T these intersections are di�erent. This is true because

the unit-circles around T

i

and T

j

have only two common points. One of them is P and the

other is on the other side of T

i

T

j

. So we have U = fU

1

; . . . ; U

n

g and V = fV

1

; . . . ; V

n

g

subsets of A

U

and A

V

. Finally we rotate these set with the same rotation which maped

U to U

0

and V to V

0

. So we get U

0

and V

0

. (Figure 1.6.)

Figure 1.6.

68

Our set is

U [U

0

[V [V

0

[T [fP;Q;Rg :

This set contains 5n+ 3 points and the number of unit-distances are 9n. This shows

that d(5n + 3) � 9n. One can easily extend this result to every possible set size. So we

have the following theorem.

Theorem 1.7.

d(n) �

9

5

n� 13:

This construction was improved with H. Edelsbrunner. The improved construction is

published in [EH91].

2. Unit-distances and excluded con�gurations in matrices

A con�guration, C = (c

ij

) (1 � i � u; 1 � j � v), is a partial matrix with 1's and

blanks at the entries. All the matrices we are going to work with will be 0 � 1 matrices.

We say that a matrix M = (m

ij

) does have the con�guration C if one can �nd u rows

i

1

; i

2

; . . . ; i

u

; i

1

< � � � < i

u

and v columns j

1

; j

2

; . . . ; j

v

; j

1

< � � � < j

v

in M such that the

corresponding submatrix contains C, i.e. m

i

�

;j

�

= 1 whenever c

�;�

= 1. Let f(n;m;C)

denote the maximum number of 1's in an n�m matrixM not containing C. In the case of

n = m we write f(n;C). One can allow several forbidden con�gurations, the corresponding

threshold function is f(n;m; fC

1

; . . . ; C

n

g) or f(n; fC

1

; . . . ; C

n

g).

Our research on these threshold functions motivated by giving upper bound on g(n).

Let C be a closed convex curve. Let A

1

and A

2

be two disjoint arcs of C. Let

P

1

; P

2

; . . . ; P

k

be a sequence of points of A

1

(in the same order as they occur on A

1

).

Similarly Q

1

; . . . ; Q

l

are points from A

2

Let M(fP

1

; . . . ; P

k

; Q

1

; . . . ; Q

l

g) = M = (m

i;j

)

be the following matrix of size k � l. m

i;j

= 1 if d(P

i

; Q

j

) = 1, otherwise m

i;j

= 0. Hence

the unit-distances of the form d(P

i

; Q

j

) is the number of 1's in M .

The following Lemma de�nes a forbidden con�guration for the distance matrix de�ned

above.

Lemma 2.1. Let A

1

;A

2

; P

1

; P

2

; P

3

; Q

1

; Q

2

; Q

3

as above (see �gure 2.2). It is impossible,

that d(P

1

; Q

1

) = d(P

1

; Q

3

) = d(P

2

; Q

3

) = d(P

3

; Q

2

) = d(P

3

; Q

3

) = 1.

Proof. Let us assume that all the distances mentioned in the lemma are unit-distances.

69

Figure 2.2.

We are going to prove that in this case all angles of the quadrangle P

1

P

3

Q

3

Q

1

are

acute. P

1

P

3

Q

3

6

is an angle in an isosceles triangle, hence it is acute. Q

1

P

1

Q

3

6

<

Q

1

P

1

P

2

6

. Q

1

P

1

P

2

6

is an angle in an isosceles triangle, hence Q

1

P

1

Q

3

is acute. The

other two angles are acute by the same argument.

Using these ideas Z. Fu;redi ([F�u]) could prove a c � n logn upper bound an the

g(n) function. The main step in the proof is determining the order of magnitude of

f(n;m;

�

1 1

1 1

�

) threshold function.

Other con�guration was considered in [BGy]. The analysis of a computational geo-

metrical algorithm led to their problem.

Our research is closely related to previous works in combinatorics.

Let us mention Tur�an's theory in extremal graph theory. There the question is: Given

a graph G, what is T (n;G), the maximum number of edges of a graph with n vertices and

not containing G as a subgraph? A special case is when we work in the universe of

bipartite graphs. Our matrices can be considered as bipartite graphs. The important

di�erence between Tur�an's theory and our question that in our case the vertices (the rows

and columns) are ordered. This is a very important di�erence but in some special case the

restriction on the order is insigni�cant. An example is the four cycle (complete bipartite

graph between two color classes of size 2 each). Classical results in graph theory [KST54],

[ERS66], [Bo78] immediately give us the following theorem.

Theorem 2.3.

f(n;

�

1 1

1 1

�

) = �(n

3

2

):

We do not know exactly how these two problems are related, but the following facts are

known. The Erd}os-Stone-Simonovits theorem ([ESi66], [ESt46], for a survey see Bollob�as'

book [Bo78]) says that the order of magnitude of T (n;G) depends on the chromatic number

of G, namely lim

n!1

T (n;G)

(

n

2

)

= 1 � (�(G) � 1)

�1

. This theorem gives sharp estimate on

T (n;G), except for bipartite G. For every bipartite graph B which is not a tree there are

positive constants c

1

and c

2

(not depending on n) such that

(n

1+c

1

) � T (n;B) � O(n

2�c

2

)

70

holds. If the graph is a tree F , then it is straightforward that T (n;F) = �(n). However

we will see that our problem has completely di�erent threshold functions. For a special

matrix (such that the corresponding graph is a tree, hence it has linear Tur�an function)

our threshold function turns out to be �(n logn).

An other related question is raised by Davenport and Schinzel. A sequence s =

x

1

x

2

. . .x

l

is called a Davenport-Schinzel sequence, s 2 DS

k

(n), if x

i

6= x

i+1

, x

i

2

f1; 2; . . . ; ng and s does not contain a subsequence x

i

1

x

i

2

. . .x

i

k

such that

x

i

1

= x

i

3

= . . . = x

i

2t�1

= . . . 6= x

i

2

= x

i

4

= . . . = x

i

2t

= . . .

(i

1

< i

2

< . . . < i

k

). Let ds

k

(n) denote the maximum length of an s 2 DS

k

(n). It is

obvious that

ds

3

(n) = n; ds

4

(n) = 2n� 1:

Szemer�edi [Sz74] proved that ds

k

(n) = O(n log

�

(n)) for all �xed k while n tends to in�nity.

(Here, as usual, log

�

n denotes the inverse of the function p:N ! N with p(1) = 2,

p(n+1) = 2

p(n)

.) Recently, mainly due to the works of M. Sharir ([Sh87], [HS86], [Ko88])

it is known that the true order of the magnitude of ds

k

(n) for k � 5 is really superlinear,

e.g. (Hart and Sharir [HS86])

ds

5

(n) = �(n�(n));

where �(n) is the inverse Ackermann function, a very slowly growing function. More on

this see in Section 8 and 9.

For a matrix M (or vector as a special case) jjM jj denotes the number of its entries

equal to 1, M

T

is its transpose. [n] is the set of the �rst n positive integers, and [a; b] =:

fa; a+ 1; . . . ; bg.

3. A reduction between matrices

Let C be a con�guration of 1's. We are going to de�ne two operations on C. The �rst

one is simply deleting an entry. The second one is attaching a new column or row to the

boundary of C and placing an entry 1 in the new column or row, next to an existing one

in C.

De�nition 3.1. If D can be constructed from C using one of these operations we say that

D is obtained by an elementary operation from C. We use the notation C

e

�! D. Let

�! be the transitive closure of

e

�!, i.e. C �! D if D can be constructed from C using a

sequence of elemantary operations.

Note that the size of the matrix can decrease by the �rst type of elementary operation

if the deletion of the given entry creates an empty row or column.

71

Figure 3.2 shows several con�gurations and their relations.

C

1

=

�

1 1

1 1

�

#

C

2

=

�

1 1

1 1

�

. # &

C

3

=

0

@

1

1

1 1

1

A

C

4

=

0

@

1 1

1

1

1

A

C

5

=

0

@

1

1

1 1

1

A

C

6

=

�

1 1

1 1

�

.&

C

7

=

0

@

1

1

1 1

1

A

C

8

=

0

@

1

1

1 1

1

A

#

C

9

=

0

B

@

1

1

1

1

1

C

A

C

10

=

0

B

@

1

1

1

1

1

C

A

Figure 3.2.

Theorem 3.3. Let C;D be con�gurations such that C �! D by t elementary steps. Then

f(n;m;D) � f(n;m;C) + t �max(n;m).

Proof. It is su�cient to prove the case t = 1, we can assume that C

e

�! D. If D is

constructed by deleting an entry then the claim is obvious. So we can assume that D is

constructed by adding an extra column to the end of C with an extra 1 (the other cases

are very similar). Let M be a matrix of size n�m with f(n;m;D) many 1's such that it

doesn't have D as a subcon�guration. Let M

0

be the matrix that we get if we delete the

last 1 in each row (assuming that there is any). Easy to realize that M

0

doesn't have C as

a subcon�guration. So the number of remainder 1's in M

0

is at most f(n;m;C).

72

The natural way to apply Theorem 3.3 is that in the case of C �! D an upper bound

on f(n;C) gives an upper bound on f(n;D) and a construction for a matrix not having

D as a submatrix gives a good construction for C.

Figure 3.4 contains some additional matrices with four 1's and some of their �!

relations.

C

11

=

�

1 1

1 1

�

.&

C

12

=

0

@

1 1

1

1

1

A

C

13

=

0

@

1

1

1 1

1

A

#

C

14

=

0

B

@

1

1

1

1

1

C

A

C

15

=

0

B

@

1

1

1

1

1

C

A

Figure 3.4.

Let B

2

be (1; 1), a 1� 2 con�guration.

