COMPLEXITY OF GRAPH PROBLEMS

BY

PETER HAJNAL

BOLYAI INSTITUTE, SZEGED, HUNGARY

JANUARY, 1992

ACKNOWLEDGEMENT

[am grateful to my advisors, Janos Simon and L&szlé Babai. They have provided en-
couragement and support, and their insights throughout this research have been invaluable.
It has been a real pleasure to work with them.

Two chapters of this thesis would not have been possible without collaboration with
Endre Szemerédi. He has been a great and generous collaborator, and deserves very special
thanks for sharing his research.

I owe particular gratitude to Ld&szlé Lovéasz, my former teacher at the University
of Szeged, Hungary, who directed my interest to combinatorics and algorithms. His time
spent on suggesting and discussing problems with me outside class have helped enormously
in starting my own research career.

I should like to thank Howard Karloff and Gyorgy Turan for listening to my blurbs,
giving many suggestions and helping to clarify ideas in various sections of the dissertation.

[am grateful to fellow graduate student Marié Szegedy for his untiring interest in my
work and for his selfless help in many details.

Last but not least, I wish to thank the University of Chicago and professors Robert
Soare and Mike O’Donnell in particular for the opportunity to work here and the active
scholarly atmosphere in the Department under their direction.

This research was supported in part by the National Science Foundation under Grant
number NSF 5-27561.

i

TABLE OF CONTEST

ACKNOWLEDGEMENT ... e e e e ii

AB S T R AC T o e e \
Chapter

L INTRODUCGTION .. e e 1

1. Tasks, models, complexitiesoouiiiiiniii it 1

2. A brief descriptions of our models 2

3. Outline of our resultso i e 3

4. Graph theoretical notation, terminology 5

I1. LOWER BOUNDS FOR RANDOMIZED DECISION TREES 8

1. DecCiSion tTees . ..ottt e 8

2. Previous techniqueso 17

3. Using duality: packing ... e 21

4. Surgery on the maximal degree 24

5. The improved packing theorem for bipartite graphs 26

6. The improved reduction from general to bipartite graphs 31

7. Allowing two-sided errorouuiiiit e e 33

III. A LOWER BOUND FOR READ-ONCE-ONLY BRANCHING PROGRAMS

1. Branching programsc..eieiiiiiiiii i 35
2. Read-once-only branching programs: the result 38
3. Space-complexity: the eraser RAM ...t 43
IV. BROOKS COLORING IN PARALLELo i 45
1. Models for parallel computation i 45
2. Parallel coloring algorithms 47
3. Outline of the algorithm 49
4. The alternating paths o1

il

5. ConClusiOn e 55
V. A FAST PARALLEL ALGORITHM ON DENSE GRAPHS 56
1. The Hamilton cycle problem 56
2. The outline of the algorithm i 57
3. S0cial paths ..o e o8
4. Introverted pathso i e 59
9. The general case ... i 60
6. Conclusion and open problems ...ttt 63
VI. GEOMETRY, GRAPHS AND COMPLEXITY 66
1. Unit-distances between vertices of a convex polygon 66
2. Unit-distances and excluded configurations in matrices 69
3. A reduction between matrices 71
4. Matrices with nlogn complexity o i 75
5. A construction with %;fogg% DS e 76
6. More matrices with linear complexity L. 7
7. A covering lemma 78
8. Davenport-Schinzel matriceso, 81
9. Upper bound on Davenport-Schinzel matrices 84
10. Conclusions and open problems i 86
VII. PARTITION OF GRAPHS ... e 89
L. Introduction e 89
2. Estimating the function f(s,t) 89
3. Estimating the function g(s,€)ooiiiiiiii i 92
REFERENCES .. e e 94

v

ABSTRACT

We present complexity analysises of graph theoretic problems. We shall seek lower
and upper bounds on various complexity measures of classes of graph problems.

We study several models of computation. A decision tree is a scheme of computing
a boolean function by asking the values of its variables. The choice of question can only
depend on the information gained so far plus, in the randomized model, on the outcome
of coin-tosses. A function is said to be ‘hard’ if in the worst case we are forced to ask at
least a positive constant fraction of the variables.

Branching programs are a generalization of decision trees. Roughly speaking we al-
low two branches in the tree to merge. In the model we consider we make the additional
assumption that the program is allowed to query each variable at most once along any com-
putation path. A function is said to be ‘hard’ in this model if we cannot save considerable
amount of work compared to the decision trees.

A parallel random access machine is set of random access machines communicating
through a shared memory. A problem is said to be ‘easy’ in this model if it is solvable on
a parallel random access machine in time polynomial in the log of the input size and using
a polynomial number of processors.

Lower bounds are the subject of the second and third chapters. In the second chapter
we prove that non-trivial, monotone graph properties require many questions in the ran-
domized decision tree model. The third chapter exhibits a polytime computable function
that is hard in the read-once-only branching program model. In the next two chapters we
present fast parallel algorithms for Brooks coloring graphs and for finding a Hamiltonian
cycle in graphs that are guaranteed to have one by Dirac’s theorem. These algorithms
show that these problems are easy on the parallel random access model.

In the last two chapters we consider some related questions in discrete geometry and
extremal theory of graphs. We investigate how many vertex pair can be unit distance
apart among the vertices of a convex n-gon. Finally we give some algorithms for finding a
vertex partition with constrains on the connectivity and minimal degree of a given graphs.

1. INTRODUCTION

1. Tasks, models, complexities

The Theory of Computing investigates the intrinsic complexity of various classes of
computational tasks on abstract models of computation.

What is a computational task? It is defined by a function from the set of possible
inputs to the set of possible outputs. The inputs and outputs can usually be encoded as
(0,1)-sequences. Thus, the computational task is a function from (0, 1)-strings to (0, 1)-
strings. If the range of this function is simply { 0,1}, i.e. the output or answer is ‘no’ or
‘ves’, then we have a decision problem.

The other component of the computational problem is the ‘machine’. We need an
abstract device and a set of instructions we are allowed to use in order to solve the task.
Digital computers are physical devices for solving problems. There are several known the-
oretical models that are idealized versions of digital computers. Some of the most often
used ones are: random access machine (RAM), Turing machine, boolean formula, boolean
circuit, algebraic circuit, communication protocol, branching program, decision tree, paral-
lel RAM (PRAM), systolic array [AHU74], [Tu37], [Sh49], [Ma74], [Ya79], [Bor77], [Co85],
[Go77], [FWT8], [HB84], etc.

The definition of machine usually indicates the definition of the ‘algorithm’. The
algorithm, vaguely, is a ‘recipe’, a set of instructions. Given an input ((0,1)-string) we
can execute the instructions and reach the output. The problem is to design an algorithm
which computes the given function.

In order to compare different algorithms we need a notion of complexity or a cost mea-
sure for algorithms. In order to define the costs we consider the resources available for the
computation. Some of the most commonly considered resources are: time, space, number
of queries, number of arithmetic operations, number of random bits used, number of paral-
lel processors, chip area, depth and size of boolean circuits. In each model of computation,
we specify one or more of those resources which we shall take into account when calculating
the cost of a computation. Let, informally, ¢(z) denote the complexity of the computation
on input z. In most of this work we shall be concerned with ‘worst case’ complexity, i.e.
for given n, we shall try to estimate the quantity f(n) = max{c(z) | z € {0,1}"}.

We should point out that the same computational task raises different computational
problems depending on the model.

Determining the complexity of a problem has two sides.

First, we would like to exhibit an efficient algorithm, i.e. write a fast program, design
a small circuit, etc. for the problem. This requires insight into the nature of the specific
problem. One can interpret this part as giving an upper bound on the complexity.

Second, we want to prove that there is no algorithm with smaller complexity. Usually
the second part is much harder than the first. It requires insight into the nature of com-
putation itself. One has to find obstructions that prevent any algorithm from violating
the lower bound. While the number of efficient algorithms published during the last few
decades is tremendous, the area of lower bounds has produced far fewer impressive results.
Lower bounds on general models of computation are virtually non-existent. For example,
in the case of circuits the best known lower bound on the number of gates is 3n (n is the
number of variables) for any explicit function [B184], whereas the conjectured lower bound
for a large class of practical problems is exponential. It seems that proving any non-linear
lower bound, for boolean circuit size is beyond current techniques. In practice what hap-
pens is that we restrict our model. In restricted models, like constant depth circuits or
monotone circuits, powerful lower bound techniques are available.

The objective of this thesis is to contribute to both areas, the area of proving lower
bounds and that of exhibiting efficient algorithms.

2. A brief description of our models

In this section we give a brief description of the models we work with. The exact
definitions will be given in the subsequent chapters.

One model we use is the decision tree model. A decision tree evaluates a boolean
function by asking questions of the form ‘What is the value of variable x;?’. The choice
of question may depend only on the information gained so far, and in the randomized
model, on the outcome of random coin-tosses. The cost is the number of queries; we
ignore computation cost. (Imagine that evaluating a variable requires a costly experiment.)
Most previous work in this model was on deterministic computation. While many lower
bounds were found for specific problems, like ‘to be Hamiltonian’, ‘having k-coloring’, etc.
([Bo77], [BE78]) much effort has been devoted to giving lower bounds not just for specific
computational tasks, but to proving a uniform lower bound for a large class of problems.
One class of particular interest is graph properties. In this case the variables correspond
to pairs of nodes (the value of a variable tells us whether or not that pair is adjacent in
the input graph) and the output depends only on the isomorphism class of the graph. For
non-trivial, monotone graph properties it is known that the complexity is Q(v?) [RV76].

2

We shall consider the randomized model. This means that the solver (the algorithm)
can use coin flips before deciding the next question. We are looking for uniform lower
bounds for all non-trivial, monotone graph properties. In the deterministic case the com-
plexity is known up to a constant factor. Thus one can view our question as investigating
how much can be gained by randomization in this particular model, an instance of a
more general problem that has attracted considerable interest in a number of models of
computation [Ad78], [Ya82], [AWS85], [AKSz87], etc.

The second model of computation we examine is branching programs. Branching
programs are a generalization of decision trees. Roughly speaking, we allow two branches
in the tree to merge. The cost of a branching program is the number of nodes in it. A
read-once-only branching program is allowed to test each variable at most once along any
computation path.

Lower bounds on the read-once-only branching programs easily imply space lower
bounds on a restricted RAM model which we call eraser RAM. This is a RAM with a
special read-only input tape. Once an input cell has been read, it is erased.

Our algorithmic results concern efficient parallel computation. We use the PRAM
model. In this model we have several processors working simultaneously, communicating
through a shared memory. The cost of the computation has two components. One is the
number of processors, the other is time. A parallel algorithm is considered efficient if it
uses polynomially many processors and its time complexity is polylogarithmic in the size
of the input; in this case we say that our algorithm is an NC' algorithm. In the last few
years many authors have considered the additional objective of minimizing the number of
processors used.

3. Outline of our results

In the second chapter we give an Q(v%) lower bound on the randomized decision tree
complexity for all non-trivial, monotone graph properties. This improves A. Yao’s and V.
King’s previous bounds. The proof follows Yao’s approach and improves it in a direction
different from King’s. At the heart of the proof is a duality argument combined with a
new packing lemma for bipartite graphs.

In the third chapter we give a C™ lower bound for read-once-only branching programs
computing an explicit Boolean function, for some absolute constant C' > 1. For n = (g),
the function computes the parity of the number of triangles in a graph on v vertices. This
improves previous exp(cy/n) lower bounds for other graph functions by Wegener and Zak.
The result implies a linear lower bound for the space complexity of this Boolean function

on eraser machines.

A theorem of Brooks guarantees that one can properly color a graph of maximum
degree D > 3 with D colors if the graph doesn’t contain a complete subgraph on D + 1
vertices. In the fourth chapter we prove that finding a Brooks coloring is in NC, i.e. we
can construct a coloring guaranteed to exist by Brooks’ theorem in polylog parallel time,
using a polynomial number of processors.

In graph theory several sufficient conditions are known for existence of a Hamiltonian
cycle. One of the classical ones is Dirac’s condition, which can be stated as follows. If the
minimal degree of a simple graph is at least § where v is the number of nodes then it has a
Hamiltonian cycle. The known proofs provide a polynomial time sequential algorithm. In
the fifth chapter we give an NC algorithm for finding a Hamiltonian cycle in such graphs.
Our algorithm uses a linear number of processors (therefore, apart from a polylogarithmic
factor, is optimal).

In the sixth chapter we investigate how many vertex pair can be unit distance apart
among the vertices of a convex n-gon. We give a construction of a convex n-gon determining
%n — 13 unit distances. The upper bound technique of Z. Fiiredi leads us to consider the
following question: We say that a matrix M = (m;;) does have the configuration C' if one
can find u TOWS 91,99, ...,%,%1 < -+ < 1y and v columns ji, j2, ..., Jv, J1 < -+ < Jo in M
such that the corresponding submatrix contains C, i.e. m;, j, = 1 whenever ¢, g = 1. Let
f(n,m;C) denote the maximum number of 1’s in an n X m matrix M not containing C.

We determine this threshold function for several configurations.

In the final chapter we prove that there exists a number f(s,?) such that every f(s,t)-
connected graph G admits a proper partition { S, 7T} of the vertex-set V(G) so that the
induced subgraphs G(S) and G(T') are s-connected and t-connected, respectively.

4. Graph theoretical notation, terminology

We mostly use the standard notation of graph theory (cf. [Lo79], [Be73]).

A graph G consists of a finite set of vertices or nodes V(G) (or simply V') and a finite
set of edges E(G) (or E). An edge is a pair of nodes. Let e = (x,y) be an edge. We think
of e as joining x and y, and we say x and y are adjacent. We call x and y the endvertices
or endnodes of e. (Note: it is common to allow E to be a multiset and to have singletons,
so called loops. Throughout this thesis we do not use this general notion.) Let us denote

the set of all the 2(3) possible graphs on the vertex set V.= {1,...,v} by G,. Two graphs
G and H € G, are called isomorphic if there exists a permutation o of V.={1,2,...,v}
such that G = H?, where H? = (V,{(27,y?)|(z,y) € E }). Isomorphic graphs look the
same but in G, one can distinguish them by using the ‘names’ of the vertices.

We need some other graph universes. A directed graph is a set of vertices V and a
set of ordered pairs of nodes E, called edges or arcs. For e = (z,y) an edge, z is called
the tail of e and y is called the head of e. Again we don’t allow multiplicities and loops.
(In this case the same pair of nodes can be connected by two edges but they must have
opposite orientation.) Let D, be the set of all the 2v(v=1) directed graphs on the vertex
set V={1,...,0}.

We shall also consider the subclass of directed graphs called oriented graphs. A di-
rected graph is an oriented graph if no two edges connect the same pair of nodes. These
graphs are exactly the directed graphs which can be obtained by orienting the edges of
some undirected graph.

An important class of undirected graphs is the class of bipartite graphs. A graph
G is bipartite with bipartition (U, W) if its vertex set can be partitioned into two sets
U,W in such a way that each edge of G joins one vertex from U to a vertex of V. We
refer to U and V' as color classes. Let B, , be the set of all the 2“* bipartite graphs on
UuwW ={1,...,u}U{l,...,w}. (Keep in mind that V is the disjoint union of U and
W, in notation: V = UUW.)

A directed bipartite graph with bipartition (U, W) is a directed graph (UUW, E) where
EC(UxW)J(W xU). Let DB, be the set of all 4“* directed bipartite graphs on the
bipartition (U ={1,...,u}, W ={1,...,@0}).

For Gy, By v, etc. our definitions fix the vertex set. Sometimes to avoid confusion,
when we work with two graphs from the same universe we distinguish the two vertex sets
by using primes in one case.

Let us consider some special graphs. A v-node graph which has all the (;) possible

5

edges is called complete graph and denoted by K,. If we want to emphasize the vertex set
of the complete graph then we write Ky . The empty graph, E, or Ey is a graph with
empty edge set. A complete bipartite graph has all the uw edges between U and W. It
is denoted by K, ., or Ky w. If we take an orientation of the complete bipartite graph
such that the tail of each directed edge is in the same color class than we call it a one-way
complete bipartite graph.

Some more notation.

G' = (V',E') is a subgraph of G = (V,E) it V! C V, E' C E and each element of
E' joins two vertices from V'. G’ = (V', E’) is the subgraph of G induced by V' if it is a
subgraph and E’ has all the edges of G connecting nodes from V’. In this case we use the
notation G' = G|V'.

If we have a 1 — 1 function f defined on the vertex set of G then the image of G will
be Gf = (fF(V(G)),{ (f(x), f(¥)|(z,y) € E(G)}). If f is only a partial function on V(G)
then it is defined only on a subset of the nodes. For the other nodes we extend it as the
identity map and G will be defined according to this.

The disjoint union of G and H is GUH = (V(G)UV (H), E(G)UE(H)).

Let G be a graph and let H be one of its subgraphs. Then G — H = (V(G), E(G) —

The complement of G is GG, a graph on the same vertex set having all the pairs of
nodes as edges which are not in G, i.e. Ky (g) — G-

Let dg(x) be the degree of a node x, i.e. the number of edges incident on z. If from
the context it is clear what the underlying graph G is then we shall omit the subscript.
Let D(G) be the maximal degree of G. Let 6(G) be the minimal degree of G. Let d(G) be
the average degree of G, i.e. d(G) = 1> | d(z) = 2¢ (where e is the number of edges in
G). Ds(@),0s(G) and ds(G) denote the maximum, minimum and average degrees, resp.,
over S C V(G). (Here degrees are meant relative to G and not to the induced subgraph
G|S.)

The set of nodes adjacent to z is the neighborhood of x and it is denoted by Ng(x).
If from the context it is clear that we work with G then we omit the subscript.

A subgraph P of G is a path it P = ({z1,...,2x},{(z1,22),..., (Tk—1,2k) }),
for some set {x1,...,zr} of k distinct vertices.. A subgraph C of G is a cycle if
C = ({z1,...,zx },{(2x1,22),..., (Tg—1, %), (T, x1) }), for some set {zq,...,x%} of k
distinct vertices. If a path or cycle goes through all the nodes (i.e. its vertex set is V(G))
then it is called a Hamiltonian path or cycle, respectively. If a graph has a Hamilton cycle
it is called Hamiltonian.

By coloring a graph G with colors {1,2,...,1} we mean a function c¢: V' — {1,...,1}.
A coloring is proper if for each edge the colors of the endnodes are different.

A set of edges is independent if no two edges from the set share an endpoint. A set
of independent edges is called a matching. A matching M is a perfect matching if the

6

endvertices of the edges in M cover the whole vertex set. A perfect matching defines a
pairing of the vertex set.

Finally we define some specific graph properties.

A vertex v is a sink in an oriented graph G if it is connected to all other nodes and
each edge incident to it is directed toward wv.

A graph G is called a scorpion graph if it contains a vertex adjacent to all but one of
the vertices, and the one to which it is not adjacent has degree 1 and its single neighbor
has degree 2.

The thesis is divided into chapters having sections. If we refer to a theorem then
we use the numbering of chapters and theorems (this includes the section number too) to
identify it, e.g., theorem I1.2.9. If we omit the number of the chapter then the reference
in question is in the same chapter.

2. LOWER BOUNDS FOR RANDOMIZED DECISION TREES

1. Decision trees

Decision trees are a computational model for boolean functions.

Definition 1.1. A decision tree is a rooted binary tree with labels on each node and edge.
Each inner node is labeled by a variable symbol. This label represents a query for the value
of the corresponding variable. One of the two edges leaving the node is labeled 0, the other
is labeled 1. The two labels represent the two possible answers. The two subtrees at a
node describe how the algorithm proceeds after receiving the corresponding answer. Each
leaf is labeled 0 or 1. These labels give the output, i.e. the value of the function.

Clearly, each truth-assignment to the variables determines a unique path, the com-
putation path, from the root to a leaf of the tree. The boolean function computed by the
given decision tree takes the label at this leaf as the value on the given input.

Definition 1.2. Let cost(A, z) be the number of queries asked when the decision tree A
is executed on input x. This is the length of the computation path forced by x.

max, cost(A, z) is the worst case complexity of A, i.e. the depth of the tree.

The decision tree complezity of a boolean function f is C(f) = min 4 max, cost(A, =), where
the first minimum is taken over all decision trees A computing the function f.

It is obvious that the complexity of any function f is at most the number of its
variables.

Definition 1.3. A function f of n variables is evasive if C(f) = n.
(Sometimes this property is referred to as elusive or exhaustive.)

The first step toward understanding decision trees might be to consider specific func-
tions and to determine their decision tree complexities. Much effort has been spent in this
direction ([Bo77], [BE78|, [BBL74], [HR72|, [Kir74], [MW74], [MWT76]).

It is somewhat surprising that most boolean functions require querying all the variables
in the worst case [RV76].

Theorem 1.4. (R.L. Rivest and S. Vuillemin [RV76]) As n — oo, almost all boolean
functions of n varitables are evasive.

This result gives us hope that one might find uniform lower bounds for a broad class
of boolean functions.

Definition 1.5. For a class of boolean functions F let C(F) = mingcxC(f).

Let us mention some classes in the literature.

A boolean function is monotone if changing the value of a variable from 0 to 1 cannot
change the value of the function from 1 to 0.

A boolean function is non-trivial if it is not constant.

We can identify graphs in G, with (0, 1)-strings of length (12’) Graph properties are
boolean functions f : G, — {0,1} taking equal values on isomorphic graphs. Let GP,
denote the set of graph properties over G,.

Along the same lines one can define digraph properties, bipartite graph properties and
directed bipartite graph properties and identify them with classes of boolean functions. Let
us denote the corresponding sets of properties (over a given size of universe) by DP,,, BPy,
and DBP,, . So we can talk about C(GP,), C(DP,), C(BP,) and C(DBP,).

The case of oriented graphs is somewhat different. The number of oriented graphs

on v vertices is 3(5) But we can talk about solving oriented graph properties in the

decision tree model by slightly modifying the model. Each query { z,y } has three possible

outcomes (no edge; edge (x,y); edge (y,x)). So in the tree describing the decision process,

each inner node has three children. We refer to this as the ternary decision tree model.
First let us see some linear lower bounds.

Theorem 1.6. (B. Bollobds and S.E. Eldridge [BE78]) For any monotone, non-trivial
oriented graph property P in the ternary model,

C(P) > 2v — |logyv| — 2.

Theorem 1.7. (B. Bollobds and S.E. Eldridge [BET78|) For any non-trivial graph property
P
C(P) = Q(v).

Both bounds are tight (the second only up to a constant factor). For Theorem 1.6
this is shown by the property ‘having a sink’ [BE78]. For Theorem 1.7 this is shown by
the property ‘being a scorpion graph’ [BBL74].

We are especially interested in classes of boolean functions where we can’t save more
than a constant factor compared to n = (12’) Aanderaa proposed the class of non-trivial
graph properties. Rosenberg was the first one to realize the falsity of this conjecture. He
added the condition of monotonicity [Ro73]. That form of the conjecture is referred to as
the Aanderaa—Rosenberg conjecture.

The tightness of Theorem 1.6 and Theorem 1.7 shows that omitting the monotonicity
requirement or allowing oriented graphs creates totally different situations.

The first step toward confirming the conjecture was made by D. Kirkpatrick who
proved the following lower bound.

Theorem 1.8. (D. Kirkpatrick [Kir74]) For any non-trivial, monotone graph property P,
C(P) = Q(vlogw).

The Aanderaa—Rosenberg conjecture was subsequently settled by Rivest and
Vuillemin.