Proposition 3.5. If B

2

! C and C has at least 2 entries in it then

min(n;m) � f(n;m;C) � c

C

(n+m):

Proof. Trivial. The lower bound comes considering a matrix M with 1's only in one

row or in one column.

The upper bound is immediate from Theorem 3.3.

C

16

=

0

B

@

1

1

1

1

1

C

A

; C

17

=

0

B

@

1

1

1

1

1

C

A

; C

18

=

0

B

@

1

1

1

1

1

C

A

;

C

19

=

0

@

1

1 1

1

1

A

; C

20

=

0

@

1 1

1

1

1

A

; C

21

=

0

@

1 1

1

1

1

A

;

C

22

=

0

@

1

1 1

1

1

A

; C

23

=

0

@

1

1 1

1

1

A

; C

24

=

0

@

1

1 1

1

1

A

;

73

C

25

=

0

@

1 1

1

1

1

A

; C

26

=

0

@

1 1

1

1

1

A

; C

27

=

0

@

1 1

1

1

1

A

;

C

28

=

0

@

1 1

1

1

1

A

; C

29

=

0

@

1

1 1

1

1

A

; C

30

=

0

@

1

1 1

1

1

A

;

C

31

=

�

1 1 1

1

�

; C

32

=

�

1 1

1 1

�

; C

33

=

�

1 1 1

1

�

;

C

34

=

�

1 1 1

1

�

; C

35

=

�

1 1 1

1

�

; C

36

=

�

1 1

1 1

�

;

C

37

= (1 1 1 1) :

Figure 3.6.

We remark that Figure 3.2, Figure 3.4 and Figure 3.6 contain all the 37 con�gurations

with four 1's (not distinguising two if they are the same upto rotations and reections).

The simple reduction principle yields that 22 of them have linear complexity.

Corollary 3.7.

(a) If M has at most 3 non-zero entries then f(n;m;M) � 2(n+m).

(b) The 22 matrices on Figure 3.6 have linear complexity, f(n;m;C

i

) � 3(n + m) for

16 � i � 37.

One can extend the �! relations to sets of con�gurations. This will be proven very

useful.

De�nition 3.8. Let C

1

; . . . ; C

k

be a set of con�gurations. We are going to de�ne two

operations. One is simply adding a new con�guration to our set. The second is substitute

a C

i

with D if C

i

�! D. The transitive closure of these relations is �!.

The notation is not in conict with De�nition 3.1, which is a special case of this.

Note that fC

1

; . . . ; C

k

g �! fD

1

; . . . ; D

l

g i� for every i there is a j such that C

i

�! D

j

according to De�nition 3.3.

The analog of Theorem 3.3 is the following.

Theorem 3.9. If fC

1

; . . . ; C

k

g �! fD

1

; . . . ; D

l

g then

f(n;m; fD

1

; . . . ; D

l

g) � f(n;m; fC

1

; . . . ; C

k

g) + const(n+m);

where the constant depends only on the two systems, and not on n and m.

A few examples:

f

�

1 1

1 1

�

;

0

@

1 1

1

1

1

A

;

�

1 1

1 1

�

;

0

@

1

1

1 1

1

A

g �!

0

B

@

1

1

1

1

1

C

A

;

74

f

�

1 1

1 1

�

;

0

@

1 1

1

1

1

A

g �!

0

@

1 1

1

1

1

A

:

4. Matrices with n logn complexity

Theorem 4.1. ([F�u]) f(n;

�

1 1

1 1

�

) < 6n logn.

The construction in [F�u] shows that this upper bound is the best up to a constant

factor. Below we give another, a simpler recursive construction.

Construction 4.2. Let

A

1

=

�

1 1

1 0

�

;

and

A

n+1

=

�

E

2

n

A

n

A

n

0

2

n

�

;

where E

n

is an n � n matrix with 1's only in the diagonal connecting the upper right to

the lower left corner, and 0

n

the n� n zero matrix.

Claim 4.3.

(1) A

n

is a 2

n

� 2

n

matrix with (n+ 2)2

n�1

many 1's.

(2) A

n

does not have C

4

=

0

@

1 1

1

1

1

A

as a subcon�guration.

Proof. (1) Easy induction.

(2) Using induction. The initial case is obvious. Let us assume that the claim is

veri�ed for A

k

, when k < n.

Suppose on the contrary that A

n

has the forbidden con�guration. A

n

is, by de�nition,

divided into 4 submatrices. We distinguish di�erent cases depending on which submatrix

has the upper left corner of the forbidden con�guration. If one of the A

n�1

's is the one,

then our inductional hypothesis gives the contradiction. If E

2

n�1
has that entry then

easy to verify that the bottom right corner of the con�guration must be in 0

2

n�1
. This

contradicts the fact that 0

2

n�1
has no 1 entry at all.

75

Corollary 4.4.

(1) f(n;C

2

); f(n; fC

2

; C

T

2

g); f(n;C

4

) = �(n logn).

(2) f(n;C

i

) < 10n logn, for 4 � i � 15.

Proof. (1) Both the lower and upper bound comes from the following relations. C

2

�!

fC

2

; C

T

2

g �! C

4

.

(2) See Figure 2.2 and Figure 2.4.

5. A construction with

n log n

log logn

1's

In the previous section we saw an n logn upper bound on f(C

5

). Now we construct

a matrix with �(

n logn

log logn

) 1's and not having C

5

as a subcon�guration. This section is

a slightly simpli�ed version of [BGy]. Our construction will be recursive and it de�nes

N(s; t), a matrix of size st� st, where s; t � 1.

First we discuss a few properties of N(s; t) what we need for the formal de�nition of

the matrix. The st rows are divided into s blocks, each having t consecutive rows. In each

block we have a column such that each of its entries are 1's and these are the �rst 1's in

the corresponding rows. This column is the leading column of that block.

Let N(s) be a s� s matrix without the con�gurations:

(5:1) C

5

=

0

@

1 1

1

1

1

A

;

�

1 1

1 1

�

;

0

@

1 1

1

1

1

A

;

�

1 1

1 1

�

:

De�nition 5.2. N(1; t) is a t� t matrix with t 1's in the �rst column and 0's everywhere

else.

N(s; 1) is the s� s identity matrix.

The construction of N(s; t+1) is the following (we assume that N(s; t

0

) and N(s

0

; t

00

)

are already constructed for t

0

� t, s

0

< s and t

00

arbitrary). Take a copy of N(s; t) and

insert an extra row after each block. In each extra row put a 1 at the leading column of the

block just above it. Add s new columns at the end of the already constructed part. At the

intersection of extra rows and new columns we have an s � s space. Put a copy of N(s)

with maximum number of ones.

The promised propeties are maintained so our recursion is correct.

Theorem 5.3. N(s; t) doesn't have the con�gurations given in (5.1).

Proof. An easy induction by case by case check.

The previous theorem gives lower bounds on the complexity of several con�gurations

and sets of con�gurations.

76

Corollary 5.4. ([BGy]) f(n;C

5

) =
(

n log n

log log n

).

Proof. Let f(s; t) = jjN(s; t)jj and f(s) = max jjN(s)jj. We have

f(s; t+ 1) � f(s; t) + f(s) + s;

and for s � ab

f(s) � f(a; b):

These inequalities imply that

f(l

a

; t) � (t� 1)l(l

a

+ l

a�1

� (l� 1)

a

) + l

a

;

especially

f(l

a+1

) � f(l

a

; l) � l

a+2

� l(l� 1)

a+1

:

Letting a = l� 1, n = l

l

we obtain the desired bound.

6. More matrices with linear complexity

Recall that C

11

=:

�

1 1

1 1

�

. In this section we prove, that the complexities of

C

11

; . . . ; C

15

are all linear, at most 9n. As one can see from Fig. 2.4, and Theorem 2.3 the

above result implied by the following theorem.

Theorem 6.1. f(n;C

11

) � 7n.

Proof. Let A

0

= (a

0

ij

) be an n�m 0{1 matrix without C

11

. Delete the �rst and the

last entry in each row, and delete all entries in that row if jj(a

0

ij

)

1�j�m

jj � 3. For the

obtained matrix A = (a

ij

) we have

(6:2) jjA

0

jj � jjAjj+ 3n:

A does not contain the following con�gurations either:

�

1 1

1 1

�

;

�

1 1

1 1

�

;

�

1 1

1 1

�

:

For the i'th row (if it is non-empty) let m(i) (M(i)) denote the minimum (maximum,

resp.) index in that row, i.e. m(i) := minfj : a

ij

= 1g. Then [m(i);M(i)] � [m(i

0

);M(i

0

)]

implies i � i

0

.

77

The element a

ij

is called type � if a

ij

= 1, it is not the �rst neither the last one in

its row (m(i) < j < M(i)), � < i, j 2 [m(�);M(�)], and i is minimal with respect to

these constraints. By de�nition, there are no two entries of type � in distinct rows. But

there are no two 1's of type � in the i'th row either, otherwise together with a

�;m(�)

and

a

�;M(�)

they form a forbidden subcon�guration. So the number of entries in A which are

(1) �rst or last in their row,

(2) on the top of their column, or

(3) have a type � is at most 4n. We claim that all the entries of A fall one of the above

3 categories, implying jjAjj � 3n+m. Then (6.2) �nishes the proof of the Theorem.

Suppose that the entry a

ij

= 1 is not the �rst or the last one in the i'th row, and that

there exists a t � i with a

tj

= 1. Then j 2 [m(t);M(t)]. Let � be the maximum index,

such that � < j, and j 2 [m(�);M(�)]. Then a

ij

has type �.

Indeed, suppose on the contrary, that some entry a

i

0

j

0

has type �, with � < i

0

< i.

Then, j 2 [m(�);M(�)] � [m(i

0

);M(i

0

)], so the existence of i

0

contradicts the de�nition

of �.

Let C

t

be a 2 � (t + 2) con�guration with 1's in the positions (1; 1); (1; t + 2) and

(2; 2); . . . ; (2; t+1). C

11

= C

2

. Deleting from every row the middle t� 2 entries, Theorem

6.1 implies

Corollary 6.3. f(n;

�

1 . . . 1

1 1 . . . 1 1

�

) = f(n;C

t

) � (t+ 5)n.

Finally we mention a generalization of this idea in the direction of sequences with

forbidden subsequences. The following corollary is a special case of the result in [AKV].

Corollary 6.4. Suppose that the seqence s = x

1

; x

2

; . . . ; x

l

with x

i

2 [n], does not have

two identical consecutive members, and does not contain the subsequence abba, where a < b,

then l � 100n.

Proof. (sketch) Split s into n equal parts s = s

1

s

2

. . . s

n

, jjs

i

jj = 100. Then there

is a subset s

0

i

� s

i

containing only distinct elements with js

0

i

j � 9. Put 1's into the i'th

column of an n � n matrix A according to s

0

i

. Finally, apply 6.1 to A to get a C

11

, and

then to get an abba in s.

7. A covering lemma

In this section we prove a covering lemma about 0�1 matrices. As an easy application

of our lemma we get several new matrices with linear complexity.

We start with a de�nition. An intersection of s consecutive rows and t consecutive

columns is called a rectangle. The horizontal size of R is t and it is denoted by h(R), the

vertical size of R is s and it is denoted by v(R). M , itself is an example for a rectangle.

78

Lemma 7.1. Let M be arbitrary 0� 1 matrix. Then there is a system of rectangles fR

i

g

such that

(1) R

i

's cover all the 1's,

(2)

P

i

h(R

i

) � 4h(M) and

P

i

v(R

i

) � 4v(M),

(3) each R

i

has a 1 in the upper left or bottom right corner.

Proof. Let us de�ne a partial order between the positions in a given matrix. We say

that a � b, if the row of a is not later than b's one and a's column is not later than b's

one. a- b if a � b and a 6= b.

There are incomparable positions. For two incomparable positions c and d we say

that c% d if c's row is earlier than d's.

TakeM and consider only the positions where we have a 1. Letm

1

% m

2

% . . .% m

k

be the set of minimal 1's for the partial order -. Let M

1

%M

2

% . . .%M

l

be the set of

maximal 1's for the partial order -. We can assume that m

1

is in the �rst column, m

k

is

in the �rst row, M

1

is in the last row and M

l

is in the last column of M .

Let m

i+

1

2

(for i = 1; . . . ; k � 1) be the position in the intersection of the row of m

i

and the column of m

i+1

. Let m

1

2

be the lower left corner of M . Let m

k+

1

2

be the upper

right corner ofM . Let M

j+

1

2

(for j = 1; . . . ; l�1) be the position in the intersection of the

column ofM

i

and the row ofM

i+1

. LetM

1

2

= m

1

2

andM

l+

1

2

= m

k+

1

2

. Let h

i

= [m

i

;m

i+

1

2

]

be a horizontal interval of positions in the row of m

i

, with endpoints at m

i

and m

i+

1

2

. Let

v

i

be the vertical interval [m

i�

1

2

;m

i

]. We de�ne the corresponding intervals for maximal

1's. Let V

i

= [M

i

;M

i+

1

2

] and H

i

= [M

i�

1

2

;M

i

]. It is clear that v

1

; h

1

; v

2

; :::; v

k

; h

k

and

H

1

; V

1

; H

2

; V

2

; :::; H

l

; V

l

de�nes two stair shaped curves. Let us denote them by s and S.

By de�nition it is straightforward that there are no 1 above s and below S.

Now we are starting to construct our covering system of rectangles. This system is

containing two sequences of rectangeles: fQ

i

g and fP

i

g. The Q

i

's are going to have an

entry 1 at the bottom left corner, the P

i

's are going to have a 1 at the upper left corner.

We de�ne them recursively.

Let Q

1

be a rectangle with lower right corner at M

1

, with lower left corner at m

1

2

.

So its right vertical side is on the vertical half line starting at M

1

, going up. The missing

corner of Q

1

on this line is where it �rst hits s.

Q

1

might cover several h

i

intervals. Let h

i

the �rst one which is not covered by Q

1

.

Let P

1

be a rectangle with upper left corner atm

i

. This fact gives us two half lines starting

at m

i

and going down and to right. They hit S at two positions. They will be two other

corners of Q

1

.

Next, we will explain the general step in the de�nition.

Let us assume that we already de�ned Q

1

; P

1

; . . . ; Q

i

; P

i

. Let V

j

be the �rst vertical

interval of S which is not covered by Q

1

[. . .[P

i

. Let M

j

be bottom right corner of Q

i+1

.

That de�nes two half lines starting at M

j

, one going up (let us say e

i+1

) and one going

to the left. They hit s at two positions. They give us two other corner of Q

i+1

. This

completes the de�nition of Q

i+1

.

Let us assume that we already de�ned Q

1

; P

1

; . . . ; Q

i

; P

i

; Q

i+1

. Let h

j

be the �rst

horizontal interval of s which is not covered by Q

1

[. . .[P

i

[Q

i+1

. Let m

j

be upper left

corner of P

i+1

. That de�nes two half lines starting at m

j

, one going down and one going

79

to the right (f

i+1

). They hit S at two positions. They give us two other corner of P

i+1

.

This completes the de�nition of P

i+1

.

The procedure stops when the already constructed rectangles cover all the V

j

's (or all

the h

j

's).

Now we prove that the constructed system of rectangles satisfy (1)-(3).

(3) is immediate.

In order to prove (1) we need a few remarks.

It is immediate from the de�nition that as i is increasing the lines, e

i

's are moving to

the left and the lines f

i

's are moving up.

The de�nition also implies that the upper left corner of P

i

is on e

i

or is left from

e

i

. Similarly the lower right corner of Q

i+1

is on f

i

or is below f

i

. This guarantes that

Q

1

[. . .[P

i

[Q

i+1

covers everything left from e

i+1

in the region between s and S. Similarly

Q

1

[. . .[P

i

[Q

i+1

[P

i+1

covers everything below f

i+1

in the region s and S. This proves

(1).

For (2): From the de�nition the top side of Q

i

(and this way the whole rectangle)

is not above f

i

. The lower right corner of Q

i+1

(let us say M

j

) is not above f

i

, but it

is the last maximal 1 with this property. This guarantees that Q

i+2

's lower right corner

(and this way the whole rectangle) is above f

i

. So the rows of Q

i

and Q

i+2

are completely

disjoint. One gets the corresponding statements for the columns and for the P

i

's similarly.

(2) is an easy consequence of this.

This completes the proof.

Corollary 7.2.

(1) f(n;m;C

10

) is linear.

(2) f(n;m;

0

B

B

B

@

1

1

1

1

1

1

C

C

C

A

) is linear.

(3) f(n;m; f

0

@

1 1

1

1

1

A

;

0

@

1

1

1 1

1

A

g) is linear.

Proof. (1) Take the cover guaranted by Theorem 7.1. Count the 1's separately in

di�erent covering rectangles. We know that in the upper leftcorner or in the lower right

corner there is a 1. So we can bound the number of 1's using that f(n;m;

0

@

1

1

1

1

A

)

and f(n;m;

0

@

1

1

1

1

A

) are linear. If we add up these bounds we obtain the claim in

(1).

The same proof works for (2), but there we use Theorem 5.1.

(3) follows the same way.

80

8. Davenport-Schinzel matrices

In this and the next section we consider the complexity of C

6

=

�

1 1

1 1

�

.

De�nition 8.1. A matrix M is called Davenport-Schinzel matrix if it does not have C

6

as a subcon�guration.

The naming is based on the analogy between this kind of matrices and Davenport-

Schinzel sequences (see [DS65]).

The main result in this section is to construct a Davenport-Schinzel matrix with

(n�(n)) many 1's. Finally we discuss other con�gurations, missing from our matrix.

Our construction is very similar to known constructions of Davenport-Schinzel se-

quences (see [HS86],[Wi86]). We use the same double induction. But instead of sequences

we work with matrices.

The matrices we are constructing have two parameters s and t. We refer to them as

M(s; t). First we describe a few properties of M(s; t). The recursive de�nition of these

matrices is assuming these properties so we need to maintain them.

(a) The size of the matrix is tC(s; t) � tC(s; t), where C(s; t) is de�ned as follows.

C(s; t) = C(s; t� 1)C(s� 1; C(s; t� 1)) and C(1; s) = 1 and C(s; 1) = 2, for s > 1.

(b) The tC(s; t) many rows are divided into blocks. We will refer to them as horizontal

blocks. One block contains t rows (hence we have C(s; t) many blocks). Let H

i

be the set

of the ((i� 1)t+ 1)

st

,...,(it)

th

rows, i.e. the i

th

horizontal block.

(c) Inside H

i

the appearance of the �rst 1 happens in the same column (considering

di�erent rows). Let us say this is the (c

i

)

th

column. The 1's in these columns are called

leading 1's.

(d) 1 = c

1

< c

2

< c

3

< . . . < c

C(s;t)

. These columns divide the matrix into vertical

blocks. Let V

i

be the set of columns from the (c

i

)

th

, through (c

i+1

� 1)

st

, i.e. the i

th

vertical block.