Theorem 1.9. (R.L. Rivest and S. Vuillemin [RV76]) For any non-trivial, monotone
graph property P,

,02

C(P)>—.
(P) = 16

Refining their method D.J. Kleitman and D.J. Kwiatkowski improved the constant of
the lower bound.

Theorem 1.10. (D.J. Kleitman and D.J. Kwiatkowski [KK80]) For any non-trivial,
monotone graph property P,

,02

C(P) > 9

In fact, no non-trivial, monotone graph property is known which would not require
n = (12’) questions in the worst case. The proof method of Rivest and Vuillemin defines a
class of evasive functions. Instead of graph properties they considered boolean functions
with ‘high symmetry’. Let us consider the group of all permutations of the variables of a
given boolean function. Let us consider the subgroup of it which consists of permutations
o of the variables such that f(z) = f(z?), where z7 is the permuted order of the variables.
If this permutation group is transitive, i.e. every variable can be carried to every other by
some element of this group, than the function is called transitive.

Theorem 1.11. (R.L. Rivest and S. Vuillemin [RV76]) Every boolean function f of n
variables such that f is transitive, n is a prime power and f(0) # f(1), is evasive.

In ligth of this theorem there is a natural question: can we get rid of the disturbing
assumption that n is a prime power? The answer is no; a counterexample was given by Illies
[1178]. But nobody knows what happens if we have, instead, a monotonicity assumption.

Conjecture 1.12. FEvery transitive, non-trivial and monotone boolean function is evasive.
The special case of this conjecture for graph and digraph properties is also open.
Conjecture 1.13. Any non-trivial, monotone graph or digraph property is evasive.

Let us realize that Theorem 1.11 of Rivest and Vuillemine doesn’t settle this question
even for special values of v. (12’) won’t be a prime power except for v = 2 or 3.

There are strong partial results for graph properties. The following results are based
on a topological method of Kahn, Saks and Sturtevant [KSS84].

Theorem 1.14. (J. Kahn, M. Saks and D. Sturtevant [KSS84]) Any non-trivial, monotone
property of graphs and digraphs with a prime power number of vertices is evasive.

Theorem 1.15. (A. Yao [Ya88|) Any non-trivial, monotone bipartite graph property is
evasive.

V. King considered the case of directed bipartite graphs. She noted that we cannot
expect evasiveness because we can express properties depending only on edges starting in
one fixed color class. She obtained an evasiveness result by adding an extra condition to
exclude this possibility.

10

Theorem 1.16. (V. King [Ki88|) Any non-trivial, monotone, directed bipartite graph
property s evasive, assuming that one color class has prime power size and of the two
one-way complete graphs either neither or both have the property.

Some of the results above give lower bounds only for special sizes of the vertex set. In
order to get general lower bounds we need some kind of reductions between different sizes.

Theorem 1.17. (D.J. Kleitman and D.J. Kwiatkowski [KK80])
C(gpv) > min{C(ng_l), Q(v - q) } ’

. . v
where q 1s the prime power nearest to 3.

Theorem 1.18. (V. King [Ki88])

C(DP,) > min{C(DPy_1),q(v —q) },

v

where q 1s the smallest prime power greater than 3

When we apply these results we lose a constant factor.

Theorem 1.19. (Kahn, Saks and Sturtevant [KSS84]) For any non-trivial, monotone

graph property P,
2

C(P) > T + o(v?).

Theorem 1.20. (V. King [Ki88]) For any non-trivial, monotone digraph property P,

C(P) > 5 + o(v?).

These are the best known general lower bounds for non-trivial, monotone graph and
digraph properties.

In the manner common in complexity theory one can introduce decision trees using ex-
tra power like nondeterminism, randomization, alternation (see [MT85], [MHS85b], [Sn85],
[Ya77])

Definition 1.21. A nondeterministic decision tree is a rooted tree. Each of its inner
nodes is labeled by a variable. This label represents a query. Each edge leaving the node
is labeled 0 or 1. The subtrees which can be reached from a given node by an edge labeled
0 are the possible continuations of the algorithm after getting answer 0. The role of the
edges labeled by 1 is symmetric. During the execution of the algorithm the next step will
be chosen nondeterministically.

The definition above describes the notion of a nondeterministic decision tree and
its execution on an input. But this execution is nondeterministic. So what function is
computed by this tree? We say that an input is accepted if there exists a computation
path leading to an accepting leaf.

11

Definition 1.22. The nondeterministic decision tree complexity of a boolean function f is

the minimum depth of the nondeterministic decision trees computing f. This complexity
is denoted by CNP(f).

Definition 1.23. A randomized decision tree is a rooted tree. Each of its inner nodes
is labeled a variable, i.e. by a query. The edges leaving a node are labeled 0 or 1. The
subtrees which can be reached from a given node by an edge labeled 0 are the possible
continuations of the algorithm after receiving answer 0. The role of the edges labeled 1 is
symmetric. During the execution of the algorithm the next step will be chosen randomly.

An alternative definition might be the following. Let us say that the random choice
is based on coin tossing. If one fixes the outcome of the coin tosses than we have a
deterministic computation. In this way we can describe the probabilistic decision tree as
a probability distribution on the set of deterministic trees.

Again we face the question: how to define that a randomized decision tree computes
a function?

There are many different ways to answer this questions. We use the simplest conven-
tion when we require that the algorithm always give the correct answer. Using the second
formalization of the randomized decision tree, it computes a function f iff the distribution
is non-zero only on deterministic trees computing f.

Definition 1.24. Let {A;,..., Ay} be the set of all the deterministic decision trees
computing the function f. Let R = {p1,...,pn } be a randomized decision tree computing
f, where p; is the probability of A;.

The cost of R on input z is cost(R,z) = >, picost(A;, z).

The randomized decision tree complexity of a function f is

ch(f) = II%%H max cost(R, x),

where the minimum is taken over all randomized decision trees computing the function f.

There are alternative definitions in which we allow errors. We obtain different models,
depending on what kind of errors we allow (1-way or 2-way).

Definition 1.25. Let {Ay,..., Ax } be the set of all the deterministic decision trees
(not necessarily computing a given function f). Let R = {p1,...,pn } be a probability
distribution on deterministic decision trees, where p; is the probability of A;.

R is A-tolerant for f if ZAZ- doesn’t output f(z) on z Pi < A, for all possible inputs .

The cost of R on input « is cost(R,z) = >, picost(A;, z).

The 2-way error randomized decision tree complexity of a function f with error A is

Ci2(f) = H%%Il max cost(R, x),

where the minimum is taken over all A-tolerant randomized decision trees computing the
function f.

Let CE2(f) = CR2(f).

3

The constant % doesn’t have an important role. If we neglect constants in the com-

plexity than we can substitute it with anything less than %

12

The possible algorithms can output anything. The mistake can be either way. This
fact is indicated by the superscript 2. If our randomized algorithm is restricted to produce
deterministic trees where the mistake occurs in only one direction (it might output 0 instead
of the real value 1 but not the other way around) then it is called 1-way error computation
(the corresponding complexity measure is denoted by CFl). For further information we
refer the reader to A. Yao’s [Ya77| and Noam Nisan’s papers [Ni].

The main question is this: how much can we save by adding the extra power of
randomization? We mention some basic inequalities.

Theorem 1.26. (M. Blum [BI87]) For any boolean function f

C(f) <cNP(f)y <ch(f) <cf).

Using the CEL(f), resp. CE2(f) notation for the randomized complexity of f allowing
1-way and 2-way errors, resp. (see [Ni] for details) Noam Nisan obtained the following
results.

Theorem 1.27. (Noam Nisan [Ni|) For any boolean function f
(i) \J1e(f) < CRY(H),
(i1) L/CCF) < c2(f).
These theorems give a lower bound for the power of randomization. We refer to them

as the basic bounds.
On the other side there are several known examples where randomization does help.

Example 1.28. (M. Saks and A. Wigderson [SW86]) Consider the digraph property ‘every
vertex has an incoming arc’.
Deterministically, this is an evasive property, so its deterministic complexity is v(v—1).
Let us examine the following randomized algorithm. It considers each vertex one at
a time in random order and it scans the possible incoming edges into that vertex until it
finds one or realizes that there aren’t any. It is easy to see that the complexity of this

v(v+1)
2

algorithm is at most . So randomization can save a constant factor.

Example 1.29. (M. Saks and A. Wigderson [SW86]) Let f be the following boolean
function on n = 2% variables. First let us build a binary tree based on these variables as
leaves. Plug a NAND gate into each inner node. The circuit that we get in this way will
compute f.

It is not hard to see that the deterministic complexity of this function is n (theorem
1.11).

The following randomized algorithm gives an upper bound on the randomized com-
plexity of f. Choose a child of the root at random and evaluate its subtree recursively. If
it evaluates to 0, then the value of f is 1. Otherwise recursively evaluate the other child
of the root.

The complexity of this algorithm is O(As it turns out this is exactly the
randomized complexity of f. For more details see [SW86].

n.753...).

R. Boppana exhibited another example of a function where randomized and deter-
ministic complexities differ in the exponent [Bo].
It is conjectured that the examples above are the best possible up to a constant factor.

13

Conjecture 1.30. (attributed to R.M. Karp by [SW86]) For any non-trivial, monotone
graph property P
CH(P) = Q(C(P)) = Q(v?).

Conjecture 1.31. (M. Saks and A. Wigderson [SW86]) For any boolean function f

CR(f) _ Q(C(f)0753)

Only in the case of graph properties are there results better than the basic inequalities
known (theorem 1.26). (In this case we know that the deterministic complexity is of the
order of v2. Blum’s bound shows that the randomized complexity of any graph property
is at least linear in v.)

Theorem 1.32. (A. Yao [Ya87]) For any non-trivial, monotone graph property P,

%v).

CR(P) = Q(vlog

Theorem 1.33. (V. King [Ki88]) For any non-trivial, monotone graph property P,

These results can be extended to the 2-way error version of randomized computation.
(See [Ya87] and [Ki88].)
The main result of this chapter is our improved lower bound for this problem.

Theorem 1.34. For any non-trivial, monotone graph property P,

Our method can be carried out for the 2-way error model.

Theorem 1.35. For any non-trivial, monotone graph property P,

).

wl

CR2(P) = Q(v

In the following few paragraphs we summarize the different modifications of decision
trees and other related models.

Gy. Turdn proposed the following generalized decision tree model for deciding graph
properties. The model is the same kind of binary tree except that the queries are more
general. Each inner node is labeled by a subset of the vertex set and the query asks
whether or not there exists at least one edge induced by these vertices. The cost, again, is
the number of queries in the worst case.

A. Hajnal, W. Maass and Gy. Turdn [HMT88] determined the complexity of a few
graph properties. In particular, they proved that the complexity of connectivity and
bipartiteness in this model is ©(n logn).

14

They have results on the oblivious versions of their decision trees.

There are many graph properties with unknown Turan-complexity, including ‘having
perfect matching’ and ‘having Hamiltonian cycle’. Nothing is known about the randomized
version of their model.

Going back to the computation of boolean functions one might ask the question (fol-
lowing the idea of [HMTS88]): what happens if in the tree at a given inner vertex we
evaluate functions other than the simplest, one-variable ones?

I don’t know any result on this direction. Some natural questions: In the Turan-model
our queries are a special kind of disjunctions of variables. What happens if we allow all the
disjunctions of variables (or negated variables) as questions? What happens if we allow
disjunctions of clauses each of which consist of a conjunction of two variables (or negated
variables) as queries.

Other questions arise if we enlarge the domain. So far we have been working with
boolean functions, where the variables have (0, 1) values.

If our variables have values from a linearly ordered set we get the well known com-
parison tree model. Of course changing the domain implies that we have a new type of
problem. The most traditional ones are: sorting, selection, and merging.

There are extensions where the domain is a partially ordered set. We mention a few
papers discussing these questions: [FT88al,[FT88b],[Pr87],[Sa].

We would like to point out one research project that was mentioned in [FT88a]. Let
us consider all possible partial orderings of {1,...,v}. We can define isomorphism of
partially ordered sets. We are interested in deciding properties of partially ordered sets
(preserved under isomorphism). The model is a ternary tree where at every node we ask a
question about two elements and the answer is their relation (i.e. <,> or incomparable).
Given a property of partially ordered sets how many queries do we need?

There are some known easy properties, where o(v?) questions suffice to decide. Such
problems include ‘having a unique maximal element’, ‘being a linear order’ and ‘having
bounded width’. Other properties, like ‘connectivity’, ‘bounded height’, ‘being a lattice’,
‘being an interval order’ are known to be hard in the sense that they require Q(v?) ques-
tions. What properties are evasive (i.e., require (;) questions in worst case) 7

If our domain is an algebraic structure like the real numbers, then there aer a lot
of possibilities to extend our model. We can query if a linear function of the variables
is positive, negative or zero [Gy81],[DM]. The output (the content of the leaves) can be
a number instead of a boolean value. Again the new domain puts forward several new
problems: knapsack, shortest path, element distinctness, convex hull.

We can further extend the set of possible queries. A. Yao considers quadratic decision
trees [Ya81]. In this model at every node we can compute a quadratic function of the

15

expressions computed already. A query is any expression computed already and the answer
is the comparison of its value and 0.

As an extension of A. Yao’s model we can allow computing bounded degree polyno-
mials at a given node [BO83|, [KS86].

S. Smale allows computing arbitrary rational expressions at a node. He gives [Sm87]
a lower bound on the total number of nodes (rather than the depth) on the problem of
simultaneous approximation of the roots of the input polynomial.

Decision trees have relations with other branches of computer science, in particular
with PRAM machines.

We can extend our decision model by allowing integer outputs instead of boolean
ones. This variation of our model can compute functions f : {0,1}" — N, like PRAM
machines. A PRAM machine is collection of RAM machines (see [AHU74]) communicating
through a common memory. There are several versions of this model depending on how we
resolve read and write conflicts. If we allow simultaneous read but we don’t allow different
computers to write into the same cell at the same time then we have the CREW PRAM
model. The following theorem shows that decision tree complexity and CREW PRAM
complexity are closely related.

Theorem 1.36. (Noam Nisan [Ni]) (i) Any function that can be computed by a CREW
PRAM in time t can be computed by a boolean decision tree of depth O(2?).

(ii) Any function that can be computed by a boolean decision tree of depth d can be computed
by a non-uniform CREW PRAM in O(logd) steps using O(2%) processors.

The connection between another version (namely CROW PRAM’s) of PRAM’s and
decision trees are also discussed in [Ni].

S. Cook, C. Dwork and R. Reischuk [CDR86] pointed out the connection between
CREW PRAM’s and the dependency of boolean function. D C {1,...,n}is a dependency
set for the function f :{0,1}" — N on input z € {0,1}" if f(z) = f(z’) for all 2’ that
agree with x on D. The dependency of f on input x is the minimum size of any dependency
set for f on x. The dependency of f is

max dependency of f on input x.
z€{0,1}"

Now it is not very surprising that dependency of a function is related to the decision
tree complexity.

Theorem 1.37. (M. Blum) Any function f : {0,1} — N can be computed by a boolean
decision tree of depth at most (dependency of f)2.

Another parameter, block sensitivity, and its connection to decision tree complexity
is discussed in [Ni].

16

Evaluation of game trees is an important problem in artificial intelligence. [SW86]
uses the technique developed for analyzing randomized decision trees for («,) pruning
procedure (see [KM75],[Pe80],[Pe82],[Roi81],[T]).

The organization of this chapter is as follows.

In the next section we give a detailed description of the previously used methods
for lower bounds on randomized decision tree complexity for non-trivial, monotone graph
properties.

In the third section we discuss the very important notion of duality. This notion
brings forward a purely graph theoretical question called the packing problem. We give a
short overview on the known graph theoretical results on this subject.

In section 4 we show how one can use Yao’s technique to get non-linear lower bounds.
In this section we obtain an Q(v%) lower bound for the bipartite graph properties.

In section 5 we improve the known packing theorems for bipartite graphs. The im-
proved theorem together with the previous proof scheme gives us the Q(vg) lower bound
for the bipartite case.

None of the known reductions is able to convert this result for the general case. In
section 6 we exhibit an improved reduction which finally gives the main result of the
chapter.

Finally, in section 7, we say a few words about the case of 2-way errors: our result
also hold in this model.

2. Previous techniques

In the previous section we described several graph properties using well-known notions
of graph theory. If we want to say something about all graph properties then it is better
to give a uniform way to describe a property. In the case of monotone graph properties
there is a convenient way to do that.

Definition 2.1. Let P be any monotone graph property. min(P) denotes the list of
minimal graphs having property P, i.e. G € min(P) iff G € P but for any proper subgraph
HofG H¢P.

It is clear that knowing min(P) is equivalent to knowing P.

In previous papers several methods were presented giving lower bounds for the random
complexity of properties. The lower bounds on C®(P) given by these methods depended
explicitly on min(P).

17

All the known lower bound methods based on a lemma of A. Yao. This lemma
transforms the lower bound problem on the randomized decision tree complexity into
another problem, where giving lower bounds is much more convenient.

Lemma 2.2. (A. Yao [Ya77]) Let d be a probability distribution on all the possible inputs
and let d(x) be the probability of input . (In the case of graph properties d describes a
random graph.) We define the average case performance of a deterministic decision tree
A computing f as av(A,d) =) d(z)cost(A,x).

Then for a boolean function f

R o .
C*H(f) = max min av(A, d),

where the minimum is taken over all the deterministic decision trees computing f.

CE(P) is defined as a minimum. The statement of the lemma is that C(P) is can
be written as a maximum. So lemma 2.2 is a so-called minimax theorem. In fact this is
basically equivalent to the famous minimax theorem of J. von Neumann [vN28] for game
theory.

The meaning of this lemma is that if one wants to give a lower bound for C®(P) then
there is an easy way to do it. Namely find a distribution which is concentrated on the
‘uniformly hard’ instances and for every deterministic algorithm find a lower bound on the
average cost over this distribution. The bound will be a lower bound on C%(P) too.

Now we give a list of the significant results on lower bound techniques for randomized
decision trees. We shall give a proof of Yao’s method since the result is very important for
our proof.

Remember that d(G) and D(G) were defined in section 1.4 as the average and max-
imum degree of G, respectively. If the average or maximum is taken over nodes coming
from a subset S of the vertex set then we indicate this by a subscript S.

Theorem 2.3. (A. Yao [Ya77]) (i) Let P € GP, and G € min(P) be any minimal graph
for P. Then

(i7) Let P € BP, . and G € min(P) be any minimal graph for P. Then
CH(P) = Qudy (Q@)).

Definition 2.4. Let £ be a list of graphs from B, ,,. For each G € L let us consider
the sequence of degrees in color class U. Let (di,ds,...,d,) be the sequence of degrees
in non-incresing order. If (dq,ds, ..., d,) is the lexicographically first sequence among the

ordered lists from elements of £, then we refer to G as the U -lexicographically first element
of L.

Theorem 2.5. (A. Yao [Ya87]) Let P € BP,,, and G € min(P) be the U -lexicographically
first graph of min(P). Then
Dy (G)

R —
CO=2G 6

18

Proof. (Sketch) Without loss of generality we can assume that Dy (G) > 100dy (G) since
otherwise theorem 1.26 would immediately give the result. The factor 100 is not crucial,
it makes things simpler so we can get a better insight into the proof.

In the first half of the proof we construct a distribution on B, 4.

The construction starts from the U-lexicographically first element G. Let zg € U the
node of maximal degree in U. Let z1, 23, ..., zx be the vertices of U with smallest degrees.
Let D = Dy(G) = d(z0), d; = d(z;), for 1 <i < % and d = dy(G). It is easy to see that
d; <2d< D, foralll <i< 7- Let IV; be the neighborhood of x;. We refer to Ny as the
big neighborhood and to N; (1 <4 < %) as small neighborhoods.

Let us define G’ the following way. We add some new edge to G, namely we connect
x; to all elements of Ny and N;41 (in the case i = 7 we connect Tw only to Np). If we
had already an edges between two nodes which we are supposed to join then we do not do
anything.

G’ has property P since it has G as a subgraph and G is a minimal graph for P.
Recognizing G as a subgraph was very easy. An important property of G’ is that it has
many other subgraph isomorphic to G. To see this, consider the permutation o; of the
vertex set of G': (xzo,z;,z;_1,...,21), i.e. a cyclic permutation on { g, z;,...,z; } and all
the other vertices are fixed. Then G7i is a subgraph of G’ for all 1 < ¢ < i (G is a
twisted copy of G.)

As an easy consequence of this property consider the following truncation of G’. Delete
4d edges starting at z; in parallel, for 0 < i < %. We have Ng'(z;) = No U N; U Niy1, so
Ngi(z;) is a union of two small sets and a big one. The only restriction on which edges
to delete is that we can’t delete edges connecting x; to the small neighborhoods. The set
of deleted edges starting at a given x; will be called a wedge. The deletion procedure is
not yet well-defined, we have many ways to execute it. Let H be any graph which can
be constructed as we described. The remark above shows that by putting back only one
wedge into H we get a graph that has property P. (If we put back the wedge of z; then
G proves this fact.)

On the other hand in H the degrees of all the x;’s are smaller than D. The fact that G
was the lexicographically first minimal graph shows that H can’t have any of the minimal
graphs of P as a subgraph. So H doesn’t have property P.

If we input H into any deterministic decision tree A computing P, then it must test
at least one edge from each wedge. So H is a ‘hard’ input. Let d is the distribution on
B, that is defined by the random graph space where the deletion procedure described
above is a random one (i.e. we have the uniform distribution over all possible H).

In the second half of the proof we show that every deterministic algorithm solving P
requires many questions in average, if the input has distribution d. Using lemma 2.2 we
shall obtain the statement of the theorem.

Actually we already have all the remarks that we need for the proof. Let us concentrate
on the neighborhood of one z; in input H (let us say that we fix the outside part of the
graph). This neighborhood is Ny U N; UN; 11 — R where R is defined by the deleted edges.
If we consider all possible inputs with the distribution d then R is a random subset of
No — (N; U Nj41). On the other hand the deterministic algorithm starts to scan the pair
of vertices in a deterministic order. The question is: when does this order hit first R? The

19

size of Ny — (N; UN;11) is about D, R is of size 4d. Tt is easy to compute that the expected

number of questions asked until we hit the random set R is @(%). Knowing this for %

nodes we easily get the result. |

Theorem 2.5 is very powerful. The only problem with it is that we can apply it only
for a very specific graph of the list min(P). We need a slight extension of this method. In
our extension we shall have some structural knowledge about the minimal graph which is
pointed out by the lemma.

Lemma 2.6. Let P € BP,, and let us assume that there is a graph in min(P) which
has at least 5 isolated nodes in U. Let G be the U-lexicographically first graph among the
graphs having at least 5 isolated nodes in U. Then
cr(p) = (20G)),
du (G)
Proof. The proof is a simple modification of the proof of theorem 2.5. In that proof we
chose the node of maximal degree from U and some other points of degree at most twice
the average degree. Now we do the same but we carefully leave 5 isolated nodes out of the
consideration. (This way we might loose a constant factor, but it will disappear within €2.)

The only point where we used that the graph G of theorem 2.5 is the lexicographically
first is when we showed that that none of the elements of our random graph space has
property P. We concluded this from the fact that these graphs do not have any subgraph
from min(P).