The de�nition of M(s; t) is going to use the matrices S = M(s; t � 1) and B =

M(s� 1; C(s; t� 1)). (Think about S as a small matrix and about B as a big matrix.) B

has C(s�1; C(s; t�1)) many horizontal blocks of size C(s; t�1). B has C(s�1; C(s; t�1))

many vertical blocks too. Let v

i

be the number of columns contained in the i

th

one. S

has C(s; t� 1) many blocks (one for each row in a block of B).

The following de�nition assumes properties (a)-(d). (So one must check that these

properties are maintained.)

De�nition 8.2. M(1; s) is an identity matrix of size s � s. M(s; 1) is

�

1 1

1 0

�

(for

s > 1).

In order to de�ne M(s; t) take C(s � 1; C(s; t � 1)) many copies of S (one for each

horizontal block of B). The construction of M will be completed in C(s � 1; C(s; t � 1))

many stages. In the i

th

stage we add (t � 1)C(s; t� 1) + C(s; t� 1) many new rows and

81

(t� 1)C(s; t� 1)+ v

i

many new columns to the part already built. The construction starts

with the empty matrix. The general (i

th

) stage is the following.

(1) We put (t�1)C(s; t�1) many new rows and new columns after the already existing

ones. In the intersection of the new rows and columns we place a copy of S.

(2) We insert an extra row after each horizontal block of the new copy of S. In these

extra rows we place one extra 1, under each leading column.

(3) Finally we add v

i

new columns (after the old ones). In the new space we place a

copy of the i

th

vertical block of B using the extra rows.

The constructed matrix M =M(s; t) has properties (a)-(d).

Let us introduce a few notations. Ordinary rows and ordinary columns are the rows

and columns introduced in step (1). Extra rows are the rows introduced in step (2). Extra

columns are the ones introduced in step (3). The 1's introduced in step (1) are the ordinary

1's. The 1 entries introduced in step (2) are called the extra 1's. The 1's introduced in

step (3) are the new 1's.

The previous notations give a partition of 1's into new, ordinary and extra 1's. There

are similar partitions for rows and columns.

Any extra 1 is in an ordinary column and in an extra row.

The next lemma summarizes a few simple statements about the matrix M(s; t).

Lemma 8.3.

(1) If s and t are chosen appropriately and n = sC(s; t) then M(s; t) is an n� n matrix

with n�(n) many 1's.

(2) The (c

i

)

th

column contains 1's inside H

i

and no other 1's.

(3) Inside H

i

, after the leading column the 1's are decreasing, i.e. if k and l are two 1's

in the same horizontal block and they are not leading 1's then k - l or l- k. (Recall

that q - p vaguely means that p is south, east or south-east direction from q.)

(4) If l is a new 1 and k is a 1 such that l% k then k is a new 1 too. (Recall that q % p

vaguely means p is north, east or north-east direction from q.)

(5) If l is an ordinary 1 and k is a 1 in l's column or in l's row then k is an ordinary 1

in the same horizontal block with the one exception when l is a leading 1 and k is the

extra 1 in its column.

(6) If l is an extra 1 or an ordinary 1 and k is an ordinary 1 such that l% k then l and

k is in the same horizontal block.

Proof. For (1) we refer the reader to [HS86] or [Wi86].

The proof of (2)-(6) is easy induction following the de�nition of M(s; t).

Now we are ready to discuss the missing con�gurations in M(s; t).

Theorem 8.4. M(s; t) does not have the following con�gurations: (i)

�

1 1

1 1

�

, (ii)

�

1 1

1 1

�

, (iii)

0

@

1

1

1 1

1

A

, (iv)

�

1 1

1 1

�

, (v)

0

@

1 1

1

1

1

A

, (vi)

�

1 1

1 1

�

, (vii)

0

@

1 1

1

1

1

A

, (viii)

0

@

1 1

1

1

1

A

.

82

Proof. Each con�guration in the statement has four 1's in it. Let us order these 1's.

A 1 is earlier than an other if its row is earlier or if they are in the same row and it is

left from the other. In the case of each con�guration name the four 1's as a, b, c and d

following the previously de�ned order.

Our proof is by induction following the de�nition of M(s; t). The initial case is s = 1

or t = 1. Then the statement is clear.

The induction step is proved by contradiction. Let us assume that in M(s; t) we can

�nd four di�erent 1's: the image of a, b, c and d, such that they obey the con�guration.

The individual con�gurations are considered separately.

(i) We distinguish cases depending on what kind of entry corresponds to c. Now on

we don't distinguish a; b; c; d and their images.

Case 1: c is an extra 1. Then d is a new 1. a is in a leading column but it is not an

extra 1. So a's row is an ordinary row. On the other hand c% b, hence (by 8.3.(4)) b is a

new 1. So b's row (what is the same as a's row) is an extra row. Contradiction.

Case 2: c is a new 1. Using 8.3.(4) the whole con�guration consists of new 1's.

So it can be recognized inside M(s � 1; C(s; t � 1)). Contradiction with the inductional

hypothesis.

Case 3: c is an ordinary 1. Using 8.3.(5) the whole con�guration consists of ordinary

1's from the same horizontal block. So our con�guration can be recognized in a copy of

M(s; t� 1).

(ii) Case 1: c is an extra 1. Then a, b and d are new 1's. Let c

0

the �rst 1 after c in

its row (that row is an extra row and c

0

is a new 1). Easy to check that a, b, c

0

and d give

us a con�guration C

1

or one what is the same as the original con�guration. So using (i)

or the inductional hypothesis we get a contradiction.

Case 2: c is a new 1. a, b, c and d are all new 1's. So our con�guration is in a copy

of M(s� 1; C(s; t� 1)).

Case 3: c is an ordinary 1. Using 8.3.(5) our con�guration is inside a copy ofM(s; t�1).

(iii)-(vi) Using the same case analysis based on he bottom left 1 (what is not necessarily

c).

(vii) Case1: d is an extra 1. Then a, b and c are ordinary 1's in the same horizontal

block (using 8.3.(5) and the fact that ordinary columns and rows in the same block are

consecutive ones). Then the positions of b and c are contradictory with 8.3.(3).

Case 2: d is a new 1. The same as the previous second cases.

Case 3: d is an ordinary 1. The same as the previous third cases.

(viii) Case 1: d is an extra 1 and c is a new 1. c % b hence b is a new 1 too, in

particular a's and b's row is an extra row. d% a so a cannot be an extra 1. Hence all four

1's are new except d. Move d right to the �rst 1 in its row. Then we obtain four new ones

(hence they are in a copy of M(s� 1; C(s; t� 1)) such that their con�guration is the one

described in (vii) or in (viii).

Case 2: d is an extra 1 and c is an ordinary 1. Using similar arguments as before

we have that all four 1's are ordinary except d and they are in the same horizontal block.

Move d up by one position. We obtain four ordinary 1's (inside a copy of M(s; t�1)) such

that their con�guration is the one described in (vi) or in (viii).

Case 3: d is not an extra 1. In this case take the bottom left 1 (d) and replace it with

83

another 1 by shifting it to the leading 1 in its row and sinking it to the bottom 1 in that

column. This way we obtain the same con�guration but the new d is an extra 1. That

was handled in the previous cases.

The previous theorem gives lower bounds on the complexity of several con�gurations

and sets of con�gurations.

Corollary 8.5.

(1) f(n;C

6

) =
(n�(n)),

(2) f(n;C

8

) =
(n�(n)),

(3) f(n; f

�

1 1

1 1

�

;

0

@

1

1

1 1

1

A

;

�

1 1

1 1

�

;

0

@

1 1

1

1

1

A

g) =
(n�(n)).

9. Upper bound on Davenport-Schinzel matrices

In this section we prove that

Theorem 9.1. f(n;

�

1 1

1 1

�

) � O(n�(n)):

Proof. Let A

0

= (a

0

ij

) be an n � m 0{1 matrix not having a subcon�guration of

C

6

=

�

1 1

1 1

�

. Delete the �rst and the last 1 in each row, and keep only the

columns with at least 2 entries. The obtained matrix is denoted by A = (a

ij

), and

obviously, for the number of entries we have jjA

0

jj � jjAjj+ 2n+m. Form a sequence s

j

from the j'th column (a

ij

)

1�i�n

of length jj(a

ij

)jj =: l(j) in the following way

s

j

= (s

j

1

; s

j

2

; . . . ; s

j

l(j)

);

where s

j

1

< s

j

2

< . . . < s

j

l(j)

and a

s

i

j

= 1 for 1 � i � l(j). Form one sequence s

0

=:

s

1

s

2

. . . s

m

in this order. Delete from s

0

the element s

j

l(j)

if it equals to s

j+1

1

. In the

obtained sequence, s, there are no equal consequtive elements. We claim that s does not

contain a subsequence ababa, i.e. it is a DS

5

(n) sequence.

Suppose on the contrary. Then there exists a subsequence abab of s with a < b. So

there are j

1

� . . . � j

4

such that a 2 s

j

1

, b 2 s

j

2

, a 2 s

j

3

, b 2 s

j

4

. Here j

2

< j

3

, otherwise

the �rst b in abab could not preceed the second a in s. Consider the submatrix de�ned by

the rows a and b and the columns fj

1

; . . . ; j

4

g. There are four possibilities.

84

j

1

< j

2

< j

3

< j

4

�

1 1

1 1

�

j

1

= j

2

< j

3

< j

4

�

1 1

1 1

�

j

1

= j

2

and j

3

= j

4

�

1 1

1 1

�

j

1

< j

2

< j

3

= j

4

�

1 1

1 1

�

:

In each cases A will contain a C

6

, a contradiction.

So jjAjj � 2n+ 2m+ ds

5

(n).

Corollary 9.2. f(n;C

7

); f(n;C

9

) = O(n�(n)).

In the very same way we can obtain the following theorem. Let C

2k

be a partial 2�2k

matrix with c

1;2i�1

= 1, c

2;2i

= 1 for 1 � i � k.

Theorem 9.3. f(n;C

2k

) � O(ds

4k�3

(n)):

It is not di�cult to give a lower bound for f(n;C

2k

) which is probably closer to f as

the upper bound.

Theorem 9.4. f(n;C

2k

) �

�

ds

2k+1

(n)

�(�(n))

O(�(�(n))

2k�4

)

�

.

Remark. Here the right hand side is superlinear. For the best bound on ds

2k+1

(n)

see [ASS].

Proof. Let s be a Davenport-Schinzel sequence s 2 DS

2k+1

(n) of length ds

2k+1

(n)

such that the element i appears earlier than j for i < j. It is well-known [Sh87], that

ds

2k+1

(n) = O(n�(n)

O(�(n)

2k�4

)

):

Split s into n almost equal parts s = s

1

. . .s

n

. Let s

0

i

be a set of distinct values of s

i

,

jjs

0

i

jj = x. We have that

y =:

ds

2k+1

(n)

n

� 1 � jjs

i

jj � xO(�(x)

O(�(x)

2k�4

)

) � xO(�(y)

O(�(y)

2k�4

)

):

Here y = O(�(n)

O(�(n)

2k�4

)

), so �(y) = �(�(n)) + O(1).

Finally, forming the i

th

column of an n � n matrix A from s

0

i

we obtain the desired

con�guration without C

2k

.

85

10. Conclusions and open problems

The next table summarizes our results.

86

Con�gurations Lower bound Upper bound

�

1 1

1 1

�

�(n

3

2

)

see Theorem 1.1.

�

1 1

1 1

�

,

0

@

1 1

1

1

1

A

�(n logn)

see Theorem 3.1. and Corollary 3.4.

0

@

1

1

1 1

1

A

(

n log n

log log n

) O(n logn)

see Corollary 4.4. see Corollary 3.4.

0

@

1 1

1

1

1

A

(n) O(n logn)

see Corollary 3.4.

�

1 1

1 1

�

,

0

@

1

1

1 1

1

A

�(n�(n))

see Corollary 7.5. and Theorem 8.1.

0

@

1

1

1 1

1

A

,

0

B

@

1

1

1

1

1

C

A

(n) O(n�(n))

see Corollary 8.2.

All the other 28 matrices with 4 entries �(n)

Finally we mention several open problems. The �rst few ones are suggested by the

previous table. Even in the case of con�gurations with four 1's there are several unknown

complexities.

Is it true that the complexity of all permutation con�gurations are linear?

What is the characterization of con�gurations with linear complexity? In extremal

graph theory the forbidden subgraphs with linear threshold are exactly the trees.

Is it true, that if G is the (bipartite) graph corresponding the con�guration C then

(10:1) f(n;C) < O(T (n;G) logn)?

Does (10.1) hold at least for trees?

87

There are several combinatorial structures with an underlying order where the similar

extremal question is interesting. An example is a set of intervals on a given line. How

many intervals (over n endpoints) guarantee the existence of a given interval con�guration?

Similar question can be asked about diagonals in a cycle. Davenport and Schinzel's original

question can be extended to arbitrary forbidden subsequence. As far we know there is no

organized account of these questions.

88

7. PARTITION OF GRAPHS

1. Introduction

E. Gy}ori suggested the following problem in the sixth Hungarian Colloquium on Com-

binatorics held at Eger, 1981: given integers s; t � 3, does there exist a number f(s; t) such

that every f(s; t)-connected graph G admits a proper partition fS; T g of the vertex-set

V (G) so that the induced subgraphs G(S) and G(T) are s-connected and t-connected,

respectively? Thomassen [Tho82], and independently M. Szegedy [Sz82] established the

existence of the function f(s; t). In his proof Thomassen showed the existence of a function

g(s; t) (where s; t are natural numbers) such that the vertex-set of any graph G with min-

imum degree g(s; t) has a decomposition S [T such that G(S) and G(T) have minimum

degree at least s and t, respectively. Let f(s; t) and g(s; t) be the minimal numbers under

the above conditions. In his paper Thomassen gave rather weak bounds. We sharpen the

estimates of the functions f(s; t) and g(s; t).

Let us recall a few graph theoretical notations. Let G be a simple graph, V (G) is the

set of points of G, E(G) is the set of edges of G. Let S be a subset of the vertices and

x 2 V (G). G(S) is the subgraphs of G induced by S, e(S) is the number of edges of G(S),

d(S) denotes the minimum degree in G(S), d(x) is the degree of point x, d(x; S) denotes

the number of edges xy, where y 2 S. fS; T g is a partition of the set V (G) if S and T

are non-empty, disjoint subsets of V (G) such that S [T = V (G).

2. Estimating the function f(s; t)

Theorem 2.1. If s � 4, then g(s; t) � t+ 2s� 3.

Proof. We have to prove that d(V (G)) � t + 2s � 3, then there exists a partition

fS; T g of the set V (G) such that d(S) � s and d(T) � t.

89

Let S be a vertex-set such that jSj is minimal and (if there are more than such S)

e(S) is maximal under the conditions:

(�)

�

e(S) > (s� 1)jSj �

s(s�1)

2

jSj � s

Such an S exists (for example V (G) satis�es condition (�)). S 6= V (G) as for any x 2 V (G),

d

�

V (G)� fx g

�

� t+ 2s� 4;

so if t � 2, then

e

�

V (G)� fx g

�

�

t+ 2s� 4

2

�

�

V (G)� fx g

�

�

� (s� 1)jV (G)� fx g

�

�

:

(If t = 1, the assertion is trivial.) So fS; T = V (G)� S g is a partition of V (G). We shall

prove that this is an appropriate partition.

First we note that jSj � s+ 1. Suppose that jSj = s, then from (�) we obtain

e(S) > (s� 1)s�

s(s� 1)

2

=

s(s� 1)

2

;

a contradiction.

Now let x be a point of S with minimum degree in G(S). We claim that d(x; S) � s,

i.e. d(S) � s. Assume indirectly that it is not the case:

jS � fx g j �s;

e(S � fx g) >(s� 1)jSj �

s(s� 1)

2

� (s� 1) = (s� 1)jS � fx g j �

s(s� 1)

2

:

This contradicts the minimality of jSj.

On the other hand, if x is the vertex above, then by the minimality of jSj,

(2:2) e(S)�d(S) = e(S�f x g) � (s�1)jS�fx g j�

s(s� 1)

2

= (s�1)(jSj�1)�

s(s� 1)

2

:

We have

jSjd(S)

2

� e(S) � (s� 1)

�

jSj � 1�

s

2

�

+ d(S); d(S) � (2s� 2)

jSj � 1�

s

2

jSj � 2

:

So if s � 3, then d(S) < 2s� 2, i.e. d(S) � 2s� 3.

Now we show only a \few" edges connect any point of T = V (G) � S to S. Let

D = max

x2T

d(x; S) and let y be a point of T for which d(y; S) = D. We claim that

D � 2s� 3.

There are two cases to consider.

Case 1. d(S) � 2s� 4.

90

Suppose that D > 2s� 3. Let S

0

= S � fx g [f y g. e(S

0

) > e(S) and jS

0

j = jSj, so

S

0

satis�es the condition (�). This contradicts the maximality of e(S). This proves that

D � 2s� 3.

Case 2. D � 2s� 1.

The same exchange as above gives us a contradiction.

Case 3. If D = 2s� 2 and there is an x 2 S such that d(x; S) = 2s� 3 and xy 62 E(G).

The same exchange as above gives us a contradiction.

Case 4. If D = 2s� 2 and there exist no x 2 S such that d(x; S) = 2s� 3 and xy 62 E(G).

Then in S only the neighbors of y may have degree 2s� 3. Hence

e(S) �

(2s� 2)(2s� 3) +

�

jSj � (2s� 2)

�

(2s� 2)

2

= (s� 1)

�

jSj � 1

�

:

But from (2.2)

e(S) � (s� 1)

�

jSj � 1

�

�

s(s� 1)

2

+ d(S) = (s� 1)

�

jSj � 1

�

�

s(s� 1)

2

+ 2s� 3:

So we have

2s� 3�

s(s� 1)

2

� 0;

0 � s

2

� 5s+ 6 = (s� 2)(s� 3):

This contradicts s � 4.

This proves that D � 2s� 3, hence d(T) � t.

In fact we proved the following claim:

Theorem 2.3. Let G be a graph with minimum degree at least 2s � 1 (s � 4) and let

S be a vertex-set such that jSj is minimal and e(S) maximal under condition (�). Then

S; V (G) � S are non-empty sets and in S the degree of any vertex is at least s and from

any vertex in V (G)� S at most 2s� 3 edges go to S.

Exchanging s and t we obtain g(s; t) � 2t+ s� 3. So if min(s; t) � 4, then g(s; t) �

s+ t� 3+min(s; t). It can be easily seen from the proof that if s = 3, then g(s; t) � t+4

and if s = 2, then g(s; t) � t+3. The complete graph K

s+t+1

, shows that g(s; t) � s+t+1.

The following corollary sums up our results.

Corollary 2.4. If min(s; t) � 4, then g(s; t) = s+ t+1, if min(s; t) � 4, then s+ t+1 �

g(s; t) � s+ t+ 1 +

�

min(s; t)� 4

�

.

In the proof we used only the following conditions on the set S:

(1) S satis�es (�),

(2) if x 2 S, then S � fx g does not satisfy (�),

(3) if x 2 S and y 62 S, then e

�

S � fx g [f y g

�

� e(S).