This is still true for the random graph space constructed from the new graph defined
in our lemma. For any element of min(P) having % isolated nodes this follows from the
fact that G was the U-lexicographically first among these kind of graphs. For the other

u

graphs it is true because they have less than 3 isolated nodes in U. i

V. King gave the following lower bound method.

Theorem 2.7. (V. King [Ki88]) (i) Let P € GP, and G € min(P) be any minimal graph
for P. Then

V(G
CR(P):Q((_| /()|)2),
d(G")D(G)
where G’ is the subgraph of G induced by the non-isolated nodes.
(i7) Let P € BP, . and G € min(P) be any minimal graph for P. Then

W
dy (G)Dy(G)" 7
where U’ is the subset of U of nodes with positive degree.

ct(P) = Q((

We note that in the previous claims about bipartite universe the roles of U and W
are exchangeable.

None of these methods works for every graph property, but for any property one of
them gives a good lower bound. Combining all of them one get a superlinear lower bound
for bipartite graphs. Unfortunately Yao’s method doesn’t seem to work on general graph
properties. This is the reason that the known lower bounds handle the bipartite properties
first.

20

Theorem 2.8. (V. King [Ki88]) The randomized decision tree complexity of any non-
trivial, monotone bipartite graph property P € BP,, , is Q(v%), i.e.,

CR(BP,.,) = Q).

In order to get a lower bound for general graph properties we need a reduction from
general graphs to bipartite graphs. The two strongest known reductions are due to V.
King.

Theorem 2.9. (V. King [Ki88|) For any q such that 1 < q < § and for any non-trivial,
monotone graph property P € P,

CR(P) = Q(min{ ﬁ, min CE(BP,_,.) }).

q q<r<3

Theorem 2.10. (V. King [Ki88]) The randomized decision tree complexity of any non-
trivial, monotone graph property P € P, is

ch(P) = Q(min{vg,CR(BP%%) })

3. Using duality: packing

A. Yao’s original paper [Ya87] had to treat specially the case when all the elements
of min(P) have small number of edges. V. King had problems with graphs with many
isolated nodes (because of lemma 2.7). In both cases the problem was solved using the
notion of duality.

Definition 3.1. G € P* iff G ¢ P. P* is the dual of the property P.

It is easy to check that if P is non-trivial, monotone graph property then so is P*.

Let P be the complement property of P, i.e. the property such that G € P iff G € P.
If we have a deterministic decision tree A for P then let A be the decision tree where at
each inner node the labels of the two edges leaving that node are exchanged. It is clear
that A4 computes P. If in addition we complement the label of each leaf then we get a
decision tree A* computing P*. This argument shows that there is an ‘nice’ 1 — 1 map

21

between decision trees computing P and P*. In particular we get that the deterministic
and randomized decision complexities of P and P* are the same.

In the proof we shall utilize our ability to choose between the properties P and P*,
each having the same complexity. In this section we investigate the dependence between
min(P) and min(P*). The dependence will be very useful for us because it gives guidance
in choosing the right list to work with.

Definition 3.2. (a) Let G,H € G,. Let us assume that G has vertex set V and H has
the vertex set V'. A packing is a bijection f : V' — V such that the edge set of G and Hf
are disjoint.

(b) Let G, H € B, . Let us assume that G has color classes U and W and H has color
classes U’ and W'. A bipartite packing is a bijection f that maps U’ to U and W' to W
such that the edge set of G and H/ are disjoint.

The following lemma shows the importance of packing.

Lemma 3.3. ([Ya2]) (i) If P € Py, G € min(P) and H € min(P*) then G and H cannot
be packed.

(i7) If P € BPyw, G € min(P) and H € min(P*) then G and H cannot be packed as a
bipartite graphs.

Packing graphs is a heavily studied subject in graph theory. A good survey of this
research can be found in [Bo78|. Bellow, we summarize the known results on packing.

Much effort has been spent for packing sparse graphs [SS78], [TY87], [BS77], [BS78|,
[HHS81], [STY85], [FRSS81]. An typical theorem from this area is:

Theorem 3.4. (N. Sauer and J. Spencer [SS78]) If |E(G)|, |E(H)| < v—2 (where |V (G)| =
|V(H)| =wv) then G and H can be packed.

One can extend packing to packing several graphs. We just refer the reader to [GyL].
We mention a nice conjecture from this paper.

Conjecture 3.5. (A. Gyérfas and J. Lehel [GyL]) Let Ty be any tree with vertex set of
sizek (k=1,...,n). Then there is a packing of T, Ts, ..., T}, into the complete graph on
n vertices.

The following few theorems give sufficient conditions on the number of edges for the
existence of a packing.

Theorem 3.6. (B. Bollobés and S.E. Eldridge [BE78]) If |E(G)| + |E(H)| < |3(v—1)]
(where |V (G)| = |V (H)| = v) then there is a packing of G and H.

For improvements (but still with a linear upper bound in the condition on the sum of
the number of edges) see [BETS].

Theorem 3.7. (B. Bollobds and S.E. Eldridge [BE78])
(i) If G,H € G, and |E(G)||E(H)| < (3) then G and H can be packed.

22

(ii) If G,H € By, and |[E(G)||E(H)| < uw, then G and H can be packed as bipartite
graphs.

Theorem 3.8. (B. Bollobas and S.E. Eldridge [BE78]) (i) If G, H € G,, |E(H)| < 5 and
|E(G)| < 1—151)% then G- and H can be packed.

(i)If G,H € By, |[E(H)| < % and |E(G)| < 1—15u% then G and H can be packed as
bipartite graphs.

For us the most important sufficient conditions will be the following ones on the
maximal degrees.

Theorem 3.9. (Conditions on the maximal degree [SS78],[Ca74]) (i) If G,H € G, and
D(G)D(H) < % then G and H can be packed.

(i7) If A, B € By and Dy(A)Dw (B) 4+ Dw (A)Dy(B) < u, then A and B can be packed
as bipartite graphs.

In the last two statements the bounds in the conditions are tight (up to negligible
factors). For theorem 3.9.(ii) (the bipartite case) this can be easily shown using the proba-
bilistic method in [SS78]. For theorem 3.9.(i) there is an easy construction [BE78] showing
that one cannot improve the condition with more than a factor 2. This example suggests
the following conjecture.

Conjecture 3.10. (B. Bollobés and S.E. Eldridge [BET78|) Let G and H be two graph on
a vertex set of size v. If (D(G) + 1)(D(H)+ 1) < v+ 1 then there is a packing of G and
H.

Our proof will heavily use the conditions of theorem 3.9. So any strengthening of the
results might be valuable for us. Unfortunately, even if conjecture 3.10 were to be proven,
as we will see the constant improvement would disappear in the 2. Instead, we extend
these results, proving the following improved packing theorem for bipartite graphs, which
is very helpful.

Theorem 3.11. Let G,H € G, ,,. Assume that
(a) u < w < 2u,

(b) du/(G)Dw (H) < 155,

(¢) dy(H)Dw(G) < 155,

(d) Dy(G), Dy (H) < 15557050

Then G and H can be packed.

We will prove this theorem in section 5.

The following remark is an example of the power of these theorems.

If our goal is to prove a lower bound not better than v? than we can assume that
min(P) contains only graphs with at least % edges. This follows from theorem 3.8 and
theorem 2.3.

23

JFrom the packing property one can get the following useful information for bipartite
property P € BP,,: at least one of min(P) and min(P*) contains a graph where the
class U has at least § nodes of positive degree.

The packing property does not give all the dependences between the two minimal lists.
Actually min(P*) is the set of minimal graphs which can’t be packed with any element of
min(P). The maximality gives us further information about the lists.

Lemma 3.6. Let P € Py ,,. Then min(P) or min(P*) has a graph G such that it has at
least & isolated nodes in U.

Proof. G = K%,WUE% € By,w is a graph with § isolated nodes in U and with all
the possible edges among the other nodes. If G € P then the statement is clearly true.
Otherwise G = G € P* and again the statement is clearly true. |

4. Surgery on the maximal degree

For simplicity, in this section we restrict ourselves to the bipartite universe where the
two color classes have the same cardinality. (Only this case is needed for the proof of
theorem 1.33.) In this case d(G) = dy(G) = dw (G).

The basic idea of this section is the following. Let us fix a bipartite property P. Let us
consider min(P). If we have a graph of high average degree in min(P) then we get a good
lower bound by theorem 2.3. If theorem 2.5 points out a graph from min(P) such that its
average degree is low and its maximal degree in the corresponding color class is high then
Yao’s technique gives us a good bound. In some sense we can interpret these statements
as follows: if we cannot get a good lower bound on C(P) by these two techniques then we
have an upper bound on the maximal degree in one of the color classes of a special graph
from min(P). Let us assume that this happens to both min(P) and min(P*). Now we
are left with two graphs. We have bounds on the maximal degree in some color classes.
That gives us the possibility to force a contradiction using packing theorems. The first
step in this program is to choose graphs to which we can apply Yao’s method.

Definition 4.1. Let P € P, , and let, as before, U and W be the two color classes in this
universe. Assume that min(P) has some graphs with at least § isolated nodes in U.

(a) Let G be the U-lexicographically first among the graphs from min(P) having at least
5 isolated nodes in U.

(b) Let H be the W'-lexicographically first element of min(P*). To avoid confusion, we

24

shall think of the vertex set of H as being disjoint from U UW and denote the color classes
of H by U" and W',

We would like to use G and H in the strategy described above. We have an upper
bound on the maximal degrees in their color classes. In order to apply Catlin’s packing
theorem (theorem 3.9.(ii)), we need bounds on the maximal degree in all other color classes.
We proceed as follows. We start to build a packing between G and H. This partial packing
leaves us with some leftover, unpacked nodes. These nodes define a new packing problem
which, in some sense, is independent from the original one. At the same time we will have
a more complete knowledge about the maximal degrees in the color classes. Eventually
this will yield the desired contradiction.

Definition 4.2. (Prepacking) We are going to define sets Uy C U, Wy C W, Uj C U’ and
Wi c W' (|Uy| = |U}|, |Wo| = |W{|) and a packing between the corresponding induced
subgraphs of G and H.

(a) Let Uy be the set of § isolated nodes in G.

(b) Let W{ be the set of min{ SE?H)’ 5 } nodes of lowest degree in H.

(¢) Let U} be the neighborhood of W} and plus as many of the highest degree nodes from
U’ as needed in order to get a set of size §. (We will see that the size of the neighborhood
of Wy is at most %.)

(d) Let Wy be the set of min{ SE?H)’ 5 } nodes in W of highest degree in G.

Let Gy and Hy be the subgraphs of G and H induced by the sets defined above. Note that
Gy is empty. Let Uy, Wy, U] and W] the leftover parts of the corresponding vertex sets.
Let G1 and H; be the subgraphs induced by these leftover sets.

Any pair of bijections U] — Uy and W{§ — Wy gives a packing of Gy and Hy. Choose
arbitrarily one of these, and call it prepacking.

Lemma 4.3. (i) If G1 and H;y can be packed then the packing and the prepacking together
yield a total packing.
(ii) Do, (G1) < Dy (G).
(iti) Dw; (Hy) < Dw(H).
(iv) Dy (Hy) < 4d(H).
(v) Dw, (G1) < 8d(G)d(H).
Proof (i) There are no edges in G between Uy and W7 and in H between W and Uj.
Thus we won’t have any conflict putting together the two packings.
(ii) and (iii) are obvious because G is a subgraph of G and H; is a subgraph of H.
(iv) U} = U" = Uj. We are going to show that the neighborhood of Wy has at most §
nodes. This implies that Uy has the 7 highest degrees in U’. The claim about the size of
the neighborhood of W, is clear because all degrees in W, are not greater then 2d(H).
(v) If the statement were not true then the contribution of the edges having an end-
point in Wy to the total number of edges in G would be greater than |W|d(G). |

Theorem 4.4. The randomized decision tree complexity of any non-trivial monotone bi-
. . 5 .
partite graph property P € BP,, ,, is Q(u1), i.e.,

CR(BP,.) = Quf).

25

Proof Let us fix an arbitrary P € BP,, . Let G € min(P) and H € min(P*) be the
two graphs defined in definition 4.1.

Case 1. d(G) or d(H) is at least 1—10u%.

In this case theorem 2.3 gives the lower bound.

Case 2. Dy(G) or Dy (H) is at least 1—10u% and case 1 does not hold.

Without loss of generality we can assume that Dy (G) is at least 1—10u%. Because of
the choice of G we can apply Yao’s method and we get the lower bound
Dy (G)

Q() w).

We know that d(G) is at most 1—10u%. Thus we get the desired lower bound.

Case 3. None of the previous cases holds.

Let G1 and H; be the graphs defined in definition 4.2. It is easy to check that the
condition of theorem 3.9.(ii) is satisfied. So G and H; can be packed. Using lemma 4.3.(i)
we get that G and H can also be packed, which is a contradiction. [

5. The improved packing theorem for bipartite graphs

In the previous section we used Catlin’s simple packing theorem for bipartite graphs.
In this section we improve this result and derive an improved lower bound on our problem,
too.

First, we review Catlin’s idea. Given G, H € G, ,, with color classes U, W and U’, W',
resp. We want to find a sufficient condition for existence a packing. We take an arbitrary
bijection f : U’ — U. Define a bipartite graph between W and W’ based on whether
two nodes can be identified or not. Now the problem is simply finding a matching in this
auxiliary graph.

Definition 5.1. Let G, H € G, ,,. Let U, W, U’ and W’ be the corresponding color classes.
Given f, a bijection U" — U, we define a bipartite graph By with color classes W and W'.
We make z € W and y € W' adjacent iff z and y can be identified, i.e., the neighborhoods
of # in G and of y in H7 are disjoint subsets of V.

Now it is easy to show that if G and H satisfy the condition of Theorem 3.9.(ii) then
for any bijection f By satisfies the condition of Konig’s theorem (see e.g. [Lo79], Chap. 7,
prob. 4.) and therefore possesses a perfect matching along which we can map W' to W
to obtain a packing. It is worth to state this fact as a separate lemma. Remember that
d(G) is the minimal degree of G and dg(G) is the minimal degree among nodes from S
(see section 1.4.).

26

Lemma 5.2. (i) Let G € By . If 0u(G), 0w (G) > § then G has a perfect matching.
(17) Let G € By . If 6u(G) + 6w (G) > u then G has a perfect matching.

The condition in theorem 3.9.(ii) restricts the product of the maximum degrees of G
and H. Our improvement comes from relaxing one of the terms to average degree.

Theorem 5.3. Let G, H € G, .. Assume that
(a) u < w < 2u,

(b) du/(G)Dw (H) < 155,

(¢) Ay (H) Dy (G) < 13,

(¢) Du(G), Dy (H) < T5551587 -

Then G and H can be packed.

The proof of this result is probabilistic. The probabilistic method for proving existence
of a combinatorial object was introduced by P. Erdés [Erd7]. Since then it has been a very
useful tool in combinatorics [ES74], [Sp87], [Bo85], etc. The basic idea of this method
that if a property has positive probability then at least one element of the probabilistic
space must have that property. In our case the goal is to show that there exists a bijection
f: U — U’ such that By has a perfect matching. We are going to show that for a random
bijection this is true.

Let {dy,...,d,} be all the degrees in U, and let {ej,...,e, } be all the degrees in
U'.

Lemma 5.4. Let f: U — U’ be a random bijection, all bijections being equally likely.

Prob(By has perfect matching) > 1 — w Prob(z d; > %) —w Prob(z e; > %),
i€ER i€s

where S is a random subset of U’ of size Dw (G), all such subsets being equally likely, and
R is a random subset of U of size Dy (G), all such subsets being equally likely.

Proof. We are interested in the event
E = By has a perfect matching .

By lemma 5.2 the following event is a subset of E.
F = Each node of By has degree at least %
One elementary bad event is
F, = x has degree in By less then % (for z € WUW').

Using this notation
EDOF= Q- UmEWUW’Fm-

27

Thus

For x € W, F, is exactly the event that the image f(N(z)) of N(z) (f(N(x)) C U’)

has a neighborhood in W' of size more than % . The event that the sum of the degrees in

f(N(x)) is at least ¥ is a superset of F,. If z € W then f(N(x)) is a random set of size
|N(x)| and its size is at most Dy (G). This completes the proof.

Our conditions on G and H are symmetric. So it is enough to show that

Prob(Zd > 2w

R is a random subset of U’. There are different models for random sets. In our case
R is a random set of a given size. Another model is that each element of our universe will
be in the set with a given probability. This model is more convenient. It is well-known in
the theory of random graphs [Bo85] that by choosing the right parameters the two models
yield basically the same theorems. So our next step is to change to the second model. For
this we need some inequality for Bernoulli random variables.

Lemma 5.5. (Chernoff [Ch52|) Let X, Xo, ..., Xn be independent 0-1 random variables
such that Prob(X; = 1) =p. If m > Np is an integer then

N m
Prob(X;>m) < <_p> exp(m — Np).
= m

An easy consequence of this is the following.

Lemma 5.6. ([ES74], [AVT79]) Let X1, Xg,..., Xn be independent 0-1 random variables
such that Prob(X; = 1) = p. Then for every 0 < p <1,
(

(i) Prob(XN X; < |(1— B)Np)) < exp (—ﬂ—;vl’) .
(ii) Prob(So;L, X; < [(1+ B)Np)) < exp (—~£52).
And now let us see the reduction.

Lemma 5.7. Let Xy, ..., X, be independent random variables such that Prob(X; = d;) =
P> 2DWT(G) and Prob(X; =0) =1 —p. Let A be a random subset of {1,2,...,u} of size
Dw (G). Then

w — w
P?“OIJ(EZA d; > 5) <2 Prob(ilei > 5)
(3 =

Proof. Let A; be arandom subset of { 1,2,...,u } of size i, all i-subsets of { 1,2, ..., u }
being equally likely. Let P; = Prob(ZJGA d >) Then Py < P < ...< P,.

28

Then

U w u U —
PmME:ﬁ&&@:>5):§:deJPW1—PV “Py

u k —_ p\u—k
ZPLéupJZL%anSkSL%WJ <k>p e

1 1
25 3up) Z 3FDw (@)
1 w
= 5Prob('z d; > 5)
tEA

So at this point using the notation of the previous lemma we should give an upper
bound on Prob(}.; ; X; > ¥).

Let us fix the value of p to be IODWT(G). Notice that the conditions of theorem 5.3
imply ¥ > E}. Xi) = >, IODWT(G)di = 10Dy (G)dy. So we need an upper bound
on the probability of that a sum of independent random variables is much greater than
their expected sum. Chernoff bound is that kind of result but it is about Bernoulli random
variables. We use the method of the proof of Chernoft’s theorem to get the desired upper
bound. For that we need the notion of characteristic function.

Definition 5.8. Let X be a random variable. Its characteristic function is etX

variable depending on the real parameter .

, a random

The following lemma shows an important property of the characteristic function.

Lemma 5.9. Let Xq,..., Xy be independent random variables. Then
N N
E(J[e™*) =[] E(™).
i=1 i=1

Now we have everything in order to prove the last lemma that we need.
Lemma 5.10. Let 0 < dy,ds,...,d, < L = m be integers and define d by Yo di =
du. Let X1, Xo, ..., X, be independent random variables such that Prob(X; =d;) = p and
Prob(X; =0) =1 —p. Then Prob(> ;. ; X; > 10pdu) < 5.
Proof. For all positive ¢

PTOb(Z X'L > 1OPEU) = PTOb(e(Zi Xi)t > elOpEut)'
i

29

Let us compute E(ezi Xity,
E(e > X) HGX) HE Xit)
—H L—p+pe®t) = [[(1 - p(1 - e%)).

{2

An easy calculation shows that this product is maximal if all d;’s are 0 or L, the maximal
value of them. So

B(e2 i) < (1= p(1 — e2) % < (1= p(1 = (1+2L)) % < (1+2pLt) ¥ < et
assuming that Lt < 1.
Using Markov’s inequality
= Xt 10pdut e2rdut —8pdut
Prob(z X; > 10pdu) = Prob(el«i > e) < m =e .

Fixing the value of t to be % our bounds are still true and we obtain the desired upper
bound. |

We obtain the promised packing theorem (theorem 5.3) as corollary.

Proof of Theorem 5.3. Applying lemma 5.10, lemma 5.7 and lemma 5.4 we obtain
that for a random f with positive probability By has a perfect matching. This proves
that there exists a concrete bijection f such that for the corresponding By has a perfect
matching. This perfect matching is an identification of W and W', which together with f
gives us a packing. |

The improved packing theorem yields the following improved lower bound on the
randomized complexity of bipartite graph properties.

Corollary 5.11. The randomized decision tree complexity of any non-trivial monotone
. . . 4 .
bipartite graph property P € BP,, , is Q(u3), i.e.,

ol

CR(BP,u) = Q(u?).

Proof. Let P € BP, , be an arbitrary graph property. Let G and H be the graphs
defined in definition 4.1. We are going to consider three cases.

Case 1. d(G) or d(H) is at least 100u3

Applying theorem 2.3 we get the lower bound

Case 2. Dy (G) or Dy (H) is at least mus and case 1 does not hold.

Because of the choice of G we can apply Yao’s method and we get the lower bound
Q(D(_iU(—g);)u). In this case we know that d(G) is at most mus These imply the lower
bound.

Case 3. None of the previous cases holds.

30

Let us consider GG; and H;, the graphs defined in definition 4.2. It is easy to check
that the conditions of the new packing theorem (theorem 5.3) are satisfied. So G and H;
can be packed. This leads to a contradiction that proves our theorem. [

6. The improved reduction from general to bipartite graphs

Given a graph property P one can construct other graph properties, that are useful
for proving lower bounds on the complexity of P.

Let P € P, be a non-trivial, monotone graph property, viewed as a set of graphs with
vertex set V. Divide V into equal parts V = UUW, where |U| = |W|= %

Definition 6.1. Assume that KyUEw ¢ P and Ky — Ky € P. Let Pe BP%,% be the

following property. G € P iff adding all the possible edges between the nodes of U to G
gives us a graph having property P.

Definition 6.2. Let P € P,. Let us assume that Ky — Ky ¢ P. Let P e Pz be the

following property. G € Piff adding ¢ new nodes and all the possible edges incident to a
new node to G gives us a graph having property P.

Considering these problems helps us because of lemma 6.3 below. Basically it says
that it is enough to give a lower bound on the constructed property. In the case when the
first definition might be applied the advantage is obvious, since we get a reduction to the
bipartite case.

Lemma 6.3. Let P € P, be an arbitrary non-trivial graph property. Let us assume that
P and P are the properties defined in 6.1 and 6.2. Then the following are true.

(i) P is a non-trivial, monotone bipartite graph property.

(ii) CE(P) > CR(P).

(iii) Pisa non-trivial, monotone graph property.

(iv) CR(P) > CR(P). |

Another advantage is that we might have "nice” critical graphs for the constructed
property. This way it is easier to handle a lower bound on that property.

Lemma 6.4. Let P € P, be a graph property and P be the property defined in 6.2. Let
G € min(P). Then there is an H € min(P) such that the following are true.

(i) D(H) < 44(G).
(ii) H has at least

d(G) 1solated nodes.

Proof. Let V' be the vertex set of G, (|V| =v). Let us take any subset Vj of V of size
5. Then the subgraph of G' induced by Vi, G|Vp has the property P. Thus min(P) has

31

an element that is a subgraph of G|Vj. So it is enough to show that for an appropriate set
Vo, G|Vp has the properties (i) and (ii).
v ._v
27 10d(@G)
of minimum degree in G. Throw away that point and its neighborhood. Choose the node
of minimum degree in the remaining graph and continue this procedure. The set that we
shall get will be an independent set and its neighborhood will have size less than 7. Let
us refer to this independent set as A. Let us extend N(A) to a set of size § by adding
some nodes of largest degree. Notice that we add at least 7 new nodes. Let B be the set
obtained after this extension of N(A). Let Vy be the complement of B. Let us remark
that A C Vo.