Based on this observation we give an algorithm which has a graph G with minimum

degree at least 2s+ t� 3 as input and a partition fS; T g as output.

91

Algorithms 2.5. Step 0. Let S=V(G).

Step 1. If there exists an x 2 S such that S �fx g satis�es (�), then let S = S�fx g

and restart the algorithm with the new S.

If there is no appropriate x, go to step 2.

Step 2. If there is an x 2 S and y 62 S such that e(S � fx g [f y g) > e(S), then let

S = S � fx g [f y g and restart step 2 with the new S.

If there is no (x; y) pair as above, then from the above remark fS; V (G)� S g is a

valid partition.

Step 1 is executed O(n) many times. Between two executions of step 1 the step 2 is

called O(n

2

) many times. The execution of a step takes O(n

2

) inspections. Consequently

the running time of the whole algorithm is O(n

5

).

3. Estimating the function f(s; t)

Theorem 3.1. [Mad72] If jV (G)j � 2n � 1 (n � 2, natural number) and e(G) > (2n �

3)

�

jV (G)j � (n� 1)

�

for a simple graph G, then G has an n-connected induced subgraph.

In fact the proof of this theorem gives the following result:

Theorem 3.2. [Mad72] If G is a graph as above, V

0

� V (G) and jV

0

j is minimal such

that jV

0

j � 2n� 2 and

e(V

0

) > (2n� 3)

�

jV

0

j � n+ 1

�

= (2n� 3)jV

0

j �

(2n� 2)(2n� 3)

2

;

then V

0

induces an n-connected subgraph.

Using this result, we prove the following theorem:

Theorem 3.3. If s � 3; t � 2 and G is an (s + t � 1)-connected graph with d(V (G)) �

4s + 4t � 13, then there exists a partition fS; T g of V (G) such that G(S) and G(T) are

s-connected and t-connected, respectively.

Proof. Consider the following conditions on S � V (G):

jSj � 2s� 2;

e(S) > (2s� 3)jSj �

(2s� 2)(2s� 3)

2

:

92

Choose an S such that jSj is minimal and (if there are more than one such S) e(S) is

maximal under the conditions above. fS; T = V (G)� S g is a partition of V (G) which

can be proved the same way as it was done in theorem 2.1.

By theorem 3.2 S induces an s connected subgraph.

On the other hand by theorem 2.3 d(y; S) � 2(2s � 2) � 3 = 4s � 7 for y 2 T .

Consequently, d(T) � 4t� 6. So

jT j � 2t� 2; and

e(T) �

(4t� 6)jT j

2

> (2t� 3)

�

jT j � (t� 1)

�

:

By Mader's theorem 3.2 there exists a subset T

0

� T with G(T

0

) t-connected.

After this, we can follow the proof of Thomassen. Let S and T be non-empty, disjoint

sets such that G(S) and G(T) are s-connected and t-connected, respectively, and jS [T j

is maximal.

We are going to prove that S [T = V (G). Suppose that A = V (G) � (S [T) 6= ;.

Since j(S [A) [T j > jS [T j by the maximality of jS [T j we have that G(S [A) is not

an s-connected graph, i.e. G(S [A) has a cut-set B such that jBj � s� 1. Let G

1

be a

component of G

�

(S [T) � B

�

such that C = V (G

1

) � A. j(T [C) [Sj > jS [T j, so

G(T [C) is not a t-connected graph. Let D be a cut-set of G(T [C) such that jDj � t�1.

It is easy verify that B [D is a cut-set of G. But jB [Dj � s+ t� 2, contradicting

the (s+ t� 1)-connectivity of G.

If G is (4s+4t� 13)-connected, then G satis�es the conditions of theorem 3.3. Hence

we obtained that if s � 3, t � 2, then f(s; t) � 4s+4t�13. The graph K

s+t+1

shows that

f(s; t) � s+ t+ 1. The following corollary sums up our bounds on f(s; t):

Corollary 3.4. If s � 3 and t � 2, then

s+ t+ 1 � f(s; t) � 4s+ 4t� 13:

93

REFERENCES

[A28] W. Ackermann, Zum Hilbertschen Aufbau der reelen Zahlen, Math. Ann. 99

(1928), 118-133.

[AKV] R. Adamec, M. Klazar and P. Valtr, Forbidden words, Preprint, Department of

Mathematics, Karlovy University, Prague, Czechoslovakia.

[Ad78] L. Adleman, Two theorems on random polynomial time, Proc. 19th IEEE FOCS

(1978), 75{83.

[ASS] P. Agarwal, M. Sharir and P. Shor, Sharp upper and lower bounds on the length

of general Davenport-Schinzel sequences, Preprint.

[AA88] A. Aggarwal and R.J. Anderson, A random NC-algorithm for depth �rst search,

Combinatorica 8 (1988), 1{12.

[AAK89] A. Aggarwal, R.J. Anderson and M.Y. Kao, Parallel depth-�rst search in gen-

eral directed graphs, Proc. 21st ACM STOC (1989), 297{308.

[AHU74] A. Aho, J.Hopcroft and J. Ullman, \The Design and Analysis of Computer

Algorithms," Addison-Wesley, Menlo Park, CA, 1974.

[ABHKPRSzT86] M. Ajtai, L. Babai, P. Hajnal, J. Koml�os, P. Pudl�ak, V. R�odl, E.

Szemer�edi, Gy. Tur�an, Two lower bounds for branching programs, Proc. 18th ACM

STOC (1986), 30{38.

[AKS87] M. Ajtai, J. Koml�os and E. Szemer�edi, Deterministic simulation in

LOGSPACE, Proc. 19th ACM STOC (1987), 132{140.

[AW85] M. Ajtai and A. Wigderson, Deterministic simulation of probabilistic constant

depth circuits, Proc. 26th IEEE FOCS (1985), 11{19.

[ABI86] N. Alon, L. Babai and A. Itai, A fast and simple randomized parallel algorithm

for the maximal independent set problem, Journal of Algorithms 7 (1986), 567-583.

[AB87] N. Alon and R. Boppana, The monotone circuit complexity of Boolean functions,

Combinatorica 7 (1987), 1{22.

[AM86] N. Alon and W. Maass, Ramsey theory and lower bounds for branching programs,

Proc. 27th IEEE FOCS (1986), 410{417.

[And87] R.J. Anderson, A parallel algorithm for the maximal path problem, Combina-

torica 7 (1987), 315{326.

[An85] A. E. Andreev, On a method of obtaining lower bounds for the complexity of

individual monotone functions, in Russian, Dokl. Akad. Nauk SSSR 282/5 (1985),

1033{1037.

94

[AV79] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian

circuits and matchings, Journal of Computer and System Sciences 19 (1979), 155{193.

[BHSzT87] L. Babai, P. Hajnal, E. Szemer�edi and Gy. Tur�an, A lower bound for

read-only-once branching programs, J.C.S.S. 35 (1987), 153{162.

[BPRSz] L. Babai, P. Pudl�ak, V. R�odl and E. Szemer�edi, Lower bounds to the complexity

of symmetric Boolean functions, submitted for publication.

[Ba85] D. A. Barrington, Width-3 permutation branching programs, draft, MIT (1985).

[Ba86] D. A. Barrington, Bounded-width polynomial size branching programs recognize

exactly those languages in NC

1

, Proc. 18th ACM STOC (1986), 1{5.

[Be86] P. Beame, Limits on the power of concurrent-write parallel machines, Proc. 18th

ACM STOC (1986), 169{176.

[BC85] P. Beame and S. Cook, private communication.

[BO83] M. Ben-Or, Lower bounds for algebraic computational trees, Proc. 15th ACM

STOC (1983), 247{248.

[Be73] C. Berge, \Graphs and Hypergraphs," North-Holland - American Elsevier, 1973.

[BBL74] M.R. Best, P. van Emde Boas and H.W. Lenstra, Jr., A sharpened version

of the Aanderaa�Rosenberg conjecture, Report ZW 30/74, Mathematish Centrum,

Amsterdam (1974).

[BGy] D. Bienstock and E. Gy}ori, An extremal problem on sparse 0 � 1 matrices, to

appear in SIAM J. Disc. Math..

[Bl84] N. Blum, A boolean function requiring 3n network size, Theoritical Computer

Science 28 (1984), 337{345.

[BI87] M. Blum and R. Impagliazzo, Generic oracles and oracle classes, Proc. 28th IEEE

FOCS (1987), 118{126.

[Bo77] B. Bollob�as, Complete subgraphs are elusive, J. Combinatorial Theory Ser. B 20

(1976), 1{7.

[Bo78] B. Bollob�as, \Extremal Graph theory," Academic Press, London, 1978.

[Bo85] B. Bollob�as, \Random graphs," Academic Press, London, 1985.

[BE78] B. Bollob�as and S. E. Eldridge, Packing of graphs and applications to computa-

tional complexity, J. of Combinatorial Theory Ser. B 25, 105{124.

[Bo] R. Boppana, for a description see [SW86], unpublished.

[BoS88] R. Boppana and M. Sipser, The complexity of �nite functions, preprint, 1988, to

appear in \The Handbook of Theoretical Computer Science", edited by J. van Leewen

et al., North-Holland, Amsterdam.

[Bor77] A. Borodin, On relating time and space to size and depth, SIAM J. Comput. 6

(1977), 733{744.

95

[BFKLT81] A. Borodin, M.J. Fischer, D.G. Kirkpatrick, N.A. Lynch and M. Tompa, A

time-space tradeo� for sorting on nonoblivious machines, J.C.S.S. 22 (1981), 351{364.

[BDFP83] A. Borodin, D. Dolev, F. E. Fich and W. Paul, Bounds for width-2 branching

programs, Proc. 15th ACM STOC (1983), 87{93.

[BK87] J. Boyar and H. Karlo�, Coloring planar graphs in parallel, J. Algorithms 8

(1987), 470{479.

[Br86] A.Z. Broder, How hard is it to marry at random, Proc. 18th ACM STOC (1986),

50{58.

[Br66] W.G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math.

Bull. 9 (1966), 281{285.

[BS77] D. Burns and S. Schuster, Every (p; p� 2) graph is contained in its complement,

J. Graph Theory 1 (1977), 277{279.

[BS78] D. Burns and S. Schuster, Embedding (p; p � 1) graphs in their complements,

Israel J. Math. 30 (1978), 313{320.

[Ca74] P. A. Catlin, Subgraphs of graphs I., Discrete Math. 10 (1974), 225{233.

[CFL83] A. K. Chandra, M. L. Furst and R. J. Lipton, Multiparty protocols, Proc. 15th

ACM STOC (1983), 94{99.

[Ch52] H. Cherno�, A measure of asymptotic e�ency for tests of a hypothesis based on

the sum of observations, Annals of Math. Stat. 23 (1952), 493{509.

[Co85] S. Cook, A Taxonomy of Problems with Fast Parallel Algorithms, Information

and Control 64 (1985), 2{22.

[CDR86] S. Cook, C. Dwork and R. Reischuk, Upper and lower bounds for parallel

random access machines without simultaneous writes, SIAM J. Comput. 15 (1986),

87{97.

[DS65] H. Davenport and A. Schinzel, A combinatorial problem connected with di�eren-

tial equations, I and II,, Amer. J. Math., 87 (1965), 684-694 and Acta Arithmetica,

17 (1971), 363-372.

[DM86] M. Dietzfelbinger and W. Maass, Two lower bound arguments with `inaccessible'

number, Structure in Complexity Theory, Lecture Notes in Computer Science, 223,

Springer, Berlin - New york, 1986, 163{183.

[Di52] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2

(1952), 69{81.

[Du85] P.E. Dunne, Lower bounds on the complexity of 1-time-only branching programs,

FCT Proc., Lect. Notes in Comp. Sci. 199 (1985), 90{99.

[EH91] H. Edelsbrunner and P. Hajnal, A lower bound on the number of unit distances

between the vertices of a convex polygon, JCT ser. A 56 (1991), 312{316.

96

[Er47] P. Erd}os, Some remarks on the theory of graphs, Bulletin Amer. Math. Soc. 53

(1947), 242{294.

[ERS66] P. Erd}os, A R�enyi and V.T. S�os, On a problem of graph theory, Studia Sci.

Math. Hungar. 1 (1966), 215{235.

[ESi66] P. Erd}os and M. Simonovits, A limit theorm in graph theory, Studia Sci. Math.

Hungar. 1 (1966), 51{57.

[ES74] P. Erd}os and J. Spencer, \Probabilistic methods in combinatorics," Akad�emia

Kiad�o, Budapest, 1974.

[ESt46] P. Erd}os and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math.

Soc. 52 (1946), 1087{1091.

[FT87] U. Faigle and Gy Tur�an, The complexity of interval orders and semiorders, Dis-

crete Math 63 (1987), 131{141.

[FT88] U. Faigle and Gy. Tur�an, Sorting and recognition problems for ordered sets,

SIAM J. Comput. 17 (1988), 100{113.

[FRSS81] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs

in their complements, Csechoslovak Math J. 31 (1981), 53{62.

[FMP] M. J. Fischer, A. Meyer and M. S. Paterson,
(n logn) lower bounds on length

of Boolean formulas, SIAM J. Computing 11 (1982), 416{427.

[FHS78] S. Fortune, J. Hopcroft, E. M. Schmidt, The complexity of equivalence and

containment free single variable program schemes, Fifth Internat. Colloq., Udine,

Lecture Notes in Computer Science, 62, Springer, Berlin - New York, 1978, 227{240.

[FW78] S. Fortune and J. Wyllie, Parallelism in random access mashines, Proc. 10th

ACM STOC (1978), 114-118.

[F�u] Z. F�uredi, The maximum number of unit distances in a convex n-gon, to appear in

J. Combinatorial Th., A..

[FH] Z. F�uredi and P. Hajnal, Davenport-Schinzel theory of matrices, to appear in Dis-

crete Mathematics.

[GJ79] M. Garey and D. Johnson, \Computers and intractability: A guide to the theory

of NP-completeness," W.H. Freeman and Company, San Francisco, 1979.

[GPS87] A. Goldberg, S. Plotkin and G. Shannon, Parallel symmetry-breaking in sparse

graphs, Proc. 19th ACM STOC (1987), 315{324.

[GS87] M. Goldberg and T. Spencer, A new parallel algorithm for the maximal indepen-

dent set problem, Proc. 28th IEEE FOCS (1987), 161{165.

[Go77] L.M. Goldschlager, Synchronous parallel computation, Ph. D. Thesis, University

of Toronto (1977); see also, J. ACM 29 (1982), 1073{1086.

[GRS80] R. L. Graham, B. Rothschild and J. Spencer, \Ramsey Theory," Wiley, New

York, 1980.

97

[GyL76] A. Gy�arf�as and J. Lehel, Packing trees of di�erent order into K

n

, in: \Combi-

natorics", Akad�emia kiad�o, Budapest, 1976, 463{469.

[Gy81] E. Gy}ori, An n-dimensional search problem with resticted questions, Combina-

torica 1 (1981), 377{380.

[HMT88] A. Hajnal, W. Maas and Gy. Tur�an, On the communication complexity of

graph properties, Proc. 20th ACM STOC (1988), 186{191.

[Ha83] P. Hajnal, Partition of graphs with condition on the connectivity and minimum

degree, Combinatorica 3 (1983), 95{99.

[Ha] P. Hajnal, On the number of unit distances between vertices of a convex polygon,

Manuscript.

[Ha88] P. Hajnal, Fast parallel algorithm for �nding a Hamiltonian cycle in dense graphs,

The University of Chicago, Technical Report 88{003, April 1988.

[Ha90] P. Hajnal, On the power of randomness in the decision tree model, Proc. 5th

Structure in Complexity Theory Conf. (1990), 66{77.

[Ha91] P. Hajnal, An

�

n

4=3

�

lower bound on the randomized complexity of graph prop-

erties, Combinatorica (11(2)), 131{143.

[HaSz] P. Hajnal and M. Szegedy, On packing bipartite graphs, To appear in Combina-

torica.

[HSz88] P. Hajnal and E. Szemer�edi, Parallel Brooks coloring, SIAM J. Disc. Math 3

(1990), 74{80.

[HS86] S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of

generalized path compression schemes, Combinatorica 6 (1986), 151{177.

[Ha86] J. Hastad, Improved lower bounds for small depth circuits, Proc. 18th ACM

STOC (1986), 6{20.

[HHS81] S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, A note on packing two trees

into K

n

, Ars Combinatorica 11 (1981), 149{153.

[HR72] R.C. Holt and E.M. Reingold, On the time required to detect cycles and connec-

tivity in directed graphs, Math. Systems Theory 6 (1972), 103{107.

[HB84] K. Hwang and F.A. Briggs, \Computer architecture and parallel processing,"

McGraw-Hill, New York, 1984.

[Il78] N. Illies, A counterexample to the generalized Aanderaa�Rosenberg conjecture,

Info. Proc. Letters 7 (1978), 154{155.

[IS86] A. Israeli and Y. Shiloach, An improved paralle algorithm for maximal matching,

Inf. Proc. Letters 22 (1986), 57{60.

[Ju87] S.P. Jukna, Lower bounds on the complexity of local circuits, preprint, 1987.

98

[KSS84] J. Kahn, M. Saks and D. Sturtevant, A topological aproach to evasiveness,

Combinatorica 4 (1984), 297{306.

[KN88] M. Karchmer and J. Naor, A fast parallel algorithm to color a graph with �

colors, J. of Algorithms 9 (1988), 83{91.

[Ka85] H. J. Karlo�, Fast parallel algorithms for graph theoretical problems, M.Sc. The-

sis, University of California, Berkeley.

[Ka86] H. Karlo�, A Las Vegas RNC algorithm for maximum matching, Combinatorica

6 (1986), 387{392.

[Ka88] H. Karlo�, An NC algorithm for Brooks' theorem, Theoretical Computer Science

68 (1988), 89{103.

[KUW86] R.M. Karp, E. Upfal and A. Wigderson, Constructing a perfect matching is

in random NC, Combinatorica 6 (1986), 35{48.

[KaW85] R.M. Karp and A. Wigderson, A fast parallel algorithm for the maximal inde-

pendent set problem, JACM 32 (1985), 762{773.

[Ki88] V. King, Lower bounds on the complexity of graph properties, Proc. 20th ACM

STOC (1988), 468{476.

[Kir74] D. Kirkpatrick, Determining graph properties from matrix represantation,, Proc.

6th SIGACT Conf. (1974), 84-90.

[KS86] D. Kirkpatrick and R. Seidel, The ultimate planar convex hull algorithm, SIAM

J. Comput. 15 (1986), 287{299.

[KK80] D.J. Kleitman and D.J. Kwiatkowski, Further results on the Aanderaa�Rosen-

berg conjecture, J. Combinatorial Theory 28 (1980), 85{95.

[KM75] D.E. Knuth and R.W. Moore, An analysis of alpha-beta pruning, Arti�cial In-

telligence 6 (1975), 293{326.

[Ko88] P. Komj�ath, A simpli�ed construction of nonlinear Davenport-Schinzel se-

quences,, J. of Comb. Theory A49 (1988), 262{267.