It is easy to see that V defined above is a good set. (i) follows from the fact that B
has the set of nodes of the greatest ¥ degrees. (ii) is true because A C V5. |

Choose min } nodes by the following greedy algorithm. Choose the node

Now we are ready to prove the improved reduction to the bipartite case.

Theorem 6.5. The randomized decision tree complexity of any non-trivial, monotone
graph property P € P, 1is
CR(P) = Q(min{v%,cR(g, g) }).
Proof Let P € P,, be arbitrary graph property. We consider two cases.
Case 1. KsUEs ¢ P and K, — Ky € P.

Then CE(P) > CR(P) > (CR(3, 3)).

Case 2. Case 1. does not hold.

Without loss of generality we assume that K, — Kz ¢ P. (This must hold for P or
P*.)

Let us consider P. For any G € min(P) construct an H € min(P) guaranteed to
exist by lemma 6.4. Choose any F' € min(P*). We know that F and H have no packing.
Start a prepacking the following way. Pack all the nodes of the top 103”((;) degrees of F
into isolated nodes of H. Let the unpacked nodes span the graphs F; and H;.

It is easy to see that F} and H; can’t have a packing. F} has maximal degree at most
10d(G)d(F). From 6.4 H; has maximal degree at most 4d(G).

We finish the proof by considering the following two subcases.

Subcase 1. d(F) > 1—1011% or d(G) > 1—1011%.

Then lemma 2.3 gives us that CE(P) > CE(P) = Q(v*).

Subcase 2. The hypothesis of subcase 1 is not satisfied.

Then Catlin’s theorem (theorem 3.9.(ii)) gives us a contradiction. ||

Combining Corollary 5.10. and Theorem 6.5 we get the following improved lower
bound on general graph properties.

Theorem 6.6. The mndomized decision tree complexity of any non-trivial, monotone
graph property P € P, is Q(v3), i.e.,

7. Allowing two-sided error

In this section we consider how one can extend our result to the case when we allow
two sided errors. Recall that C§?(P) denotes the randomized decision tree complexity of
property P when two-sided error is allowed (see definition 1.25). Remember that the coin
tossing can result in an arbitrary decision tree. (Each tree has an associated probability.)
Computing a function means that for each input the probability of error is small.

Again the basic questions and methods were described in [Ya77]. In the errorless
case the proof started by a saddle-point transformation (see lemma 2.2). The important
observation is that that transformation can be carried out in the 2-sided error case too.

Lemma 7.1. Let d be a probability distribution on all the possible inputs and let d(z) be
the probability of input x. (In the case of graph properties d describes a random graph.)
We say that a deterministic decision tree A computes f with error A over the input

distribution d if 3 4 outputs fw) on z (L) <A
We define the average case performance of a deterministic decision tree A over an

input distribution d as av(A,d) =) d(z)cost(A, z).

Then for a boolean function f

—

CE2(f) > = maxmin av(A, d),
Ao(f) = 5 dX i ()
where the minimum s taken over all the deterministic decision trees computing f with
error 2.

Again the lemma suggests a proof scheme for giving lower bound on C#2(f) as follows.
We define a ‘hard’ input distribution and prove that any algorithm that computes f for
the majority of the inputs must ask many queries.

It is clear that if we have theorem 2.5 and lemma 2.6 for the two sided case that by
plugging them into the rest of the proof we obtain the same lower bound. So the crucial
question is what can we substitute for these theorems in the more general model. In
this section we sketch the proof of the fact that theorem 2.5 and lemma 2.6 remain true
even in the 2-sided error model. We follow the proof given in section 2 and explain what
modification we need. We assume familiarity with the proof of theorem 2.5.

Let A be any 2-sided error algorithm computing a monotone, non-trivial bipartite
graph property P. Repeating the algorithm several times and finally outputting the ma-
jority of the outputs we obtain a 1—10—tolerant algorithm. The price of this is a constant
factor in the complexity of the tree.

33

As lemma 7.1 suggest, first we define a distribution d on the bipartite graph universe.
The definition of the distribution of the possible inputs is based on the same observation
as in the original proof. Take the lexicographically first element from the list of minimal
graphs for P. By adding edges to it we obtain G’. By deleting enough edges we obtain
a graph not having property P (this is the point where we use the fact that G is the
lexicographically first graph). Let Gg4e; be the set of graphs which can be constructed this
way. By putting back one ‘wedge’ we obtain a graph having the property P. Let Guq4
be the set of graphs which can be obtained this way. Our distribution is zero outside
Gaet U Gadd, prob(G € Gae) = prob(G € Gaaa) = 3 and the elements in Gge are equally
probable and so are the elements of G,q44.

The final step in the proof is to prove that any algorithm A which is correct most of
the time when the inputs have the distribution just described must ask many queries. In
order to see this we concentrate on the neighborhood of a given z; node. For this reason we
fix which edge set to delete from the neighborhood of x;, where ¢ # j. Restricting the edges
not adjacent to x; defines a unique element of G,44. For most of the possible restrictions
A works correctly on this graph. We consider only these kinds of restrictions. After fixing
the outside part let us take a look at the neighborhood of x;. This neighborhood is (using
the notation of the proof for theorem 2.5) Ny U N; U N;,1 — R, where R is a set of size 4d
or R is an empty set. To show that algorithm A4 asks many questions we must see that
for most of the possible neighborhoods it outputs the right answer on the corresponding
input. This can be easily shown by throwing away a constant fraction of restrictions. For
the remaining ones now an easy calculation gives us the analysis that we need: even if R
doesn’t run over all possible subsets but only over a constant fraction then the average
time that a fixed order of Ny — (IN; U N;41) hits R is still @(%). That completes the proof
of the 2-sided version of theorem 2.5.

With the same technique we obtain the 2-sided error version of lemma 2.6. That gives
that our lower bound stands even when we allow 2-sided errors.

7.2 Theorem. For any non-trivial, monotone graph property P

ct(p) > cBY(pP) > c®? = Q(v5).

34

3. A LOWER BOUND FOR READ-ONCE-ONLY BRANCHING PROGRAMS

1. Branching programs

Branching programs are a model generalizing decision trees.

Definition 1.1. A branching program is a directed acyclic graph. To avoid confusion we
will use the terms nodes and arcs to refer to the elements of this digraph. (We will use
branching programs to do computation on graphs; these graphs (input objects) will have
vertices and edges.)

One of the nodes of the branching program is a source (has fan-in zero) and is called
START; other nodes are sinks (fan-out zero) and are called terminal nodes. All non-
terminal nodes have fan-out two. The two arcs leaving a non-terminal node are labeled 0
and 1. Each non-terminal node is labeled by an input variable and each terminal node is
labeled 0 or 1.

Each input string @ = aj...a,, € {0,1}" defines a unique path from START to
a terminal node: the computation path determined by «. This path, after entering a
nonterminal node labeled x;, proceeds along the arc labeled «;. The path ends at a
terminal node. The function f computed by this branching program is defined by setting
f(a) equal to the label of this terminal node.

The size of a branching program is the number of nodes. The length is the maximum
length of the computation paths. The multiplicity of reading is the maximum number of
times any particular variable is encountered as a node label along any computation path.
In the case when the program is leveled, i.e. START is on level one and arcs only go from
each level to the next level, we can introduce another complexity measure: the width of
the program is the maximum number of nodes on any level.

An easy counting argument shows that most Boolean functions require exponential
size branching programs. It is desirable to find nontrivial lower bounds for explicit Boolean
functions (functions that belong to P or at least to NP).

The only known lower bound for the size of an unrestricted branching program com-
puting an explicit Boolean function is due to Neciporuk [Ne66], [Sav76] and is Q(n?/log® n).

35

P. Beame and S. Cook observed [BC85] that Neciporuk’s technique actually applies to the
“element distinctness” problem in the following sense. Let x1,...,x,, be m integers be-
tween 1 and m?2. Written in binary, they form the input string of length n = 2m logm.
Any branching program deciding whether or not all the z; are distinct must have size

Q(m?) = Q(n?/log®n).

Another approach that has recently gained popularity is proving lower bounds for
branching programs with bounds on various “resources” (width, multiplicity of reading).
A similar approach to Boolean circuits has been quite successful recently [Ya85], [An85],
[Ra85al, [Ra85b], [Ha86], [AB87], [Be86], [Ra87], [Sm87].

Our aim is to present a result of this kind.

Bounded width branching programs were introduced by Borodin, Dolev, Fich and
Paul [BDFP83]. Their main result, completed by Yao [Ya83] , is a superpolynomial lower
bound for width-2 branching programs computing the majority function. Shearer [Sh]
recently proved an exponential lower bound for width-2 branching programs computing
the “0 mod 3” function. These functions are symmetric (invariant under permutations
of the variables). Interest in such functions was in part motivated by the conjecture
stated in [BDFP83] that any bounded width branching program computing the majority
function would require exponential size. This conjecture has been proved false by David
Barrington’s surprising result [Ba86] that the class of Boolean functions computed by
polynomial size, width-5 branching programs coincides with nonuniform NC? (log-depth,
fan-in 2 Boolean circuits) and thus contains all symmetric functions. This may be part of
the reason why it is so difficult to find even nonlinear lower bounds for bounded width
branching programs for symmetric functions.

The first such lower bound was derived using a beautiful Ramsey argument by Chan-
dra, Furst, and Lipton [CFL83]| for the function >_) ; #; = n/2. Unfortunately, as it is
often the case with Ramsey arguments, the bound is barely nonlinear: it is Q(nw(n))
where w(n) is the inverse function of the van der Waerden numbers (see [GRS80]).

A more effective lower bound was obtained by P. Pudldk [Pu84]. Using a different
Ramsey argument, he proves €2(nloglogn/logloglogn) lower bounds for threshold func-
tions and separates (by the same amount) the power of width £ and width £+ 1 branching
programs for each k. He also proves a nonlinear lower bound under no width constraint for
the majority function as well as an Q(nloglogn/logloglogn) lower bound for bounded
width branching programs for all but a bounded number of symmetric Boolean functions.

The result of Babai, Pudldk, Rédl and Szemerédi [BPRSz] gives more effective,
Q(nlogn/loglogn) and 2(nlogn) lower bound for bounded and unbounded width resp.
branching programs computing any member of a large class of symmetric Boolean func-
tions.

N. Alon and W. Maass [AMS86] using similar techniques obtain similar results.

36

A read-k-times-only branching program is allowed to encounter each variable at most
k times along any computation path. This hierarchy of classes of branching programs was
introduced by Masek [Mas76]. Wegener [We84] conjectures an exponential gap between the
levels of this hierarchy and gives candidate Boolean functions computable with polynomial
size read-k-times-only programs but conjectured to require exponential size read (k — 1)-
times-only programs.

No superpolynomial lower bounds are known, however, even for read-twice-only
branching programs computing an explicit Boolean function, and no such bound will ap-
pear in this paper.

In connection with the history of read-once-only branching programs, we should men-
tion a paper by Fortune, Hopcroft and Schmidt [FHS77]. In the context of program
schemes, they gave an exp(cy/n) lower bound for computing an explicit function by read-
once-only branching programs satisfying the additional restriction that the variables have
to be examined in precisely the same order along each computation path. Without this
restriction, however, their function is computable by a read-once-only branching program
of polynomial size and is indeed defined by such a program.

Wegener [We84], Zak [Z484] and Dunne [Du85] independently prove an exp(cy/n)
lower bound for read-once-only branching programs computing certain, clique related graph
properties. Wegener’s property is N P-complete (presence of a clique of size v/2 where v is
the number of vertices), Zék’s is polynomial time decidable (recognizing the graphs that
consist of a clique of size v/2 and v/2 isolated vertices.) We shall improve the lower bound
to C™ (for a different function, also a polynomial time decidable graph property) (section 2
and 3).

Let n = (3) and z € {0,1}" representing a graph G(z). Let f,(z) denote the number
of triangles in G(x) modulo 2.

Theorem 1.1. There exists a positive constant o such that every read-once-only branching
program computing f, has size at least 24™.

This result was obtained with co-authors and it appeared in [ABHKPRSzT86] and
[BHST87].

Since then K. Kriegel and S. Waack [KW86] and M. Krause [Kr86] have obtained
exponential lower bounds for different functions. For M. Kriegel and S. Waack’s function
the lower bound remains true even in a more general model. Their restriction on the
branching program is that each computation path has length at most n. Krause [Kr88]
and S.P. Jukna [Ju87] also relax the restriction on the branching program and obtain an
exponential lower bound. Still, no nontrivial lower bound is known in the case of read-
twice-only branching programs

The organization of the chapter is as follows.

The proof our main theorem will be presented in the next section. In the third
section we discuss the relation between branching programs and space complexity. Our
lower bound on read-once-only branching programs implies a lower bound on the space

37

complexity of the same function on a restricted Turing machine.

2. Read-once-only branching programs: the result

First we fix some notation.

We shall use the term “edge” to mean any of the (g) pairs of vertices. (These are the
edges of the complete graph K,.) Let P be a path in a branching program. We shall say
that an arc of P labeled 1 from a node labeled x. has the effect of accepting the edge e; the
arc labeled 0 from the same node rejects e. The edges accepted by P form the graph A(P),
the rejected edges form the graph R(P). The union of these two edge sets constitutes the
set D(P) of edges determined by P. The depth of a node is its distance from START.

The strategy of our proof is the following.

Assume f,, is computed by a read-once-only branching program of size less than 2°"
for some appropriately selected small positive constant . From this assumption we shall
derive

(1) the existence of a node w in the program, two paths Py and Py both leading
from START to w, and an edge e not determined by either P;, such that the parity of the
number of triangles containing e in the graph A(P;) Ue is i.

The read-once-only property implies that after w, the program follows the same path
of computation for input graphs A(Fp) U e and A(P1) U e and thus leads to the same
terminal node. This means these two graphs have the same number of triangles mod 2;
the same observations hold for A(F) and A(P;). This contradicts the choice of the P; and
e.

We proceed to showing how w, e, Py, and P; satisfying (1) are found.

Proposition 2.1. Let P be a path from START to a terminal node. If three edges are
undetermined by this path, they cannot form a triangle.

Proof. Suppose, to the contrary, that the edges e;, ez, es of a triangle are left unde-
termined by P. Then the parity of the number of triangles in each graph A(P) U e; must
agree with the parity of the number of triangles in A(P). But then adding all the three
edges at once will change the parity, a contradiction. [

38

Corollary 2.2. The depth of each terminal node is at least v(v — 2)/4.

Proof: by Turdn’s Theorem in graph theory (cf. [Lo79, Probl.10.30,34]). Any path of
length less than v(v — 2)/4 leaves more than v?/4 edges undetermined, forcing the graph
of undetermined edges to contain a triangle. [

It follows that for any constant ¢ < 1/4, there are precisely 2" computation paths of
length cn beginning at START. Since the branching program has size less than 2°™ there
exists a node w such that at least 2(c=%)" paths of length ¢n connect START to w.

Let us fix ¢ at a quite small value; any ¢ < 10~° will be safe. Then, € must be even
smaller; let us set € = ¢3/2. At the same time we assume that v is sufficiently large.

Using w as a “checkpoint”, we shall classify the edges according to their status at the
time various computation paths pass through w. We shall see that these classes exhibit a
strong structure.

Let D denote the set of edges determined by at least one path from START to w. Let
U denote the set of the remaining (undetermined) edges; |D| + |U| = n.

Proposition 2.3. Let P be any path from START to w. It is impossible that three edges
e1, ez, es form a triangle, where ey € D — D(P), ez,e3 ¢ D(P).

Proof. The proof is similar to that of proposition 2.1. Suppose the contrary. The
read-once-only property implies that e; is not tested along any path starting at w and
therefore the parity of the number of triangles in A(P) and A(P)U {e; } is the same. In
other words, e; is contained in an even number of triangles in A(P) U { ey }. Similarly
we infer that the number of triangles containing e; in the graph A(P) U {ej,eq,e3} is
even. But this number is precisely one greater than the number just shown to be even, a
contradiction. |

Let AR denote the set of those edges which are accepted along some path from START
to w and are rejected along some other. Clearly, AR C D.

Proposition 2.4. There is no triangle ey, es, e3 with e; € AR, ez, e3 € U.

Proof: The proof is a parity argument similar to the proofs of propositions 2.1 and
2.3. Suppose the contrary. Let be P be any path from START to w, accepting e; and let
Q@ be some other path from START to w, rejecting e;. Then the parity of the number of
triangles in A(P) must agree with the parity of the number of triangles in A(Q). Similarly
the parity of the number of triangles in A(P) U {ez2} and in A(Q) U {ez} is the same.
In other words the number of triangles containing es in A(P) U { ez } and the number of
triangles containing es in A(Q)U{ ez } have the same parity. The same holds for e5. Clearly
the number of triangles in A(P)U{ ez, e3 } and the number of triangles in A(Q)U{ ez, €3}
are the same mod 2. One can divide the triangles in A(Q) U { ea,e3 } into three classes,
namely the triangles in A(Q), the triangles containing ez in A(Q)U{ ez } and the triangles
containing es in A(Q) U {e3 }. In the case of the triangles in A(P) U { ez, e3} one must
add the triangle {ej,es,e3} to the corresponding classes. This contradicts the parity
arguments above. ||

One can deduce from proposition 2.3 that most edges determined along any path
between START and w are actually determined along P, i.e. the set D — D(P) is small.

39

Moreover, most edges determined by some path to w are both accepted and rejected along
paths to w, i.e. D — AR is a small set. More specifically:

Lemma 2.5. (a) |D — D(P)| < 3¢%/?n.
(b) U] > (1 —c—3c3?)n.

(c) |AR| > (c — €)n.

(d) |D — AR| < 4¢3/?n.

Proof. For a set A of edges, let dega(p) denote the degree of p with respect to the
graph formed by A.

(a) Let e = pg be any edge in D — D(P). By proposition 2.3, every vertex is adjacent
in D(P) to at least one end of e. Therefore,

degppy(p) + degppy(q) = (v —2).
Adding up these inequalities for all pg € D — D(P) we obtain

(2) Z degp_p(p)(P)degppy(p) > (v —2)|D — D(P)|.

On the other hand, also by proposition 2.3, the neighborhood in D — D(P) of any vertex
p induces a clique in D(P). Therefore

(degp_g(p)(P)> <|D(P)| =cn = c<;>

Consequently,
(3) degp_ppy(p) <1+ ¢!/,

Combining (2) and (3),

1+ /% 2 + 2¢1/ 2y
|D—D(P)| < ﬁzdegD(P)(p) =——5 IPP)|= 3¢**n.
p

(b) follows immediately from (a) since |U| =n — |D|.

(c) Clearly, the logarithm of the number of START-to-w paths is a lower bound for
|AR).

(d) By (a), |D| = |D— D(P)|+|D(P)| < 3¢*?n+ cn. Combining this inequality with
(¢) we obtain |D — AR| < (e + 3¢/ ?)n = 4¢3?n. |}

Lemma 2.5(b) implies that the graph U has a vertex py of degree greater than d =
(1 — ¢ —4c3?)v. Let S be a set of precisely d neighbors of pg in U and let T be the
complement of S (|T| + |S| = v).

Proposition 2.4 implies that no edge in AR has both of its endpoints in S. From
this, it follows that AR is “mostly” bipartite, with bipartition (S,7). We can actually
deduce even more structure: most vertices in 7" are adjacent in AR to either almost all or
to almost no vertices in S (about half of the vertices will satisfy each alternative). More
precisely, let us divide 7T into three classes, Ty, T1,T>. We shall refer to a moderately large
constant K, 20 < K < 1/(8¢%/2).

Let Ty consist of those p € T" which have more than Kc¢*/“v neighbors in S in the graph
D — AR. We put p € T — Ty into Ty or T3 according to whether p has more AR-neighbors
in S than U-neighbors or not. Let deg3 ;(p) denote the number of AR-neighbors of p in
S and analogously for other classes.

1/2

40

Lemma 2.6. (a) |1y| < 2cv/K.
(b) For each p € Ty, degf, (p) < 5c3/v.
(¢) For each p € Ty, deg3 p(p) < 5¢3/%v.

Proof. By lemma 2.5(d),
ITo|Kct/?0 < |D — AR| < 4¢**n.
Claim (a) is now immediate.

To prove (b) and (c), let p € T — Ty. Let Ny and Ny denote the sets of U-neighbors
and AR-neighbors of p in S, respectively; let n; = |N;|. Since p & Ty, we have

(4) ny +mng > |S| — Kct/?v > 6v/7.

On the other hand, by proposition 2.4, all edges between N7 and N belong to D— AR.
By lemma 2.5(d) it follows that niny < 4¢3/%n < 2¢3/292. Consequently,

2n1n2

n1 + no

min{ny, ne} < <53%. &

Let X denote the set of AR-edges between 77 and S.

Corollary 2.7. (a) (1 — £)cv/2 < |T1| < (1 + 4c'/?)ev/2.
(b) |AR — X| < 302,

Proof. We begin with (b). Clearly,
[AR — X| < |T|? + | T3 |maxper, degi (p) + |To]|S|.

By definition, [T5| < |T'| < (c+4¢%/?)v. We use lemma 2.6(c) to estimate the second term
and lemma 2.6(a) and the fact |S| < v for the last term.
For the upper bound in (a), we obtain from lemma 2.6(b) that

D] D]

71| < — < :
miny e, degh (p) ~ |S] = 5¢3/2v

Lemma 2.5(a) provides the bound |D| < (¢ + 3¢3/2)n. By the definition of S (after the
proof of lemma 2.5), |S| = [(1 — ¢ — 4¢*/?)v]|. A combination of these estimates yields the
desired upper bound.

For the lower bound we first observe that | X| > (c—e—T¢/K)v?/2 > (1—8/K)cv? /2.
This follows from lemma 2.5(¢) and part (b) of this corollary. On the other hand, trivially,
71| = | X|/v.

The structural consequence of lemma 2.6 and corollary 2.7 for the AR graph is that
the subgraph X induced between 77 and S is a nearly complete bipartite graph, and X
contains almost all edges of AR.

41

In order to focus on X, let us make a decision on the value of each input variable
(edge) in AR — X. There are 2148=X1 < 9B/K)ev® 1656ible outcomes (by corollary 2.7(b)).
Let us choose the one that is the most frequent among the START to w computation
paths. Having fixed these values,we still have at least

(5) 2(c—s)n—(3/K)cv2 > 2%112(1—8/1{)
computation paths left. Let IT denote the set of these paths:
(6) log |11] > S0*(1 - 8/K).

(The base of the log is 2.)

Let t = |T1| and s = |S|. We see, that log |II] is nearly ¢s. In order to complete the
proof, we show, that, unless situation (1) arises, the number of subgraphs of X arising
from paths P € II must be substantially less than 2t%: only about 2t%/2. This is impossible
because different paths define different subgraphs of X. (This in turn is true since the
possible branchings on variables in AR — X have been eliminated.)

The proof is based on a linear algebra counting lemma for GF'(2).

Let A, B,C be (0,1)-matrices of the same dimensions.

We shall say that A = C mod B if for every i, j, B[i, j] = 0 implies A[i, j] = C[i, j].

Lemma 2.8. Let Ay,..., AN be different t x s matrices over the two-element field GF(2).
Furthermore, let B and C be s X s matrices over GF(2). Let 3 be the number of 1’s in B.
Assume that AT A; = C mod B for every i. Then

t
(7) log N < 8+ 5(8+t+logs).

Proof. First we estimate the number of ¢t x s matrices of rank < ¢/2 over GF(2).
There are less than 2t°/2 possible choices of the column space. Given the column space of
dimension < t/2, there are < 2¢/2 choices for each column, giving a total of < 2t(s+%)/2
matrices.

Next, we estimate the number of those A; having rank > t/2. Such a matrix has
a set of ¢/2 linearly independent columns; they are positioned in any of (t;Z) < st/?
ways. Let us fix their positions, say columns 1,...,t/2, and decide their entries. Let us
estimate, how many ways the remaining columns can be filled. For each pair (i, j) where
1<j<t/2<i<sand B[i,j] =0, we have a linear condition "r_, ziA[k, 5] = C[i, j]
for the prospective entries x;;. All these equations are linearly independent and their
number is > ¢(2s — t)/4 — . This reduces the number of candidates (2'%) by a factor of
2~ 4(2s=t)/4+8 The number of those A; of rank > ¢/2 is thus

(8) < gt/29ts—t(2s—t)/4+B _ 25+§(s+§+log s).

Add the bound 2!¢+%)/2 on the number of low rank matrices to this; the figure in (7) is a
generous overestimate of logarithm of the sum. |l

42

Now we can complete the proof of our theorem.

Proof of theorem 1.1. Let now s = |S|, t = |T1| and for each P € II let Ap be the
t x s adjacency matrix of the bipartite subgraph of X defined by P. (This graph is the
restriction to 71 x S of A(P).) Let B be the s x s adjacency matrix of the induced subgraph
of D— AR on S. (Recall that the complement, relative to S, of this graph belongs entirely
to U by proposition 2.4.) Observe that the entries of ALAp count modulo 2 the number
of common neighbors of each pair of vertices in S. The falsity of (1) implies the statement
that all the ALAp = C mod B mod 2 for some fixed s x s matrix C. The number of 1’s
in Bis = 2|D— AR| < 8¢*/?n < 4¢®/?v? by Lemma 5(b). Using the upper bound of
Lemma 7(a) for ¢ we now infer from Lemma 8 that

2logwv

t t
(9) log|I] < B+ §(s+t-|-logs) < B+ §(v-l-logv) < 202(1 +920¢Y/2 +).

(Y

This contradicts (6) for large v, completing the proof of the Theorem. |

3. Space-complexity: the eraser RAM

It has been noted ([Mas76], [BFKLTS81], [Pu84]) that a lower bound S(n) on the size
of the smallest branching program computing a Boolean function f,, of n variables implies
an Q(log S(n)) lower bound on the space complexity of the family { f, :n=1,2,...} on
any reasonable model of computation.

Theorem 3.1. W. Masek [Mas76] For S(n) > logn, if A € SPACE(S(n)) then A has
branching program complexzity ¢ for some constant c.

The converse of this theorem is not true. This has several resons. First, branching
programs are a non-uniform model of computation as opposed to Turing machines. Second
branching program complexity is bounded by 2™ while the space complexity on Turing
machines can be arbitrary high. But for the non-uniform SPACFE(logn) class the converse
remains true. For definitions and details see [BoS88].

We might try to convert lower bound results on restricted branching programs for lower
bound on the space complexity of restricted class of Turing machines or even RAM’s.

The Fortune-Hopcroft-Schmidt result mentioned above corresponds to on-line space
complezity: the input bits are read once and in a given order only. The [FHS77] result
provides an Q(y/n) space lower bound for such computation (independently of the given
order of input bits).

General read-once-only branching programs suggest the following machine model
which we call eraser RAM. This is a RAM with a special read-only input tape. The

43

machine decides in the course of the computation in what order to read the input but
once an input cell has been read, it is erased. Let us measure the space required by a
computation by the number of bits stored at any given time on the worktape.

The following is immediate.

Proposition 3.2. If a language L can be recognized by an eraser RAM in space S(n) then
the set L, = LN {0,1}" can be recognized by a read-once-only branching program of size
cO(5(n) for some constant c.

The results of Wegener and Zdk thus imply an Q(y/n) lower bound for the eraser RAM
space complexity of their respective Boolean functions. Our result implies a linear lower
bound on the same model.

Theorem 3.3. Let L be the language containing all graphs of even number of triangles.
Then the eraser RAM space complexity of L is O(n).

44

4. BROOKS COLORING IN PARALLEL

1. Models for parallel computation

In the last few years parallel computation has attracted a great deal of attention in
the theory of algorithms. In this section we describe the two models most often used by
theoretical computer scientists investigating parallel computation.

The first is parallel random access machines [Go77], [FW78]. A random access machine
(RAM) (see [AHUT74]) is more similar to a high level computer than Turing machines or
circuits are. A RAM has its own local random access memory, each cell of which can
store an arbitrarily large integer. The instructions for RAM’s are multiplication, division,
addition, substraction, conditional branches based on predicates ‘=",<’,’and’,’or’ and ‘not’
and reading and writing into its memory. A parallel random access machines is a collection
of RAM’s Ry, Ro, R3 ... operating synchronously in parallel. The RAM’s have access to
an infinite common memory. All of the processors execute the same program in lock-step
fashion, except that each processor R; knows its unique processor number ¢, and this can
be used in the instructions.

We need to specify what happens when two processors want to write into the same
memory cell at once. There are several possible conventions for resolving this problem,
defining different parallel RAM’s. We list a few of these models: if concurrent writing
is forbidden, we refer to the model as the CREW PRAM (concurrent read, exclusive
write). In the CRCW PRAM model two processors can write into the same cell. Again,
there are different possible conventions for what should happen when two processors want
to write into the same location. One possibility is to allow concurrent write only when
the processors want to write the same data. Another possibility is to let the the lowest
numbered processor succeed in writing. These distinction are mostly technical. One can
simulate a program following a conventions by another one following different convention
at a cost which is O(logn) parallel steps, where n is the size of the input. This factor is
negligible for our purposes.

The input, an n bit number, is placed in the memory before the execution of an
algorithm begins (the i-th bit is in the i-th cell). The output will be the contents of the
first cells, when the execution halts.

We charge for several computational resources. One is the number of processors used.
The other one is the time. The time of the computation is the total cost of instructions

45

executed by the processors. There are several conventions for measuring the time of an
operation. The problem is that if we charge ‘one’ for every operation then we can produce
large numbers very cheaply, such large numbers that to output them on a Turing machine
takes a long time. But we don’t want our time complexity to be far from the Turing
machine complexity. What we can do is to charge to an arithmetic operation an amount
proportional to the number of bits in the operands. Another solution is to require that
any cell can hold only a number whose length is bounded by a polynomial in the input
size. If we have programs satisfying this condition than the ‘unit-cost’ criterion gives us a
complexity measure compatible with the one for Turing machines. In this case we define
the computation time of a single run as the number of steps T executed during the run.
The time complexity of an algorithm is a function T'(n), the maximum value of T" over all
2™ possible size n inputs.

A PRAM algorithm is said to be efficient if it runs in time polynomial in the log of the
input size and uses polynomially many processors. A problem solvable by such a PRAM
algorithm is said to be NC'. We refer to the algorithm as an NC' algorithm.

A major goal in parallel computation is to prove that a given problem belongs to
NC'. An additional objective might be minimizing the number of processors used. In some
situations we may also want to look at the precise parallel time bounds.

Our notion of uniform circuits is the one used in Cook [Co85].

A circuit is a directed acyclic graph with nodes (called gates) labeled as follows. A
circuits has nodes distinguished as the inputs. They are of indegree 0 and are labeled
T1,%2,.... Other nodes of indegree 0 are labeled 1 or 0, representing boolean values.
Nodes of indegree 1 are negation gates. All other nodes have indegree two and have a
label, either AND or OR. Some distinguished nodes are output nodes and have labels
Y1,Y2,- - -

If the circuit has n inputs and m outputs then it computes a function f:{0,1}" —
{0,1}™ in the obvious way.

A circuit family is a set { C; }, o of circuits, where C; has ¢ inputs. This computes a
function f:{0,1}" — {0,1}".

A circuit family is logspace uniform if there exists a Turing machine which can compute
the circuit C;, given ¢ in binary, in logarithmic space.

Theorem 1.1. f € NC' if and only if there exists a logspace uniform family of circuits
computing f.

Actually Cook’s work [Co85] provided uniform circuits (with a different uniformity
condition) as the definition of NC. The more convenient PRAM model was introduced
later. We use PRAM’s which are more convenient to program.

46

2. Parallel coloring algorithms

In 1.4. we defined a proper coloring of a graph. Now we extend that definition
to the case when some of the nodes are uncolored. A partial k-coloring is a function
c:V(G) = {1,...,k}U{x*} for which no two adjacent nodes have the same integer label.
The set of nodes with image * is the set of uncolored nodes.

If we have an unbounded number of colors then we can use different colors for different
nodes and obtain a proper coloring. The problem arises if we want to use fewer colors.
Let G be a given graph. The problem of determining the minimal number of colors for
which a proper coloring exists (the chromatic number) is NP-complete [GJ79]. It is widely
accepted that there is no hope of finding a fast sequential algorithm to solve this problem.

A possible plan of attack might be to relax our objective. We can look for an approx-
imation for the optimum instead of the real value. For close approximation (better than
a factor 2) the problem remains NP-complete. There are no known good approximate
coloring algorithms. If we restrict ourselves to 3-regular graphs, then the best coloring
algorithm uses O(y/v) colors [Wi].

Thus, we are forced to relax our objective again, to seek an upper bound for the
chromatic number, and to find a corresponding coloring. Several theorems of this kind
are known. It is very easy to show that any graph can be vertex colored with a number
of colors at most one greater than its maximum degree. The proof gives a very simple
sequential algorithm too. Usually though, colorings with fewer colors exist.

Theorem 2.1. (Brooks, see [Lo79]) A simple graph G of mazimum degree D can be colored
with D colors iff either D > 3 and G contains no clique on D + 1 nodes, or D <= 2 and
G has no odd cycle.

The proofs in [Lo79], and [Be73], although not trivial, are algorithmic. Converting
the standard algorithms to parallel algorithms seems difficult. M. Luby remarked that
from the maximal independent set algorithm ([KW84],[Lu86]), it is easy to get an NC
algorithm which colors a graph with D + 1 colors where D is the maximum degree of
the graph. He defined the following ‘maximal coloring’” problem and stated the theorem
below.The input is a graph, and associated with each vertex, a set of allowable colors.
The answer is a partial coloring in which every point is colored with one color from its
given color set in such a way that the output coloring can’t be extended to additional
nodes (while still insisting that the color of each node is chosen from its color set). By
reducing the maximal coloring problem to the maximal independent set problem, M. Luby
(in [Lu86]) exhibited an NC' algorithm to find a maximal coloring. ;From this algorithm
one can easily conclude that we can find a maximal extension of a given coloring in NC|,
where a mazimal extension of a coloring c is a coloring ¢’ which uses the same number of
colors and for which each uncolored node is adjacent to a point of each color.

(To do so, we apply M. Luby’s maximal coloring algorithm to the graph induced by
points not colored by ¢, and the allowable color set at point v is the set of colors not
represented among v’s neighbors.) We will apply this form of Luby’s algorithm, so we
state it in a separate lemma.

47

Theorem 2.2. (M. Luby [Lu86]) Given a graph with a partial coloring, we can find a
mazximal extension of it in NC.

Another expression of this result is that the following NC procedure exists.

Procedure Extend (.5)

Given: A graph G, a partial coloring ¢ with exactly ¢ colors and a subset S of the points.
Let C be the set of colored vertices.

Compute: A partial coloring ¢’, using exactly ¢ colors, that is an extension of ¢. Nodes not
in C'U S are still uncolored and every uncolored point in S is adjacent to a point of each
of the ¢ colors.

Luby’s maximal coloring algorithm did not settle the question of finding a Brooks
coloring. In his thesis [Ka85], H. Karloff gave an algorithm for the case when the maximum
degree is three. Using this result and the fact that the case D < 2 is easy we can assume
that D > 4.

The main result of this chapter is to establish the parallel complexity of finding a
Brooks coloring.

Theorem 2.3. Given a graph G of maximum degree D, with no cliqgue on D + 1 nodes
(D > 4), we can find a D -coloring of G in NC.

This result was obtained with E. Szemerédi and it is published in [HSz88]. Recently
H. Karloff [Ka88] and M. Karchmer and J. Naor [KN88] have announced alternative NC
algorithms for Brooks’ theorem. The proof will be given in the next few sections.

In the rest of this section we summarize what is known about parallel algorithms for
other coloring problems.

Another way to relax a very hard problem is to restrict the inputs. There are several
classes of graphs where better bounds are known on the chromatic number than the one
in Brooks’ theorem.

The best known class is the planar graphs. The famous four color conjecture says
that every planar graph can be properly colored with 4 colors. The known proof of this
theorem (and thus the known algorithm for finding a 4-coloring) is quite complicated. If
we want only a 5-coloring, then simple proofs and algorithms are available. The parallel
complexity of this problem is discussed in [BK]. They give an NC' algorithm for finding a
5-coloring of planar graphs. There are other faster algorithms for this now [GPS87].

A theorem of Vizing shows that line graphs can be colored with very few colors.
An obvious lower bound on the colors needed is the maximal degree of the original graph.
Vizing’s theorem says that one more color suffices. The parallel complexity of this problem
is open.

A partition theorem of Lovéasz [Lo66] implies that graphs G without triangles can be
colored with L%(G)J colors. The parallel complexity of finding such a coloring is unknown.

48

3. Outline of the algorithm

Using the procedure Fztend, one can find a (partial) D — 3-coloring such that every
uncolored vertex is adjacent to a node of each color. Since we seek a D-coloring, we can
assume that our coloring uses exactly D — 3 colors; from this point until section 5 we
assume that our coloring uses exactly D — 3 colors. From the maximality it follows that
the uncolored graph’s maximum degree is at most 3. This is not enough for us - if this part
contains a K4 as a subgraph then we cannot extend our coloring to a total D-coloring of
the whole graph. In this section we resolve this problem by modifying the original coloring.

Let denote the color classes by C; (i = 1,...,D — 3) and the set of uncolored points
by U. As stated above, it is easy to see that in G|U every vertex has degree at most 3. The
definition of maximal coloring gives a stronger result, namely that every point u of degree
3 in G|U has exactly one neighbor in every C;. For every point of degree two in G|U,
there are two possibilities: it has exactly one neighbor in every C; or there is exactly one
exception where it has two. These remarks are true not only for the initial coloring but for
every maximal coloring. C'N,, will denote the colored neighborhood of the uncolored point
u : CN, = {colored nodes adjacent to u }. (The definitions of this paragraph depend on
the current coloring. During the algorithm we will be changing it many times.)

To color U with three colors we need to get rid of K4’s in G|U. We can get rid of an
uncolored K4 by coloring one of its vertices. Using this method we will get an edge inside
a color class so we have to remove the color from its other endpoint. If we are unlucky then
we can create a new Ky in G|U. In this case we must continue this procedure until we reach
another configuration where we have the hope of using the color extension theorem. So
the modification goes along a path which alternates between colored points and uncolored
triangles. The procedure that finds this path, and the method that cleans up after every
exchange phase are described in section 4.

In section 5 we finish the coloring and mention some open questions.

Before we start the procedure outlined we must overcome some problems. If we have
a K4 in G|U all of whose vertices have the same colored neighborhood then our method
will get stuck in an infinite loop.

This suggests the following definition of ‘bad’ Kjy.

Definition 3.1. A K4 A in G|U is a bad K4 iff for all v,u € A, CN,, = CN,. If a K, is
not bad then we say that it is good.

If A is a bad K4 then its common colored neighborhood contains two non-adjacent
vertices, as otherwise G would have Kp; as a subgraph. Using these two points and
two points from the K4 we can perform an exchange procedure which will improve our
situation. The parallel implementation is the following procedure.

49

Procedure Eliminate

Given: A graph G with maximum degree D > 4, not having Kp4; as a subgraph, and a
maximal D — 3-coloring of G.

Compute: A new coloring of GG, not having any bad K,’s, for which every uncolored K4
was also uncolored when the procedure was called.

1) Let U be the set of uncolored nodes.
Let Aq,..., A, be the bad K4’s in G|U.
Let A, 41, ..., At be the good K4's in G|U.

2) Let U’ be the empty set.
For all ¢, 1 <7 < r, do in parallel:
Let CN; = the common colored neighborhood of nodes in A;.
CN; does not induce a clique, so there exist u; # v; € C'N; that are nonadjacent. Add
Uz, Ug to U/.
Let x; # y; be in A; (arbitrarily). Color x; with ¢(u;) and y; with ¢(v;). Uncolor u;
and v;.
(It is worth noting that several processors may simultaneously be uncoloring a node.)
U’ consists of the newly uncolored nodes. The new coloring is proper because every
new node with the same color came from a different component of G|U and its neighbor
in this color class lost its color.

3) Call procedure Frtend(A,41U...U Ayg).

4) Call procedure Extend(U').

5) Call procedure Extend(V (G)).

End Eliminate

The following claim shows that we achieved our goal.

Claim 3.1. When Eliminate terminates, the D — 3-coloring of G is maximal, every un-

colored K4 was also uncolored when procedure Eliminate was called and there are no bad
K4 ’s.

Proof. That the coloring of G is maximal is obvious.

Assume K is a currently-uncolored K, that was not completely uncolored when pro-
cedure Eliminate was called. Hence z € K lost its color during execution of step 2 of
procedure Eliminate.

Case a) z€ CN;NCNj for 1 <i<j<r.

So z is adjacent to every node in A; and every node in A;. So after step 2, z has at
least 4 uncolored neighbors, none of which is colored in step 3. Hence step 4 colors z, a
contradiction.

Case b) z € CN; for exactly one i, 1 <i <r.

The same argument shows that after step 4, z has exactly 2 uncolored neighbors in
A;. Because no node in a bad K4 had an uncolored neighbor outside of that Ky, the 4th
node w in K must have been colored before procedure Eliminate was called. So w € CN;
for some 1 < j <r. If j # 4, w is adjacent to two uncolored nodes in A; just before step 4

90

is run. So step 4 will color w. If i = j, {w, 2z } = {w;,v; }, yet u; and v; are nonadjacent,
a contradiction.

The only thing that remains to be shown is that there are no bad K4’s. Because all
the currently-uncolored K,4’s were good when the procedure was called, it is enough to
show that the corresponding colored neighborhoods didn’t change. This is clear from the
fact that otherwise step 3 would have colored the node. [

4. The alternating paths

After executing Eliminate we can execute our procedure which decreases the number
of uncolored K,’s by a constant fraction.

Procedure Modify_Coloring

Given: A graph G of maximum degree D, and a maximal D — 3-coloring without bad Ky4’s.
Let U be the set of uncolored nodes.

Compute: A maximal coloring of G for which if U’ is the set of uncolored nodes, and such
that

3
#of Ky'sin G|U' < Zﬂ of K4’s in G|U.

1) Let @ ={Ky4'sin GU }.
Let Q be the set of nodes in Q. (@ stands for ”quadrilaterals”.)
Let T = { K3’s that are components in G|U }. (T stands for "triangles”.)
Let T be the set of nodes in 7.
Let T; = {Kg’s in 7 such that each node in the K3 has two neighbors colored 4 },
for 1 < i < D —3. (Note that each node in such a K3 has two neighbors colored
i and exactly one colored j, for all j # i.)
Let TO :T— (Tl U...UTD_,?,).
For 0 < i < D — 3, let T; be the set of nodes in T;.
Let R=U - (QUT). (R - which stands for "remainder” - is the part of the set of
uncolored nodes lying in components that are neither K4’s nor K3’s.)
Let C; be the set of nodes colored 3.
2) For 1 <i < D — 3 build an auxiliary digraph H; on C; U T; as follows:
Start with no arcs.
For each triangle L € T;, choose a representative node.
For all u € C; and t € T;, add arc (u,t) iff u is adjacent to every node in t, and there
isno t' €T, t' #t, every node of which is adjacent to u.

ol

Then, for each arc (u,t) € E(H;), add to E(H;) an arc from ¢ to the node v € Cj, that

is different from u and adjacent to t’s representative. The outdegrees of nodes in Cj

are at most one. A node ¢ in T either has indegree = outdegree < 1, or there are two

nodes a # b € C;, and the only arcs in H; incident with ¢ are (a,t), (¢,0), (b,t), (¢, a).

Motivation: If one removes the color of a node colored by % then this node may create a

new uncolored K4 with a previously uncolored triangle. If this triangle doesn’t belong

to T; then we can handle the problem by using the coloring extension procedure.

Otherwise we must continue the exchange method. We color the representative of

this triangle with color ¢+ and uncolor its neighbor in C;. The edges of H; tell the

exchange procedure what to do next after we remove a color or color a representative.

2a) We need the following notation. Say v € C; is an endpoint iff v’s outdegree in H;
is 0, and an inner point otherwise.

For each K € Q (K is a Ky), choose a colored vertex v such that v has 1,2 or 3

neighbors in K - such a vertex always exists, because K is a good K4 - and if there

are several such points choose one among them which has the most neighbors in K.

(Why we choose the vertex with the most neighbors in K will become clear only at

the end of the proof of lemma 4.1.) Node v is an initial point with respect to K. It

is the initial point iff it is an initial point with respect to some K. If v is the initial

point with respect to K, choose one of v’s neighbors in K. We will refer to this chosen

point as K'’s representative.

Let Q; = {K € @] the initial point with respect to K lies in C; }

Label K with ‘color the representative with color i’ where K € Q;.

For each 4, label x € C; with ‘remove color’ iff there exists a path in H; from an initial

point in C; to x, and label y € T; with ‘color the representative with color i’ iff there

exists a path in H; from an initial point in C; to y.

For each ¢ in parallel do:

Uncolor each node labeled ‘remove color’.

Next, color with color ¢ the representative of any K3 or K4 labeled with ‘color the

representative with color 7’.

Note that the coloring remains proper.

For each 7,1 <: < D — 3, do:

Let E; = { T — (representative of T') | T was a labeled K3 in T; }. (E; consists of the

uncolored K»’s that remain after each labeled K3’s representative is colored.)

Let T; = { unlabeled T € T; }.

Let @i/ = { K — representative of K) | K € Q; }.

Let E;,T;', Q;' be the respective sets of points.

Let N; = { labeled vertices in C; }. (The N stands for ‘newly uncolored’.) The
nodes in NN; can be either inner points or endpoints. It is easy to see that
of endpoints in IV; < [Q;].

Note that the uncolored vertices of G are exactly RUTy U { U [E; UT U Q' U Ny } i
For each L € U; (Tz-/ U@i, UE;), find a vertex in L, if it is exists, not having a neighbor
of every color (find only one, even if 2 or 3 exist). Color that vertex with some color
not occurring on its neighbors. Note that the coloring remains proper.

92

8) Apply procedure Ezxtend (U;N;).
Now every completely uncolored quadrilateral K either contains 2 endpoints, or con-
tains one endpoint v and K — {v} C R. We prove this fact below. (If the first
case held for every completely uncolored K4, we would have succeeded in halving the
number of uncolored Ky’ s.)

9) For each completely uncolored quadrilateral K containing exactly one endpoint v (so
that K —{ v } C R), choose one node y € K —{ v } with 4 or more uncolored neighbors.
(This y must exist.) Let Y C R be the set of chosen y’s. G|R has maximum degree
at most 3. Find a maximal independent set of G|Y. (Because of the degree bound on
G| R the cardinality of this independent set must be at least %) Color each node in
the independent set with some color not occurring on its neighborhood.

10) Apply procedure Eztend(V).

End Modify_Coloring

In order to prove the correctness of the algorithm we must first prove the lemma
mentioned under step 8.

Lemma 4.1. Just after step 8 of Modify_Coloring, every completely uncolored quadrilat-
eral K either contains 2 endpoints, or contains 1 endpoint v and K — {v} C R .

Proof. Each uncolored quadrilateral K, just after step 8, must fall into (at least) one of
the following classes.
a) K contains exactly one newly uncolored node z, and z is an inner point.
b) K contains at least two inner points.
¢) K contains exactly one endpoint and exactly one inner point.
d) K contains exactly one endpoint, and the remaining nodes are in 7.
e) K contains exactly one endpoint, and the remaining nodes are in Q.
f) K contains exactly one endpoint, and the remaining nodes are in R.
g) K contains at least 2 endpoints.

We now prove cases a)-e) cannot occur. We will be making heavy use of the following
two simple facts.

Remark 1. Just after step 5, every inner point originally colored with color ¢ has, in
its uncolored neighborhood, an edge in E;. At least one of these points remains uncolored
after steps 7 and 8 are executed.

Remark 2. Immediately after step 8 every newly uncolored node in an uncolored
K, has exactly D — 3 colored neighbors, and its 3 uncolored neighbors are exactly the
remaining nodes of the Kjy.

Case a) cannot occur, because if z is the only newly-uncolored node in an uncolored
K, K, then z’s uncolored neighbors span a K3, yet by remarks 1 and 2, this can’t occur.

If, instead, any uncolored quadrilateral K contained distinct inner points w, v just
after step 8, u and v must have originally had colors ¢ and 7, respectively, ¢ # j. As for
case a), by remarks 1 and 2, after step 8 u has one uncolored neighbor from F; in K. The
same goes for v, with ‘F;’ replaced by "FE;”. A contradiction, because no node in F; is
adjacent to a node in F;. So case b) is impossible.

93

Now we discuss case ¢). Let be K’s lone endpoint, and y, its lone inner point. Node
x originally has color ¢, and y, color j. Again, ¢ # j. Let z and t be the remaining two
vertices of K. By remarks 1 and 2, z or ¢ came from Ej;. In fact, both must be in Ej.
By the definition of T}, z and ¢t have exactly one neighbor colored 4, namely xz. Step 5
uncolored x so that after step 5, z and ¢ had no neighbor colored ¢. This is a contradiction,
since step 7 will color either z or ¢.

Let K be a case d) Ky; z, its lone endpoint; and ¢, its original color. If K —{ z } C T},
j # i (possibly j =0), for one of those three nodes w, z was w’s only neighbor colored i
(otherwise K would be in T;). After color i is removed from z, step 7 will color at least
one of those three nodes. Hence the other three nodes are in T;. Since z is an endpoint, z
had to have three pairwise adjacent neighbors, none of which is in K, all of which are in
T. At least one of these, s, will remain uncolored after step 7. Hence, after step 7, s and
all of K are still uncolored, and step 8 will color z.

Let K be a case e) Ky; z, its lone endpoint; and i, its original color. If the other
three nodes are in Q);, j # ¢, then the argument in case d) produces a contradiction. So
K —{z} C A, where Ais a K4 in Q —i. By the method used to choose an initial point in
step 3, z must be the initial point with respect to A, and therefore some node in K — { z }
is A’s representative and is colored in step 5. |}

Using this lemma the proof of correctness is easy.

Lemma 4.2. The procedure Modify_Coloring decreases the number of uncolored K4’s to
at most % of its previous value.

Proof. All the uncolored K,’s existing when the algorithm terminated were uncolored after
step 8. Using lemma 4.1 we divide the uncolored K,4’s into two classes. This implies a
classification of endpoints: in an uncolored K4 an endpoint is ugly if immediately after
step 8 it is the lone endpoint of its uncolored K4, and nice otherwise. Using this notation
it is easy to see the following inequalities.

f of old uncolored K4’s >t of endpoints = f of ugly endpoints + f of nice endpoints.

But we know that
3 . . .
Zﬂ of ugly endpoints > t of uncolored K, having exactly one endpoint,

and

1
§ﬂ of nice endpoints > f of uncolored K, having at least two endpoints.

So
3
Zﬂ of old uncolored K,’s > § of uncolored K,’s.

54

5. Conclusion

Using the previous result we can find in NC' a partial coloring with D — 3 colors
such that the uncolored part has maximum degree 3 and doesn’t contain any Ky’s. So
completing the coloring involves solving the original question on maximum-degree-3 graphs,
which is an easier problem. We use H.Karloff’s NC' algorithm [Ka85] for 3-coloring a
maximum-degree-3 graph without K4’s. So the final algorithm is the following:

Program Brooks_Coloring
Given: A graph G with maximum degree D > 4, not having Kp,; as a subgraph.
Compute: A D-coloring of G.

1) Using procedure Eztend get an initial maximal (D — 3)-coloring.

)
2) Call procedure Eliminate.
3) Call procedure Modify_-Coloring.
4) If there are four pairwise-adjacent uncolored nodes then go to 2.
5) Color the set of uncolored nodes with 3 new colors.

End Brooks_Coloring

The correctness of the algorithm easily follows from the lemma 4.2.

The main result of this chapter is an application of the maximal coloring algorithm.
The essence of our Brooks coloring algorithm is a procedure designed to get rid of the
troublesome K4’s, and we perform a natural exchange procedure along alternating paths
to do so. The extension lemma takes care of the messy uncolored part after the exchange.
The natural question is whether there are further applications of the maximal coloring
algorithm.

95

5. A FAST PARALLEL ALGORITHM ON DENSE GRAPHS

1. The Hamiltonian cycle problem

In this chapter we consider the problem of finding a Hamiltonian cycle. Recall that a
Hamiltonian cycle of a graph G is a cycle going through all nodes of G'. Deciding whether
a graph has a Hamiltonian cycle is a classical NP-complete problem [GJ79]. As we saw in
the previous chapter it is often very fruitful to relax the requirements of a problem. First
let us consider some related problems which will help us later.

The maximum independent set problem is NP-complete. On the other hand, if we
simply want to find a non-extendible independent set (a maximal independent set) then it
becomes an NC' problem ([KaW85],[Lu86],[ABI86],[GS87]).

The deterministic parallel complexity of other very important problems like matching
is still not known. There is a method ([Lo79b], [KUWS86],[Ka86]) which shows that match-
ing is in RNC' (random parallel polylog time), but it is still unknown whether matching
is in NC. One relaxation of the matching problem is maximal matching. This obviously is
in NC, as implied by the result for maximal independent set. An easier and more efficient
algorithm can be found in [II86].

The Hamiltonian path problem can be relaxed to the maximal path problem. R.
Anderson [And87] presented a reduction of this problem to matching. The reduction
implies that the maximal path problem is in RNC. His algorithm starts out from a system
of paths and glues them together. He and A. Aggarwal [AA88| extended this method to
the problem of finding a depth first search tree. With M.Y. Kao they applied the same
method to find a depth first search tree in directed graphs [AAK].

Now let us return to the Hamiltonian cycle problem. There are known classes of
graphs for which all the members of the class are Hamiltonian. One sufficient condition for
being Hamiltonian is Dirac’s condition ([Di52], [Be73],[Lo79]): if a graph G has minimal
degree at least T where n is the number of vertices then G has a Hamiltonian circuit. At
STOC’87 M.Goldberg proposed the problem: Is there any NC' algorithm which finds a
Hamiltonian cycle for graphs lying in the class defined by Dirac’s theorem? In this paper
we present an NC' algorithm which uses methods similar to Anderson’s. In our case we
have the advantage that the input graph has many edges. Thus it is relatively easy to
merge different paths.

06

The algorithm as described here was published as a technical report. Meanwhile I
learned that M. Karpinski and E. Delhaus obtained the same result. A joint version will
be submitted for publication.

2. The outline of the algorithm

First, our algorithm finds a Hamiltonian path in the given graph. Having the Hamil-
tonian path it will be very easy to finish the algorithm, i.e., to find a Hamiltonian cycle.

The main idea of finding a Hamiltonian path is to maintain a path system that covers
the graph, i.e., a set of paths such that the vertex sets of the paths are pairwise disjoint
and their union is the whole vertex set. The algorithm consists of phases. In each phase
we try to merge different paths: this way we can reduce the number of paths by a constant
factor.

In order to merge paths we use a special operation. The operation merges two paths
P, and @). (In our case every path contains at least one edge.) Let u, v be the two endpoints
of P. Let us assume that u and v have distinct neighbors in) and these neighbors are
consecutive nodes in (). In this case one can easily merge P into (). The endpoints of the
new path will be the same as ()’s endpoints.

We want to merge several paths into others in parallel. We might have conflicts during
the parallel merging. To overcome this problem we want to find for each path several ways
to merge it into another path. The main observation is the following. Let us assume that
we have a path system and a fixed path on it. If the endpoints of the given path have high
degree toward the outside of the path, then we can find many ways to merge it into other
paths.

As the idea above suggests, we will handle the paths differently depending on whether
the endpoints have high degree toward the outside. We will refer to these paths as ”social”.
We say that a path is ”introverted” if it is not social. The exact definitions will be given
in the next section.

We use standard graph theoretical notation. We refer the reader to [Lo79]. G is the
input of the algorithm, i.e., it is a simple graph, with minimal degree at least 5 where n
is the number of nodes. d(u) is the degree of the node u. dg(u) is the number of edges
going from node u to the set of vertices S. { F; }?:0 will denote a set of paths in G such
that U;V(P;) = V(G) and the V(F;)’s are disjoint. We will refer to this as a path-cover of
G.

57

3. Social paths

In this section we give the formal definition of our elementary merging operation and
introduce the notion of different types of paths. The basic idea of these types comes from
Lemma 3.3, which says that if the endpoints of a path are connected with many edges to
another path then there are several possible ways to merge that path into the other one.

Definition 3.1. Let P and @ be two paths whose vertex sets are disjoint. Let their vertex
sets (corresponding to the order on the paths) be { uy,...,u; } and { vy, ..., v, }. If uyv; and
ujv;4+1 are edges of the graph then v;...v;uy...ujv;41...0,, is a path. If wyv;41 and wv; are
edges of the graph then v;...v;u;...u10;41...0,, is a path. If in a path system we transform
two paths into one using one of the remarks above then we’ll say that we performed an
elementary merging operation. We’ll say that we merged P into Q along the edge v;v;y1.

Definition 3.2. Let P be a path in G. Let u,v be the two endpoints of P. We call P
social if

dy (p)(u) +dy(p)(v) + 1 < [V(P)].
We say a path P is introverted if it is not social.
We need the following lemma.

Lemma 3.3. Let P be a path with endpoints u,v. Let Q be a path with vertex set disjoint
from P’s. If there are no edges from any endpoint of P to an endpoint of Q then there are
at least

max { dV(Q)(U) + dV(Q)(U) +1-— |V(Q)|, 0 }

edges on Q along which we can merge P into QQ via an elementary merging operation.

Proof. Let { q1, g2, ..., qi } be the vertex set of Q) (¢1 and ¢; are the endnodes and the indices
follow the order on the path) . So I = [V(Q)|. Let d = dy(g)(u) and e = dy()(v). Let
{4iy, - ¢, } be the neighborhood of v on Q. Because of our assumption 1 < i; and ig <.
Let F = {qi,—1,%,+1, Gin+1s---»iy+1 }- F contains d + 1 nodes not in Q. If v is adjacent
to one of them then one can easily find an edge where our elementary operation can be
performed. Actually we can assign different edges of () to different elements of F' in such
a way that an edge between v and an element of F' gives a possible elementary merging
operation along the corresponding edge. If the degree of v toward () is greater than |Q— F|,
then one can find a way to merge. Actually there will be at least e — (I — (d + 1)) edges
going from v to F'. This implies the statement of the lemma.

The lemma above has the following important consequence for the path covering.
Consequence 3.4. Let { P; }fz_ol be a path-cover of G. We assume that Py is social and
there are no edges going from its endpoint to the endpoints of other covering paths. Then

there are at least k edges on one of the paths, i.e. on U;:llPi along which one can merge
Py into another path.

o8

Proof. Let u,v be the endpoints of Py. Let d;(i =0,...,k — 1) be the degree of u toward
P; and let e;(i = 0,...,k — 1) be the corresponding degrees of v. Let n; be the number of
nodes on P;. Using this notation we have

k—1 k—1 N n k—1
Zdi—FZei:d(u)de(v) > §+§ =n=)_ n
1=0 1=0 1=0
After rearrangment we get
k—1
i=0

We can delete the nonpositive terms in the sum and the inequality remains valid. We
assumed that P is social so during the simplification above the term dy +eg+ 1 —n is at
most 0 and will be deleted. After the deletion we have

k—1

Zmaaz{di+ei+ 1—n;0}> k.

i=1
By lemma 3.3 we get the result. [

In the case of introverted paths we need a little trick. The truth of the generalization
of consequence 3.4 stated below, easily follows from the proof we just presented. It will be
used in the next section.

Lemma 3.5. Let S be a subset of V(G) and { P; }f:_ll be a path-cover of V(G)—S. Let P
be a path in S with endpoints u,v. Let us assume that dg(u) +ds(v)+1—1|S| <0 and that
there are no edges going from u or from v to any endpoints of the path-cover. Then there
are at least k edges on Uf;llPi along which P can be merged into a covering path. |

The lemmas above show that if we have a path-cover such that there are no edges
between endpoints of different paths and all paths are social then we have many options
for performing the merging operation. An easy application of matching theory (to be
shown later) shows that in this case we can assign a merging operation to each path in
such a way that the corresponding edges are different for different paths. We will see that
these operations can be performed in parallel and in this way the number of paths can be
reduced by a factor of 2. In order to apply this idea for the case of introverted paths we
need a little trick.

4. Introverted paths

First we prove that a introverted path can be closed to a cycle, i.e., the graph induced
by the vertex set of an introverted path has a Hamiltonian cycle.

29

Lemma 4.1. Let P be an introverted path between endpoints u and v. Then one of the
following three statements is true:

(a) The number of nodes on P is at most 2, i.e., every node on P is an endpoint.

(b) There exists an edge between the two endpoints of P.

(c) There exists a neighbor ul of u on P and a neighbor v/ of v on P such that ul and v/
are adjacent via an edge of P and ul is between vl and v on P.

Proof. Let us assume that P has more than 2 nodes. Let {wq,...,w;} be the vertex
set of P (w; = w and w; = v). The order on the path is the same as the order of the
indices. Let d = dy(p)(u) and e = dy(p)(v). We can assume that there is no edge between
u and v. Let {wsg,w;,,...,w;, } be the neighborhood of u. If (¢) does not hold then
{w1,wiy—1,...,wi,—1,w; } cannot be adjacent to v. This means that [— (d+ 1) >e. So P
is social. This contradicts our assumption. [

In the first case of the lemma above the path has only endvertices, in the other two
cases one can easily find a Hamiltonian cycle in the graph induced by the introverted path.
This allows the possibility of doing another kind of merging. What we are going to do is
the following. We make pairs of the introverted paths. If there is an edge between two
matched paths then we can merge them along this edge. After repeating this step we are
left only with pairs of independent paths. If we have an independent pair of introverted
paths then the shorter path will behave like a social path. What we mean is that if we
consider the union of the two underlying vertex sets and the shorter path in it then we
can apply lemma 3.5. In this way we can use the method developed in section 3.

5. The general case

We need only a few additional tricks to handle the general case. So now we are able
to present the complete algorithm.

The algorithm starts with an initial path-covering. Because of our technique each
path in the cover must have two different endnodes. Because of this, the initialization step
is not totally obvious. After initialization, using the results of the previous sections, we
reduce the number of paths by a factor %. Having these two procedures we can easily get
the complete algorithm.

Procedure Initialization
Given: G, a graph of minimal degree at least § where n is the number of nodes in G.
Compute: A path-cover of G such that each path in the cover has at least two points.

1) Find in parallel a maximal mathing M in G.

60

3)

2) Find in parallel a maximal matching N between the nodes not covered by M
and the nodes covered by M.

The edge set M U N will be { P; },, the initial path-covering.

{ Lemma 2.5.2. proves that M U N is really a path-cover of G.}

End Initialization

Procedure Reduce_path_cover

Given: G, a graph of minimal degree at least 5 where n is the number of nodes in G, and
a path-cover of G with at least 2 paths.

Compute: A new path-cover with at most % as many paths.

D
2)
3)

Classify each path as social or as introverted in parallel.
Pair up the introverted paths with at most one leftover.
Repeat until there are only pairs of independent introverted paths.
For all connected introverted path pairs do a)-d):

a) Find all the pairs where there is an edge between the two paths (we will refer to

these two paths as connected paths).

b) Find a Hamiltonian cycle in each introverted path having at least 3 nodes.

¢) Merge the pair of cycles and possible edges by a connecting edge.

d) Pair up the unmatched introverted paths.
{ Exiting this loop we have a path-cover of G. The cover consists of social paths and
pairs of independent introverted paths. We will refer to the social paths and to the
pairs of introverted paths as generalized components of the cover. Sometimes we’ll
omit the word generalized.}
Find a maximal matching in parallel between the edges connecting endpoints of dif-
ferent paths. Connect these paths by this edges. Kill all the cycles by deleting one
new edge of each.
{At this point we have a path-cover such that there are no edges between endpoints of
different paths. Let us consider the path-cover after step 3. We refer to a generalized
component that was not changed in step 4 as an untuoched component. The idea is
that the part of the old cover which was changed by step 5 got the advantage that we
seek. So we need to work with the untouched part, where we can use our technique.}
For every untouched component do the following: If it is a pair of introverted paths
then take the smaller one, otherwise take the corresponding social path. Now we have
a path and we want to merge it into another one. Find all the edges on the path
system such that an elementary merging can be performed along it.
For each untouched component we have many possible merging operations. For differ-
ent untouched components find a merging from step 5 which uses different edges. We
will see that this can be solved in the following way. We construct an auxiliary bipar-
tite graph H; between the untouched components and the edges along the paths. A
component will be connected to an edge iff along it there is a possible merging (found
in step 6) into the corresponding path. A maximal matching of H; will give the 1-1
map from untouched components into edges.

61

7) Perform as many elementary operations as possible. This can be done as follows.
Make the following auxiliary directed graph H,. The nodes will correspond to paths
in the cover. There is an edge going from a path P to a path @ iff one of the merging
operations, found in step 6 merges P into (). In this digraph every node has outdegree
1 or 0. So it will contain rooted trees, edges directed toward the root and directed
cycles with trees connected to it, the edges of the trees directed toward the cycle. If
we delete exactly one edge from each directed cycle then we get a system of rooted
directed trees. The corresponding merging operations can be performed in parallel.

End Reduce_path_cover

Program Find_Hamiltonian_circuit
Given: G, a graph of minimal degree at least 5 where n is the number of nodes in G.
Compute: A Hamiltonian circuit of G.

1) Initialization
2) Repeat while there are at least two paths
a) Reduce_path_cover
{At this point of the algorithm we have a Hamiltonian path { vy, ...,v, } of G.}
3) If vyv, is not an edge of G then find a pair of edges of the form vyv;4; and v,v;.
{We will see that in this specific case this kind of edge pair exists in the graph.}
4) Output the cycle vy...v,v1 Or v;_1...01V;41...v,v;0;_1 according to the case in step 3.

End Find_Hamiltonian_circuit

At several points of the proof of correctness we will need the following crucial idea.
Let us assume that we have a bipartite graph between the sets A and B such that all the
nodes in A have degree at least |A|. Then each maximal matching covers the whole set A.
It is worthwhile to state this statement as a separate lemma.

Lemma 5.1. Let H be is a bipartite graph between sets A and B. Assume that every node
in A has degree at least |A|. Then every mazimal matching of H covers the whole set A.

Lemma 5.2. The procedure Initialize constructs a path-covering of the graph.

Proof. Let A be the set of nodes not covered by M. We can assume that A is not empty.
Let B be the complement of A (i.e., the set of nodes covered by M). M is a maximal
matching so A is an independent set. Every point in A has degree at least 3, so the size of
B must be at least 5. This implies that the size of A is at most 5. So the bipartite graph
between A and B satisfies the condition of lemma 5.1. Therefore the matching constructed
in step 2 of procedure Initialization covers the whole set A. This proves the result. [

The following lemma shows how the number of paths in the path-cover changes during
the procedure Reduce_path_cover.

62

Lemma 5.3. Let us run the procedure Reduce_path_cover once. Let p be the number of
paths at the beginning. Let p! be the number of paths and ¢ be the number of generalized
components after executing step 3. Let t be the number of components touched in step 4.
Then ’

(i) In step 4 after logp = O(logn) iterations we stop with c > % generalized components.
(i) The procedure outputs a path-cover with at most %p paths.

Proof. (i) Let a be the number of paths, coming from a connected pair of introverted paths.
Then after executing one round of the loop in step 3 these paths will be merged into ‘ITH
paths (counting a possible unmatched introverted path). If a generalized component is
a social path or a pair of independent introverted paths then it remains that way. This
proves (i).

(ii) After executing step 4 we have at least % fewer paths then pr (i.e., the number of
paths before step 4). In step 6 for all untouched components we found an edge along which
one can merge it into another path. This is true because the auxiliary bipartite graph H;
we built up has the property of lemma 4.1. (See lemma 3.5). So the number of edges in Hy
is exactly ¢ —t. We delete some of them. But this deletion kills only one edge from each
cycle. It is easy to see that we still have at least CT_t edges remaining. The corresponding
merging operations will reduce the number of paths by at least CT_t So the final number

of paths is at most

The previous lemma easily implies the correctness of the algorithm.
Lemma 5.4. The program Find_Hamiltonian_cycle terminates in polylog steps, uses poly-

nomial number of processors and outputs a Hamiltonian cycle of G.

Proof. 1t follows from that step 2 we have a Hamiltonian path of G. The fact that we can
also find a Hamiltonian cycle follows from an argument similar to lemma 4.1. The analysis
of the number of processors and time is easy for any straightforward implementation of
the algorithm. [l

6. Conclusion and open problems

If the number of nodes is even, by constructing a Hamiltonian path we obtain a perfect
matching too. So we have an NC' algorithm to find a perfect matching in dense graphs.

63

The same problem on general graphs is not known to be in NC. As we saw there is a
striking difference between the general case and the case of dense graphs in the case of
Hamiltonian cycle problem.

In this section we consider the question what happens if we enlarge the class of possible
inputs. In both case (matching and Hamiltonian cycle) we obtain ‘hardness’ results.

Let G be an a-dense graph if the minimal degree of G is at least |G|, where o < %

Theorem 6.1. For a < % the existence problem for a perfect matching restricted to a-
dense graphs G = (V, E) is NC-hard for the general matching problem. This means that
an NC-algorithm for the matching problem restricted to a-dense graphs would imply an
algorithm for the general perfect matching problem.

Proof. Let G = (V, E) be any graph. We construct a graph G’ = (XUYUV, E’) as
follows: X and Y are sets of equal size, Y is an independent set in G’ and G is an induced
subgraph of G'. Every node in X is adjacent to all nodes in G’. We choose the size of X
to be [X| =[5 (VI 1

A similar proof technique was used by A. Broder [Br86], when he showed that deter-
mining the permanent on “dense” bipartite graphs is # P-hard.

The same reduction works for the Hamiltonian cycle problem. But in this case the
difference (NP-completeness and NC) is more striking.

Theorem 6.2. For every o < %, the Hamiltonian cycle problem restricted to a-dense

27
graphs is N P-complete.

Proof. We reduce the existence problem of a Hamiltonian path in a graph G to
the existence problem of a Hamiltonian cycle in an «-dense graph G’. We construct
G' = (V' E’) from a given G + (V, E) as follows:

e the vertex set of G' is a disjoint union of the vertex set of G and two other sets,

V' =VUXUY, where |[X| =Y |+ 1=k = [(V]+1)].

e the edge set of G’ consists of: (i) the edge set of G, (ii) the complete bipartite graph

between V and X, (iii) the complete bipartite graph between X and Y

Each Hamiltonian cycle in G’ must have a subpath xiy122ys ... 2T5_1yx—_12%, Where
X ={z1,...;2x} and Y = {y1,...,yk—1 }- The rest of the Hamiltonian path passes
through G. Therefore G has a Hamiltonian path if and only if G’ has a Hamiltonian cycle.
Easy to check that G’ is a-dense by setting the size of X and Y as we did. [

Finally we mention some open problems.

There are more sufficient conditions for having Hamiltonian cycles ([Be73],[Lo79]).
Some of them are weaker than Dirac’s condition, in the sense that they define a wider
class of graphs. I don’t know anything about NC algorithms for finding a Hamiltonian
cycle in these classes.

Another relaxation similar to the Hamiltonian path problem is the maximal cycle
problem. Omne can fix some elementary operations for enlarging a cycle. One example is
the following. Let us assume that we have a situation in which a node not on the cycle has
two neighbors that are consecutive on the cycle. One can easily merge this node into the

64

cycle. In this case we can define the notion of maximal cycle, i.e., a cycle for which the
operation above can not be applied. Is there any NC' algorithm which finds a maximal
cycle in a graph?

65

6. GEOMETRY, GRAPHS AND COMPLEXITY

1. Unit-distances between vertices of a convex polygon

This chapter is motivated by the following question of Erdds: What is the maximal
multiplicity of a distance in all distances between vertices of a convex n-gon. We can
assume that the most common distance among the vertices is the unit-distance.

Let S be any n element point set on the plane.

d(S) = max | {(P,Q): ,Q €S and d(P,Q) = 1}].

We call § a convex set if S is the vertex set of a convex polygon.

d(n) = max d(S).

S i1s an n element convex set

Our goal is to consider the d(n) function. It is known that
)
cnlogn > d(n) > 3" 3.

In this section we are going to give a construction what improves the previous lower
bound. To do so we will define a convex point set which contains many unit-distances.
First we describe a configuration of eight points with many unit-distances. Finally we blow
up our set to get the improved lower bound.

We start with the construction of the eight element set. We take a PQRA from the
plane such that d(P,Q) = d(P,R) =1 — ¢ and d(Q,R) = 1 — § where 0 < € < ¢ small
parameters. We remark that our assumptions on the order implies that PQRA close to an
equilateral triangle and its two angles on the side QR are a little bit greater then % (Figure
1.1). To make easier the references we introduce some notations. We will refer to the line
RQ as horizontal line. This determines the vertical direction too. The RQ line defines
two halfplanes. The one which doesn’t contain the point P will be called the bottom half
plane. This allows us to use the expressions under and above. Let PT be a unit-interval,
with T" as a lower endpoint. We draw a T'RU triangle to the top of the interval TR. Its
two unknown sides have length 1.

We do the same with interval T'()Q. The new point what we get is denoted as V.
Finally we rotate the point U around R as a center with angle % to get U’. The same kind
of rotation (around @ with angle —%) maps V to V'.

66

Figure 1.1.
Now we have our full configuration which is totally determined by the two parameters.
We call it CONF(e,0) ={P,Q,R,T,U,V,U", V' }.

Lemma 1.2. If e and § are small enough then { P,Q,R,T,U,V,U',V'} spans a convez
octagon.

Proof. 1f one varies the parameters then all the distances and angles change a con-
tinuous way. We are going to study the e = 0 situation (for small € our picture is ”close”
to this one). This configuration is on the Figure 1.3 (the corresponding points have a 0
index).

Figure 1.3.

U}, Qo, Ty, Ro, Vy are all on the unit-circle drawn around P, as a center. Since
UgRP/. = %5 < QRP/ the order of the points on the arc is the same as we wrote. So
the consecutive triples on this arc determine a convex angle. UyUjQoZ = VoVjRy/ and
both of them are an angle of a triangle. This implies that they are convex. From this
follows that the corresponding angles are convex too in the original configuration if € is
too small. When we vary € Py splits into three points. It is easy to see that this doesn’t
cause a problem. The PT vertical line is symmetric axe of the whole picture. If we start
from CON F(0,9) and increase € a little bit then UV becomes a short horizontal interval
symmetric to the PT line. P will a little bit above this interval. U, P,V are on an arc
drawn around 7T as center. So UPV / is a convex angle close to m. The angle between UjU

and VgV lines is about %. This facts prove our lemma. |

This configuration contains eight points and determines nine unit-distances. To get
our final construction we substitute some points of this set with n-tuples of points. During
this substitution we multiply the number of unit-distances and preserve convexity.

67

Let C = CON F(e, §), where € and ¢ small numbers, such that the conclusion of Lemma
1.2 is true. Now we draw a unit-circle around P. This circle goes through 7. We take
a length 7 arc starting at 7" to both direction. Let Ar be the union of these two arcs
(the length of Ay is 2n). We do the same with the unit-circle around R and points U, U}
and finally with the unit-circle around @) and points V, Vjj. Let the corresponding arcs are
denoted as Ay, Ay, Ay and Ay:. Let C(n) be the point set that we obtain when we add
all these arcs to C (Figure 1.4.).

Figure 1.4.

Lemma 1.5. Ifn is small enough then any finite subset of C(n) is a vertex set of a convex
polygon.

Proof Easy consequence of our previous remarks [

We consider C(n) with a small 7. Let take an n-element subset 7 = {T1,T%,...,T, }
of Ar. We choose the T;’s to be very close to T. We draw a unit-circle with center T;. This
circle has a unique intersections with Ay and Ay. We denote these intersections as U;
and V;. For different points from 7 these intersections are different. This is true because
the unit-circles around 7; and 7} have only two common points. One of them is P and the
other is on the other side of T;T}. So we have Y = {Uy,..., U, } and V = {V1,...,V,, }
subsets of Ay and Ay. Finally we rotate these set with the same rotation which maped
U to U and V to V'. So we get ' and V'. (Figure 1.6.)

Figure 1.6.

68

Our set is
UUU UVUV UTU{PQ,R}.

This set contains 5n + 3 points and the number of unit-distances are 9n. This shows
that d(5n 4+ 3) > 9n. One can easily extend this result to every possible set size. So we
have the following theorem.

Theorem 1.7. 9
d(n) > =1 13. |

This construction was improved with H. Edelsbrunner. The improved construction is
published in [EH91].

2. Unit-distances and excluded configurations in matrices

A configuration, C' = (c;j) (1 < i < u, 1 <j <w),is a partial matrix with 1’s and
blanks at the entries. All the matrices we are going to work with will be 0 — 1 matrices.
We say that a matrix M = (m;;) does have the configuration C' if one can find u rows
11,02y ¢ o vy by, b1 < - < &y and v columns j1,J2,...,Jv,J1 < *-+ < Jp in M such that the
corresponding submatrix contains C, i.e. m;, j, = 1 whenever co 3 = 1. Let f(n,m;C)
denote the maximum number of 1’s in an n X m matrix M not containing C'. In the case of
n = m we write f(n; C). One can allow several forbidden configurations, the corresponding
threshold function is f(n,m; {C*,...,C"}) or f(n;{C*,...,C"}).

Our research on these threshold functions motivated by giving upper bound on g(n).

Let C be a closed convex curve. Let A; and As be two disjoint arcs of C. Let
Py, Py, ..., P; be a sequence of points of A; (in the same order as they occur on Aj).
Similarly Q1,...,Q; are points from Ay Let M({ Py,..., Py, Q1,...,Q1}) = M = (m; ;)
be the following matrix of size k x 1. m; ; = 1 if d(P;, Q) = 1, otherwise m; ; = 0. Hence
the unit-distances of the form d(F;, ;) is the number of 1’s in M.

The following Lemma defines a forbidden configuration for the distance matrix defined
above.

Lemma 2.1. Let Ay, As, P, Py, P3,Q1,Q2, Q3 as above (see figure 2.2). It is impossible,
that d(P1, Q1) = d(P1,Q3) = d(P2, Q3) = d(P3,Q2) = d(P3,Q3) = 1.

Proof. Let us assume that all the distances mentioned in the lemma are unit-distances.

69

Figure 2.2.

We are going to prove that in this case all angles of the quadrangle P;P3Q3(), are
acute. P;P3(Q3/ is an angle in an isosceles triangle, hence it is acute. Q1 P1Q3/ <
Q1P Py/. Q1P P;/ is an angle in an isosceles triangle, hence QP03 is acute. The
other two angles are acute by the same argument. [

Using these ideas Z. Fujredi ([Fi]) could prove a ¢ - nlogn upper bound an the
g(n) function. The main step in the proof is determining the order of magnitude of
f(n,m; (} 1 1)) threshold function.

Other configuration was considered in [BGy|. The analysis of a computational geo-
metrical algorithm led to their problem.

Our research is closely related to previous works in combinatorics.

Let us mention Turdn’s theory in extremal graph theory. There the question is: Given
a graph G, what is T'(n; G), the maximum number of edges of a graph with n vertices and
not containing G' as a subgraph? A special case is when we work in the universe of
bipartite graphs. Our matrices can be considered as bipartite graphs. The important
difference between Turdn’s theory and our question that in our case the vertices (the rows
and columns) are ordered. This is a very important difference but in some special case the
restriction on the order is insignificant. An example is the four cycle (complete bipartite
graph between two color classes of size 2 each). Classical results in graph theory [KST54],
[ERS66], [Bo78] immediately give us the following theorem.

Theorem 2.3.

ss(})) =ewh. N

We do not know exactly how these two problems are related, but the following facts are
known. The Erdds-Stone-Simonovits theorem ([ESi66], [ESt46], for a survey see Bollobas’

book [Bo78]) says that the order of magnitude of T'(n; G) depends on the chromatic number
of G, namely lim,,_, T((T)G)
2

T(n; G), except for bipartite G. For every bipartite graph B which is not a tree there are
positive constants ¢; and ¢z (not depending on n) such that

= 1— (x(G) — 1)71. This theorem gives sharp estimate on

Q(n'ter) < T(n; B) < O(n?~%)

70

holds. If the graph is a tree F, then it is straightforward that T'(n; F') = ©(n). However
we will see that our problem has completely different threshold functions. For a special
matrix (such that the corresponding graph is a tree, hence it has linear Turdn function)
our threshold function turns out to be ©(nlogn).

An other related question is raised by Davenport and Schinzel. A sequence s =
1o ...z is called a Davenport-Schinzel sequence, s € DSk(n), if z; # x;41, x; €

{1,2,...,n} and s does not contain a subsequence x;, x;, ...x;, such that

512'1'1:.512'1'3:...:1','%71:...?él'iz:$i4:...:$i2t:...

(i1 < ip < ... < ig). Let dsg(n) denote the maximum length of an s € DSg(n). It is
obvious that
dsz(n) = n, dsq(n) =2n — 1.

Szemerédi [Sz74] proved that dsi(n) = O(nlog*(n)) for all fixed k while n tends to infinity.
(Here, as usual, log" n denotes the inverse of the function p: N — N with p(1) = 2,
p(n+1) = 2P(")) Recently, mainly due to the works of M. Sharir ([Sh87], [HS86], [Ko88])
it is known that the true order of the magnitude of dsy(n) for k > 5 is really superlinear,
e.g. (Hart and Sharir [HS86])

dss(n) = O(na(n)),

where «(n) is the inverse Ackermann function, a very slowly growing function. More on
this see in Section 8 and 9.

For a matrix M (or vector as a special case) ||M|| denotes the number of its entries
equal to 1, M7 is its transpose. [n] is the set of the first n positive integers, and [a, b] =:
{a,a+1,...,b}.

3. A reduction between matrices

Let C' be a configuration of 1’s. We are going to define two operations on C'. The first
one is simply deleting an entry. The second one is attaching a new column or row to the
boundary of C' and placing an entry 1 in the new column or row, next to an existing one

in C.

Definition 3.1. If D can be constructed from C using one of these operations we say that
D is obtained by an elementary operation from C. We use the notation C — D. Let
— be the transitive closure of —, i.e. C — D if D can be constructed from C using a
sequence of elemantary operations.

Note that the size of the matrix can decrease by the first type of elementary operation
if the deletion of the given entry creates an empty row or column.

71

Figure 3.2 shows several configurations and their relations.

!
11
=1 ")
v + N\
1 11 1
Cs= |1 Ci= |1 Cs = 1
1 1 1 1 1

N
1 1
Cr=1|1 Cg = 1
1 1 1 1
! !
1 1
1 1
Co = 1 | Co= 1
1 1
Figure 3.2.

Theorem 3.3. Let C, D be configurations such that C — D byt elementary steps. Then
f(n,m; D) < f(n,m;C)+t - max(n,m).

Proof. It is sufficient to prove the case t = 1, we can assume that C — D. If D is
constructed by deleting an entry then the claim is obvious. So we can assume that D is
constructed by adding an extra column to the end of C' with an extra 1 (the other cases
are very similar). Let M be a matrix of size n x m with f(n,m; D) many 1’s such that it
doesn’t have D as a subconfiguration. Let M’ be the matrix that we get if we delete the
last 1 in each row (assuming that there is any). Easy to realize that M’ doesn’t have C' as
a subconfiguration. So the number of remainder 1’s in M’ is at most f(n,m;C). |

72

The natural way to apply Theorem 3.3 is that in the case of C' — D an upper bound
on f(n;C) gives an upper bound on f(n; D) and a construction for a matrix not having
D as a submatrix gives a good construction for C.

Figure 3.4 contains some additional matrices with four 1’s and some of their —

relations.
1 1

Y
1 1 1
Cia = 1 Ci3 = 1
1 1 1
Il Il
1 1
1 1
1 1
Figure 3.4.

Let By be (1,1), a 1 x 2 configuration.
Proposition 3.5. If Bo — C and C has at least 2 entries in it then

min(n,m) < f(n,m;C) < cc(n+ m).

Proof. Trivial. The lower bound comes considering a matrix M with 1’s only in one
row or in one column.
The upper bound is immediate from Theorem 3.3. |

1 1 1
1 1 1
CIG - 1 7017 - 1 7018 - 1 ’
1 1 1
1 1 1 1 1
Co=|1 1],C05= 1 ,Co1 = 1,
1 1 1
1 1 1
Coy = 1 1 ,Cog = 1 1],04= 1 11,
1 1 1

1 1 1 1 1 1 1
031=< 1>7032=< 1 1>7033=< 1)7
1 1 1 1 1 1 1 1
034=<1)7035=< 1);C36:< 1 1),
(11 1

Cyr = 1).

Figure 3.6.

We remark that Figure 3.2, Figure 3.4 and Figure 3.6 contain all the 37 configurations
with four 1’s (not distinguising two if they are the same upto rotations and reflections).
The simple reduction principle yields that 22 of them have linear complexity.

Corollary 3.7.

(a) If M has at most 3 non-zero entries then f(n,m; M) < 2(n+m).

(b) The 22 matrices on Figure 3.6 have linear complexity, f(n,m;C;) < 3(n+ m) for
16 <i<37. 1

One can extend the — relations to sets of configurations. This will be proven very
useful.

Definition 3.8. Let C',...,CF be a set of configurations. We are going to define two
operations. One is simply adding a new configuration to our set. The second is substitute
a C* with D if C* — D. The transitive closure of these relations 1s —».

The notation is not in conflict with Definition 3.1, which is a special case of this.
Note that {C*,...,C*} — {D*',..., D'} iff for every i there is a j such that C* — D7
according to Definition 3.3.

The analog of Theorem 3.3 is the following.

Theorem 3.9. If {C*,...,C*} — {D',..., D'} then
Flnms (DY, D'Y) < f(nms {C.....C¥}) 4 const(n + m),

where the constant depends only on the two systems, and not on n and m. |

A few examples:

(Lt 1} 11 11}_) 1
1 1) 1 1) 1 !

4. Matrices with nlogn complexity

Theorem 4.1. ([Fii)) f(n,(} L 1>)<6nlogn. |

The construction in [Fii] shows that this upper bound is the best up to a constant
factor. Below we give another, a simpler recursive construction.

1 1
Ar = <1 0)’
Eyn A,
An+1 = <A2n 0211)7

where E,, is an n X n matriz with 1’s only in the diagonal connecting the upper right to
the lower left corner, and 0,, the n X n zero matriz.

Construction 4.2. Let

and

Claim 4.3.
(1) A, is a 2™ x 2™ matriz with (n 4+ 2)2"~ many 1’s.
1 1
(2) A,, does not have Cy = | 1 as a subconfiguration.

Proof. (1) Easy induction.

(2) Using induction. The initial case is obvious. Let us assume that the claim is
verified for Ag, when £ < n.

Suppose on the contrary that A,, has the forbidden configuration. A, is, by definition,
divided into 4 submatrices. We distinguish different cases depending on which submatrix
has the upper left corner of the forbidden configuration. If one of the A, _1’s is the one,
then our inductional hypothesis gives the contradiction. If Fy.-1 has that entry then
easy to verify that the bottom right corner of the configuration must be in 0g.-1. This
contradicts the fact that Osn—1 has no 1 entry at all. [

75

Corollary 4.4.

(1) f(;Ca), f(n;{C2,C3}), f(n;C4) = O(nlogn).
(2) f(n;C;) < 10nlogn, for 4 <i<15.

Proof. (1) Both the lower and upper bound comes from the following relations. Co —
{Cz, Cg} — Cy.
(2) See Figure 2.2 and Figure 2.4. |

5. A construction with /%" 1’g
oglogn

In the previous section we saw an nlogn upper bound on f(Cs). Now we construct
a matrix with @(lgg(l’fg"n) I’s and not having C5 as a subconfiguration. This section is
a slightly simplified version of [BGy|. Our construction will be recursive and it defines
N(s,t), a matrix of size st x st, where s,t > 1.

First we discuss a few properties of N(s,¢) what we need for the formal definition of
the matrix. The st rows are divided into s blocks, each having ¢ consecutive rows. In each
block we have a column such that each of its entries are 1’s and these are the first 1’s in
the corresponding rows. This column is the leading column of that block.

Let N(s) be a s x s matrix without the configurations:

1 1 1 1
(5.1) Cs=| 1 <}) 1), 1 <} })

1 1
Definition 5.2. N(1,t) is a t X t matriz with t 1’s in the first column and 0’s everywhere
else.

N(s,1) is the s X s identity matriz.

The construction of N(s,t+1) is the following (we assume that N(s,t") and N(s',t")
are already constructed for t' < t, s’ < s and t" arbitrary). Take a copy of N(s,t) and
insert an extra row after each block. In each extra row put a 1 at the leading column of the
block just above it. Add s new columns at the end of the already constructed part. At the

intersection of extra rows and new columns we have an s X s space. Put a copy of N(s)
with maximum number of ones.

The promised propeties are maintained so our recursion is correct.
Theorem 5.3. N(s,t) doesn’t have the configurations given in (5.1).

Proof. An easy induction by case by case check. |

The previous theorem gives lower bounds on the complexity of several configurations
and sets of configurations.

76

Corollary 5.4. ([BGy]) f(n;Cs) = Q{2280

loglogn

Proof. Let f(s,t) =||N(s,t)|| and f(s) = max||N(s)||. We have
f(s,t+1) > f(s,t)+ f(s)+ s,

and for s > ab

f(s) = f(a,b).
These inequalities imply that

fae) > —DII*+ 17— (1 - 1)*) +1°,

especially
FATYY > %0 > 192 — (1 — 1)+,

Letting @ = [— 1, n = {* we obtain the desired bound. |

6. More matrices with linear complexity

Recall that C1; =: <1 11 1) In this section we prove, that the complexities of

Ci1,...,Cq5 are all linear, at most 9n. As one can see from Fig. 2.4, and Theorem 2.3 the
above result implied by the following theorem.

Theorem 6.1. f(n,Ci;) < Tn.
Proof. Let A" = (a;j) be an n x m 0-1 matrix without Cy;. Delete the first and the

last entry in each row, and delete all entries in that row if ||(a;j)1§j§m|| < 3. For the
obtained matrix A = (a;;) we have

(6.2) 1A < [[A][+ 3n.
A does not contain the following configurations either:
1 1 1 1 1 1
1 1)’ 1 1)’ 11 '
For the #’th row (if it is non-empty) let m(i) (M(7)) denote the minimum (maximum,
resp.) index in that row, i.e. m(¢) := min{j : a;; = 1}. Then [m(3), M (¢)] C [m(3"), M (i)]
implies 7 < .

77

The element a;; is called type o if a;; = 1, it is not the first neither the last one in
its row (m(i) < j < M(i)), a« < i, j € [m(a), M ()], and ¢ is minimal with respect to
these constraints. By definition, there are no two entries of type « in distinct rows. But
there are no two 1’s of type a in the ’th row either, otherwise together with a, (o) and
U, M(a) they form a forbidden subconfiguration. So the number of entries in A which are
(1) first or last in their row,

(2) on the top of their column, or
(3) have a type « is at most 4n. We claim that all the entries of A fall one of the above

3 categories, implying ||A|| < 3n 4+ m. Then (6.2) finishes the proof of the Theorem.

Suppose that the entry a;; = 1 is not the first or the last one in the i’th row, and that
there exists a t < ¢ with a;; = 1. Then j € [m(t), M(t)]. Let o be the maximum index,
such that o < j, and j € [m(«), M(«)]. Then a;; has type a.

Indeed, suppose on the contrary, that some entry a;;; has type a, with @ < 4" < 4.
Then, j € [m(«a), M (a)] C [m(i'), M(i')], so the existence of i’ contradicts the definition
of a.

Let C* be a 2 x (t + 2) configuration with 1’s in the positions (1,1), (1, + 2) and
(2,2),...,(2,t+1). Ci; = C?. Deleting from every row the middle t — 2 entries, Theorem
6.1 implies

Corollary 6.3. f(n;<1 {1 .1 1 1)):f(n;Ct)§(t+5)n. [

Finally we mention a generalization of this idea in the direction of sequences with
forbidden subsequences. The following corollary is a special case of the result in [AKV].

Corollary 6.4. Suppose that the seqence s = x1,xa,...,x; with x; € [n|, does not have
two identical consecutive members, and does not contain the subsequence abba, where a < b,
then | < 100n.

Proof. (sketch) Split s into n equal parts s = s153.. .5y, ||5i|| = 100. Then there
is a subset s; C s; containing only distinct elements with |s;| > 9. Put 1’s into the i’th
column of an n x n matrix A according to s;. Finally, apply 6.1 to A to get a C11, and
then to get an abba in s. |}

7. A covering lemma

In this section we prove a covering lemma about 0 —1 matrices. As an easy application
of our lemma we get several new matrices with linear complexity.

We start with a definition. An intersection of s consecutive rows and ¢ consecutive
columns is called a rectangle. The horizontal size of R is ¢ and it is denoted by h(R), the
vertical size of R is s and it is denoted by v(R). M, itself is an example for a rectangle.

78

Lemma 7.1. Let M be arbitrary 0 — 1 matriz. Then there is a system of rectangles {R;}
such that

(1) R;’s cover all the 1’s,

(2) 3 h(Ri) < 4h(M) and 3, v(R;) < 4v(M),

(3) each R; has a 1 in the upper left or bottom right corner.

Proof. Let us define a partial order between the positions in a given matrix. We say
that a < b, if the row of a is not later than b’s one and a’s column is not later than b’s
one. a _bifa <band a #b.

There are incomparable positions. For two incomparable positions ¢ and d we say
that ¢ 7 d if ¢’s row is earlier than d’s.

Take M and consider only the positions where we have a 1. Let m; “mo /... ~my
be the set of minimal 1’s for the partial order . Let My * My ... 7 M; be the set of
maximal 1’s for the partial order . We can assume that m is in the first column, my is
in the first row, M; is in the last row and M; is in the last column of M.

Let m; 1 (for ¢ = 1,...,k — 1) be the position in the intersection of the row of m;
and the column of m;4 ;. Let my be the lower left corner of M. Let Moy 1 be the upper
right corner of M. Let M; 1 (for j =1,...,1—1) be the position in the intersection of the
column of M; and the row of M;;1. Let My =my and My 1 =my, 1. Let h; = [mg, m; 1]
be a horizontal interval of positions in the row of m;, with endpoints at m; and m, 1. Let
v; be the vertical interval [m;_1,m;]. We define the corresponding intervals for maximal
’s. Let V; = [MZ-,MH%] and H; = [Mi_%,MZ-]. It is clear that v, h1,v9,..., Vg, hx and
H{,Vi,Hs, Vs, ..., H,V; defines two stair shaped curves. Let us denote them by s and S.
By definition it is straightforward that there are no 1 above s and below S.

Now we are starting to construct our covering system of rectangles. This system is
containing two sequences of rectangeles: {Q;} and {P;}. The @;’s are going to have an
entry 1 at the bottom left corner, the P;’s are going to have a 1 at the upper left corner.
We define them recursively.

Let Q1 be a rectangle with lower right corner at M;, with lower left corner at mu.
So its right vertical side is on the vertical half line starting at M;, going up. The missing
corner of (; on this line is where it first hits s.

(21 might cover several h; intervals. Let h; the first one which is not covered by ;.
Let P; be a rectangle with upper left corner at m;. This fact gives us two half lines starting
at m; and going down and to right. They hit S at two positions. They will be two other
corners of ().

Next, we will explain the general step in the definition.

Let us assume that we already defined Q1, P1,...,Q;, P;. Let V; be the first vertical
interval of S which is not covered by Q. U...UP;. Let M; be bottom right corner of ;1.
That defines two half lines starting at Mj, one going up (let us say e;41) and one going
to the left. They hit s at two positions. They give us two other corner of ;4;. This
completes the definition of Q;41.

Let us assume that we already defined Q1, P1,...,Q;, P;, Qiy1. Let h; be the first
horizontal interval of s which is not covered by Q1 U...UP;UQ;4+1. Let m; be upper left
corner of P;1,. That defines two half lines starting at m;, one going down and one going

79

to the right (f;4+1). They hit S at two positions. They give us two other corner of P; ;.
This completes the definition of Pjy;.

The procedure stops when the already constructed rectangles cover all the V;’s (or all
the h;’s).

Now we prove that the constructed system of rectangles satisfy (1)-(3).

(3) is immediate.

In order to prove (1) we need a few remarks.

It is immediate from the definition that as ¢ is increasing the lines, e;’s are moving to
the left and the lines f;’s are moving up.

The definition also implies that the upper left corner of P; is on e; or is left from
e;. Similarly the lower right corner of ;11 is on f; or is below f;. This guarantes that
Q1U...UP;UQ;+1 covers everything left from e;;; in the region between s and S. Similarly
Q1U...UP,UQ;+1UP;+1 covers everything below f;11 in the region s and S. This proves
(1).

For (2): From the definition the top side of @; (and this way the whole rectangle)
is not above f;. The lower right corner of Q;;+1 (let us say Mj;) is not above f;, but it
is the last maximal 1 with this property. This guarantees that ;42’s lower right corner
(and this way the whole rectangle) is above f;. So the rows of @; and @Q; 2 are completely
disjoint. One gets the corresponding statements for the columns and for the P;’s similarly.
(2) is an easy consequence of this.

This completes the proof. |

Corollary 7.2.
(1) f(n,m;Cho) is linear.

1
1
(2) f(n,m; 1) is linear.
1
1
1 1 1
(3) fn,m;{| 1 , 1]}) is linear.
1 1 1

Proof. (1) Take the cover guaranted by Theorem 7.1. Count the 1’s separately in

different covering rectangles. We know that in the upper leftcorner or in the lower right
1
corner there is a 1. So we can bound the number of 1’s using that f(n,m; 1)

1
and f(n,m; | 1) are linear. If we add up these bounds we obtain the claim in

(1).

The same proof works for (2), but there we use Theorem 5.1.
(3) follows the same way. [

30

8. Davenport-Schinzel matrices

In this and the next section we consider the complexity of Cg = <1 1 1 1)

Definition 8.1. A matrix M is called Davenport-Schinzel matrixz if it does not have Cg
as a subconfiguration.

The naming is based on the analogy between this kind of matrices and Davenport-
Schinzel sequences (see [DS65]).

The main result in this section is to construct a Davenport-Schinzel matrix with
Q(na(n)) many 1’s. Finally we discuss other configurations, missing from our matrix.

Our construction is very similar to known constructions of Davenport-Schinzel se-
quences (see [HS86],[Wi86]). We use the same double induction. But instead of sequences
we work with matrices.

The matrices we are constructing have two parameters s and t. We refer to them as
M(s,t). First we describe a few properties of M(s,t). The recursive definition of these
matrices is assuming these properties so we need to maintain them.

(a) The size of the matrix is tC(s,t) x tC(s,t), where C(s,t) is defined as follows.
C(s,t)=C(s,t—1)C(s—1,C(s,t — 1)) and C(1,s) =1 and C(s,1) =2, for s > 1.

(b) The tC(s,t) many rows are divided into blocks. We will refer to them as horizontal
blocks. One block contains ¢ rows (hence we have C(s,t) many blocks). Let H; be the set

of the ((i — 1)t + 1) St (it)*® rows, i.e. the i*® horizontal block.
(c) Inside H; the appearance of the first 1 happens in the same column (considering

different rows). Let us say this is the (¢;) 0 column. The 1's in these columns are called
leading 1’s.
(d) 1 =rc1 <cz<ec3<...<cgs,- These columns divide the matrix into vertical

blocks. Let V; be the set of columns from the (¢;) th through (¢i41 — 1)Y, ie. the i th
vertical block.

The definition of M(s,t) is going to use the matrices S = M(s,t — 1) and B =
M(s—1,C(s,t —1)). (Think about S as a small matrix and about B as a big matrix.) B
has C'(s—1,C(s,t—1)) many horizontal blocks of size C(s,t—1). B has C(s—1,C(s,t—1))

th one. S

many vertical blocks too. Let v; be the number of columns contained in the
has C(s,t — 1) many blocks (one for each row in a block of B).

The following definition assumes properties (a)-(d). (So one must check that these
properties are maintained.)
Definition 8.2. M(1,s) is an identity matric of size s x s. M(s,1) is <1 (1)> (for
s>1).

In order to define M(s,t) take C(s —1,C(s,t — 1)) many copies of S (one for each
horizontal block of B). The construction of M will be completed in C(s — 1,C(s,t — 1))
many stages. In the it" stage we add (t — 1)C(s,t — 1) + C(s,t — 1) many new rows and

81

(t—1)C(s,t —1) +v; many new columns to the part already built. The construction starts
with the empty matriz. The general (i) stage is the following.

(1) We put (t—1)C(s,t—1) many new rows and new columns after the already existing
ones. In the intersection of the new rows and columns we place a copy of S.

(2) We insert an extra row after each horizontal block of the new copy of S. In these
extra rows we place one extra 1, under each leading column.

(3) Finally we add v; new columns (after the old ones). In the new space we place a
copy of the it" wvertical block of B using the extra rows.

The constructed matrix M = M(s,t) has properties (a)-(d).

Let us introduce a few notations. Ordinary rows and ordinary columns are the rows
and columns introduced in step (1). Exztra rows are the rows introduced in step (2). Extra
columns are the ones introduced in step (3). The 1’s introduced in step (1) are the ordinary
1’s. The 1 entries introduced in step (2) are called the extra 1’s. The 1’s introduced in
step (3) are the new 1’s.

The previous notations give a partition of 1’s into new, ordinary and extra 1’s. There
are similar partitions for rows and columns.

Any extra 1 is in an ordinary column and in an extra row.

The next lemma summarizes a few simple statements about the matrix M (s, t).

Lemma 8.3.

(1) If s and t are chosen appropriately and n = sC(s,t) then M(s,t) is an n X n matriz
with na(n) many 1’s.

(2) The (¢;)™" column contains 1’s inside H; and no other 1’s.

(8) Inside H;, after the leading column the 1’s are decreasing, i.e. if k and l are two 1’s
in the same horizontal block and they are not leading 1’s then k ™\l orl _k. (Recall
that ¢ _p vaguely means that p is south, east or south-east direction from q.)

(4) Ifl is a new 1 and k is a 1 such thatl Sk then k is a new 1 too. (Recall that ¢ /p
vaguely means p is north, east or north-east direction from q.)

(5) Ifl is an ordinary 1 and k is a 1 in l’s column or in l’s row then k is an ordinary 1
in the same horizontal block with the one exception when [is a leading 1 and k s the
extra 1 in its column.

(6) If I is an extra 1 or an ordinary 1 and k is an ordinary 1 such thatl /' k then | and
k is in the same horizontal block.

Proof. For (1) we refer the reader to [HS86] or [Wi86].
The proof of (2)-(6) is easy induction following the definition of M(s,t). |

Now we are ready to discuss the missing configurations in M (s,t).
Theorem 8.4. M(s,t) does not have the following configurations: (i) (} }), (ii)

1 1 1

(1 ! D;(z‘m‘) . ,(z'v)G . 1),(v) 1 ,(m)(l b 1),(1)%)
1 1 1 1
. , (viii) o

82

Proof. Each configuration in the statement has four 1’s in it. Let us order these 1’s.
A 1 is earlier than an other if its row is earlier or if they are in the same row and it is
left from the other. In the case of each configuration name the four 1’s as a, b, ¢ and d
following the previously defined order.

Our proof is by induction following the definition of M (s,t). The initial case is s = 1
or t = 1. Then the statement is clear.

The induction step is proved by contradiction. Let us assume that in M(s,t) we can
find four different 1’s: the image of a, b, ¢ and d, such that they obey the configuration.
The individual configurations are considered separately.

(i) We distinguish cases depending on what kind of entry corresponds to ¢. Now on
we don’t distinguish a, b, c,d and their images.

Case 1: cis an extra 1. Then d is a new 1. a is in a leading column but it is not an
extra 1. So a’s row is an ordinary row. On the other hand ¢ b, hence (by 8.3.(4)) b is a
new 1. So b’s row (what is the same as a’s row) is an extra row. Contradiction.

Case 2: c is a new 1. Using 8.3.(4) the whole configuration consists of new 1’s.
So it can be recognized inside M (s — 1,C(s,t — 1)). Contradiction with the inductional
hypothesis.

Case 3: ¢ is an ordinary 1. Using 8.3.(5) the whole configuration consists of ordinary
1’s from the same horizontal block. So our configuration can be recognized in a copy of
M(s,t—1).

(ii) Case 1: ¢ is an extra 1. Then a, b and d are new 1’s. Let ¢’ the first 1 after ¢ in
its row (that row is an extra row and ¢’ is a new 1). Easy to check that a, b, ¢’ and d give
us a configuration C; or one what is the same as the original configuration. So using (i)
or the inductional hypothesis we get a contradiction.

Case 2: cis anew 1. a, b, ¢ and d are all new 1’s. So our configuration is in a copy
of M(s —1,C(s,t —1)).

Case 3: cis an ordinary 1. Using 8.3.(5) our configuration is inside a copy of M (s,t—1).

(iii)-(vi) Using the same case analysis based on he bottom left 1 (what is not necessarily
c).

(vii) Casel: d is an extra 1. Then a, b and ¢ are ordinary 1’s in the same horizontal
block (using 8.3.(5) and the fact that ordinary columns and rows in the same block are
consecutive ones). Then the positions of b and ¢ are contradictory with 8.3.(3).

Case 2: d is a new 1. The same as the previous second cases.

Case 3: d is an ordinary 1. The same as the previous third cases.

(viii) Case 1: d is an extra 1 and c¢ is a new 1. ¢ b hence b is a new 1 too, in
particular a’s and b’s row is an extra row. d /" a so a cannot be an extra 1. Hence all four
1’s are new except d. Move d right to the first 1 in its row. Then we obtain four new ones
(hence they are in a copy of M (s —1,C(s,t — 1)) such that their configuration is the one
described in (vii) or in (viii).

Case 2: d is an extra 1 and c is an ordinary 1. Using similar arguments as before
we have that all four 1’s are ordinary except d and they are in the same horizontal block.
Move d up by one position. We obtain four ordinary 1’s (inside a copy of M (s,t—1)) such
that their configuration is the one described in (vi) or in (viii).

Case 3: d is not an extra 1. In this case take the bottom left 1 (d) and replace it with

83

another 1 by shifting it to the leading 1 in its row and sinking it to the bottom 1 in that
column. This way we obtain the same configuration but the new d is an extra 1. That
was handled in the previous cases. |

The previous theorem gives lower bounds on the complexity of several configurations
and sets of configurations.

Corollary 8.5.
(1) f(n;Ce) = Q(nc(n)),
(2) f(n; Cs) = Q(na(n)),

o sod(, 1), 11 (M) = amee.

9. Upper bound on Davenport-Schinzel matrices

In this section we prove that
Theorem 9.1. f(n: (1 o 1)) < O(na(n)).

Proof. Let A" = (a;j) be an n x m 0-1 matrix not having a subconfiguration of
Cs = 1 1 1 ok Delete the first and the last 1 in each row, and keep only the
columns with at least 2 entries. The obtained matrix is denoted by A = (a;;), and
obviously, for the number of entries we have ||A'|| < ||A|| + 2n + m. Form a sequence s;

from the j’th column (a;j)1<i<n of length |[|(a;;)|| =: I(j) in the following way

RN B | J
s; = (1, 527"'731(3'))7

where] < s} < ... < sg(j) and a,,; = 1 for 1 < i < [(j). Form one sequence s =:

$1S82...8,, in this order. Delete from s the element s{(j) if it equals to s{“. In the
obtained sequence, s, there are no equal consequtive elements. We claim that s does not
contain a subsequence ababa, i.e. it is a DS5(n) sequence.

Suppose on the contrary. Then there exists a subsequence abab of s with a < b. So
there are j; < ... < j4 such that a € s;,, b € s5,, a € s5,, b € s;,. Here jo < j3, otherwise
the first b in abab could not preceed the second a in s. Consider the submatrix defined by
the rows a and b and the columns {ji,...,js}. There are four possibilities.

84

J1<J2<J3<Ja
J1=J2<J3 < Ja

J1 = Jj2 and jz = ja

(1)
(")

In each cases A will contain a Cg, a contradiction.

So ||A]| < 2n +2m +dss(n). |
Corollary 9.2. f(n;C%), f(n;Co) = O(na(n)). |

J1<J2<J3=Ja

In the very same way we can obtain the following theorem. Let C?* be a partial 2 x 2k
matrix with C1,2i—1 = 1, C2,2; = 1forl S 1 S k.

Theorem 9.3. f(n;C?*) < O(dsy_3(n)). |

It is not difficult to give a lower bound for f(n; C2¥) which is probably closer to f as
the upper bound.

Theorem 9.4. f(n;C?%) > Q (dszk41(n))

a(a(n))Oala(n)2k=1)
Remark. Here the right hand side is superlinear. For the best bound on dsag41(n)
see [ASS].
Proof. Let s be a Davenport-Schinzel sequence s € DS, y1(n) of length dsagi1(n)
such that the element ¢ appears earlier than j for i < j. It is well-known [Sh87], that

dsopr1(n) = O(na(n)0@™ ™),

Split s into n almost equal parts s = s1...s,. Let s; be a set of distinct values of s;,
||s;|| = . We have that

. d82k+1 (n)

—1<]sil] < a:O(a(a:)O(a(w)2’°‘4)) < xo(a(y)O(a(y)Qk_‘l)).
n

Here y = O(a(n)?@™™* ™) so a(y) = a(a(n)) + O(1).
Finally, forming the i column of an n x n matrix A from 8; we obtain the desired
configuration without C?¢. ||

85

10. Conclusions and open problems

The next table summarizes our results.

86

Configurations Lower bound ‘ Upper bound

()

see Theorem 1.1.
bl 11 ©(nlogn)
1 1 1

see Theorem 3.1. and Corollary 3.4.

see Corollary 4.4. see Corollary 3.4.

Q(n) O(nlogn)

see Corollary 3.4.

O(na(n))

1
1) Q(falozn) O(nlogn)

see Corollary 7.5. and Theorem 8.1.

Q(n) O(na(n))

see Corollary 8.2.

All the other 28 matrices with 4 entries O(n)

Finally we mention several open problems. The first few ones are suggested by the
previous table. Even in the case of configurations with four 1’s there are several unknown
complexities.

Is it true that the complexity of all permutation configurations are linear?

What is the characterization of configurations with linear complexity? In extremal
graph theory the forbidden subgraphs with linear threshold are exactly the trees.

Is it true, that if G is the (bipartite) graph corresponding the configuration C' then

(10.1) f(n;C) < O(T(n; G) logn)?
Does (10.1) hold at least for trees?

87

There are several combinatorial structures with an underlying order where the similar
extremal question is interesting. An example is a set of intervals on a given line. How
many intervals (over n endpoints) guarantee the existence of a given interval configuration?
Similar question can be asked about diagonals in a cycle. Davenport and Schinzel’s original
question can be extended to arbitrary forbidden subsequence. As far we know there is no
organized account of these questions.

38

7. PARTITION OF GRAPHS

1. Introduction

E. Gyori suggested the following problem in the sixth Hungarian Colloquium on Com-
binatorics held at Eger, 1981: given integers s,t > 3, does there exist a number f(s,t) such
that every f(s,t)-connected graph G admits a proper partition {S,T } of the vertex-set
V(G) so that the induced subgraphs G(S) and G(T') are s-connected and ¢-connected,
respectively? Thomassen [Tho82], and independently M. Szegedy [Sz82] established the
existence of the function f(s,¢). In his proof Thomassen showed the existence of a function
g(s,t) (where s,t are natural numbers) such that the vertex-set of any graph G with min-
imum degree g(s,t) has a decomposition S U T such that G(S) and G(7T') have minimum
degree at least s and t, respectively. Let f(s,t¢) and g(s,t) be the minimal numbers under
the above conditions. In his paper Thomassen gave rather weak bounds. We sharpen the
estimates of the functions f(s,t) and g(s,t).

Let us recall a few graph theoretical notations. Let G be a simple graph, V(G) is the
set of points of G, E(G) is the set of edges of G. Let S be a subset of the vertices and
xz € V(G). G(S) is the subgraphs of G induced by S, e(S) is the number of edges of G(.59),
d(S) denotes the minimum degree in G(S5), d(z) is the degree of point x, d(z, S) denotes
the number of edges zy, where y € S. {S,T} is a partition of the set V(G) if S and T
are non-empty, disjoint subsets of V(G) such that SUT = V(G).

2. Estimating the function f(s,t)

Theorem 2.1. If s >4, then g(s,t) <t+2s— 3.

Proof. We have to prove that d(V(G)) > t + 2s — 3, then there exists a partition
{S, T} of the set V(G) such that d(S) > s and d(T) > t.

89

Let S be a vertex-set such that |S| is minimal and (if there are more than such S)
e(S) is maximal under the conditions:

() {e(S) > (s —1)|5| — 2l

S| > s

Such an S exists (for example V (G) satisfies condition (x)). S # V(G) as for any z € V(G),

dV(G)—{z})>t+2s—4,
so if £ > 2, then

t+2s—4

e(V(G)—{a?})Zf\ —{z}| > (s-DIV(G) —{z}|

(If t = 1, the assertion is trivial.) So { S, T = V(G) — S} is a partition of V(G). We shall
prove that this is an appropriate partition.
First we note that |S| > s + 1. Suppose that |S| = s, then from (x) we obtain

s(s—1) _ s(s —1)
2 2 7

e(S) > (s—1)s—

a contradiction.
Now let = be a point of S with minimum degree in G(S). We claim that d(x,S) > s
i.e. d(S) > s. Assume indirectly that it is not the case:

S —{z}]2s
e(S—{z})>(s-1IS| -

—(-D=06-DIS-{z}|-

s(s —1) s(s —1)
2 2

This contradicts the minimality of |S|.
On the other hand, if = is the vertex above, then by the minimality of |S|,

(2.2) e(S)—d(S) = e(S—{z}) < (3—1)|5—{x}|—8(82_1) z(s—l)(lsl—l)—s(sz_l).
We have
BUE) < sy < (s =181 -1 2) (). d(s) < (25 - 2)%%2;

So if s > 3, then d(S) < 2s — 2, i.e. d(S5) <2s— 3.

Now we show only a “few” edges connect any point of 7' = V(G) — S to S. Let
D = maxgzerd(z,S) and let y be a point of T for which d(y,S) = D. We claim that
D <2s-—3.

There are two cases to consider.
Case 1. d(S) < 2s — 4.

90

Suppose that D > 2s —3. Let 8" =S —{z}U{y}. e(S") > e(S) and |S’| = |5|, so
S’ satisfies the condition (x). This contradicts the maximality of e(S). This proves that
D <2s—3.
Case 2. D > 2s — 1.
The same exchange as above gives us a contradiction.
Case 3. If D = 2s — 2 and there is an « € S such that d(z, S) = 2s — 3 and zy € E(G).
The same exchange as above gives us a contradiction.
Case 4. If D = 2s — 2 and there exist no z € S such that d(z, S) = 2s — 3 and zy € E(G).
Then in S only the neighbors of y may have degree 2s — 3. Hence

o(S) > (25 —2)(2s — 3) + [|;S'| — (25 -2)](2s - 2) (s—1)(IS| - 1).

But from (2.2)

s(s—1)

e(S) < (s—1)(|S|-1) - +d(9)=(s—1)(|S|-1) - 8(82_1) + 25 — 3.

So we have
-1
2s — 3 — S(S)

> 0,

0>s*—55+6=(s—2)(s—3).

This contradicts s > 4.
This proves that D < 2s — 3, hence d(T) >t. |

In fact we proved the following claim:

Theorem 2.3. Let G be a graph with minimum degree at least 2s — 1 (s > 4) and let
S be a vertez-set such that |S| is minimal and e(S) mazimal under condition (x). Then
S,V(G) — S are non-empty sets and in S the degree of any vertez is at least s and from
any verter in V(G) — S at most 25 — 3 edges go to S. |

Exchanging s and t we obtain ¢(s,t) < 2t + s — 3. So if min(s,t) > 4, then g(s,t) <
s+t — 3+