[KST54] T. K}ov�ari, V.T. S�os and P. Tur�an, On a problem of Zarankiewicz, Colloq.

Math. 3 (1954), 50{57.

[Kr87] M. Krause, Lower bounds for depth-restricted branching programs, preprint, 1987.

[Kr88] M. Krause, Exponential lower bounds on the complexity of local and real-time

branching programs, J. Inform. Process. Cybernet. 24 (1988), 99-110.

[KW86] K. Kriegel and S. Waack, Lower bounds on the complexity of real-time branching

programs, preprint,1986.

[Le59] C. Y. Lee, Representation of switching functions by binary decision programs, Bell

Syst. Tech. Journal 38 (1959), 985{999.

99

[Lo66] L. Lov�asz, On decomposition of graphs, Studia Sci. Math. Hung. 1 (1966),

237{238.

[Lo79] L. Lov�asz, \Combinatorial Problems and Exercises," North Holland, Amsterdam,

1979.

[Lo79b] L. Lov�asz, Determinants matchings and random algorithms, in: \Foundamentals

of Computation Theory FCT `79" (ed. L. Budach), Akademie-Verlag, Berlin, 1979,

56{574.

[Lu86] M. Luby, A simple parallel algorithm for the maximal independent set problem,

SIAM J. Comput. 15 (1986), 1036{1053.

[Mad72] W. Mader, Existenz n-fach zussamenh�angender Teilgraphen in Graphen

gen�ugend grossen Kantendichte, Abh. Math. Sem. Hamburg Univ. 37 (1972), 86{97.

[MT85] U. Manber and M. Tompa, The complexity of problems on probabilistic

non-deterministic and alternating decision trees, J. ACM 32 (1985), 732{740.

[Ma74] Z. Manna, \Mathematical Theory of Computation," McGraw-Hill, New York,

1974.

[Mas76] W. Masek, A fast algorithm for the string editing problem and decision graph

complexity, M.Sc. Thesis, MIT (1976).

[M84] F. Meyer auf der Heide, A polynomial linear search algorithm for the n-dimensional

knapsack problem, J. ACM 31 (1984), 668{676.

[MH85a] F. Meyer auf der Heide, Fast algorithms for n-dimensional restrictions of hard

problems, J. Assoc. Comput. Mach. 35 (1988), 185{203.

[MH85b] F. Meyer auf der Heide, Non-deterministic versus probabilistic linaer search

algorithms, Proc. 26th IEEE FOCS (1985), 65{73.

[MW74] E.C. Milner and D.J.A. Welsh, On the computational complexity of graph the-

oritical properties, Univ. of Calgary, Res. Paper No.232 (1974).

[MW76] E.C. Milner and D.J.A. Welsh, On the computational complexity of graph

theoritical properties, in: Proc. Fifth British Combinatorial Conf. (ed: C.St.J.A.

Nash-Williams and J. Sheehan), Utilitas Math., Winnipeg, Ontario, Canada, 1976,

471-487.

[M] J. Mitchell, Shortest rectilinear paths among obstacles, SORIE Technical report No.

739, Cornell University, 1987.

[Ne66] E. I. Ne�ciporuk, On a Boolean function, Dokl. Akad. Nauk SSSR 169 (1966),

765{766; English translation: Soviet Math Doklady 7 (1966), 999{1000.

[vN28] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Annalen 100 (1928),

295{320.

[Ni] N. Nisan, CREW PRAMs and decision trees, Proc. 21th ACM STOC (1989),

327{335.

100

[Pe80] J. Pearl, Asymtotic properties of minimax trees and game-searching procedures,

Artif. Intell. 14 (1980), 113{126.

[Pe82] J. Pearl, The solution for the branching factor of the alpha beta pruning algorithm

and its optimality, Comm. ACM 25 (1982), 559{564.

[Pr87] H.J. Pr�omel, Counting unlabeled structures, J. Combinatorial Th. Ser. A 44

(1987), 83{93.

[Pu84] P. Pudl�ak, A lower bound on complexity of branching programs, Proc. Conf. on the

Mathematical Foundations of Computer Science, Springer Lecture Notes in Computer

Science 176 (1984), 480{489.

[Ra85a] A. A. Razborov, Lower bounds for the monotone complexity of some Boolean

functions, in Russian, Dokl. Akad. Nauk SSSR 281 (1985), 798{801; English trans-

lation: Soviet Mathematics Doklady 31 (1985), 354{357.

[Ra85b] A. A. Razborov, A lower bound for the monotone network complexity of the log-

ical permanent, in Russian, Matematicheskie Zametki 37:6 (1985), 887{900; English

translation: Math. Notes of the Acad. of Sci. of the USSR 37, 485{493.

[Ra87] A. A. Razborov, Lower bounds on the size of bounded depth networks over a

complete basis with logical addition, in Russian, Matematicheskie Zametki 41:4 (1987),

598{607; English translation: Math. Notes of the Acad. of Sci. of the USSR 41:4

(1987), 333{338.

[Re72] E. Reingold, On the optimality of some set algorithms, J. ACM 19 (1972),

649{659.

[RV76] R. Rivest and S. Vuillemin, On recognizing graph properties from adjacency ma-

trices, Theor. Comp. Sci. 3 (1976), 371{384.

[Roi81] I. Roizen, On the average number of terminal nodes examined by alpha-beta,

UCLA Cognitive Systems Laboratory Technical Report (1981).

[Ro73] A. L. Rosenberg, On the time required to recognize properties of graphs: A prob-

lem, SIG ACT News 5 (1973), 15{16.

[Sa] M. Saks, Recognition problems for transitive relations, submitted for publication.

[SW86] M. Saks and A.Wigderson, Probabilistic boolean decision trees and the complexity

of evaluating game trees, Proc. 26th IEEE FOCS (1986), 29{38.

[SS78] N. Sauer and J. Spencer, Edge-disjoint replacement of graphs, J. of Combinatorial

Theory Ser. B 25 (1978), 295{302.

[Sav76] J. E. Savage, \The Complexity of Computing," Wiley, New York, 1976.

[Sh49] C.E. Shannon, The synthesis of two-terminal switching circuits, Bell Syst. Techn.

J. 28, 59{98.

[Sh87] M. Sharir, Almost linear upper bounds on the length of generalized Daven-

port-Schinzel sequences, Combinatorica 7 (1987), 131{143.

101

[Sh] J. B. Shearer, announced in [Ba86].

[STY85] P.J. Slater, S.K. Teo and H.P. Yap, Packing a tree with a graph of the same

size, J. Graph Theory 9 (1985), 213{216.

[Sm87] S. Smale, On the topology of algorithms I., J. Compl. 3 (1987), 81{89.

[Sm87] R. Smolensky, Algebraic methods in the theory of lower bound for Boolean circuit

complexity, Proc. 19th ACM STOC (1987), 77{82.

[Sn85] M. Snir, Lower bounds for probabilistic linear decision trees, Theor. Comp. Sci.

38 (1985), 69{82.

[Sp87] J. Spencer, \Ten lectures on the probabilistic method," SIAM, Philadelphia, 1987.

[SY] M. Steele and A. Yao, Lower bounds for algebraic decision trees, J. Algorithms 3

(1982), 1{8.

[Sz82] M. Szegedy, Personal communication.

[Sz74] E. Szemer�edi, On a problem by Davenport and Schinzel, Acta Arithmetica 15

(1974), 213{224.

[Ta83] M. Tarsi, Optimal search on some game trees, J. ACM 3 (1983), 389{396.

[TY87] S.K. Teo and H.P.Yap, Two theorems on packing of graphs, Europ. J. Combina-

torics 8 (1987), 199{207.

[Tho82] C. Thomassen, Graph decomposition with constraints on the connectivity and

minimum degree, Journal of Graph Theory 7 (1983), 165{167.

[Tu37] A. Turing, On computable numbers with an application to the entscheidungsprob-

lem, Proc. of the London Math. Soc. 42 (1936-7), 230{265.

[Ya77] A. Yao, Probabilistic computation: towards a uni�ed measure of complexity, Proc.

18th IEEE FOCS (1977), 222-227.

[Ya79] A. Yao, Some complexity questions related to distributed computations, Proc. 11th

ACM STOC (1979), 209{213.

[Ya81] A. Yao, A lower bound to �nding convex hulls, J. ACM 28 (1981), 780{789.

[Y82] A. Yao, Theory and applications of trapdoor functions, Proc. 23the IEEE FOCS

(1982), 80{91.

[Ya83] A. C. Yao, Lower bounds by probabilistic arguments, Proc. 24th IEEE FOCS

(1983), 420{428.

[Ya85] A. C. Yao, Separating the polynomial-time hierarchy by oracles, Proc. 26th IEEE

FOCS (1985), 1{10.

[Y87] A. Yao, Lower bounds to randomized algorithms for graph properties, Proc. 28th

IEEE FOCS (1987), 393-400.

102

[Y88] A. Yao, Monotone bipartite graph properties are evasive, SIAM J. Comput. 17

(1988), 517{520.

[We87] I. Wegener, On the complexity of branching programs and decision trees for clique

functions, TAPSOFT'87, Vol. 1., Lecture Notes in Computer Science, 249, Springer,

Berlin - New York, 1987, 1{12.

[Wi86] A. Wiernik, Planar realizations of Nonlinear Davenport-Schinzel sequences by

segments, to appear in Discret and Comput. Geom., Procedings, 27th IEEE Found.

of Comput. Sci. (1986), 97-106.

[Wi] A. Wigderson, unpublished.

[Z�a84] S. Z�ak, An exponential lower bound for one-time-only branching programs, Proc.

Conf. on Mathematical Foundations of Computer Science, Springer Lecture Notes in

Computer Science 176 (1984), 562-566.

103

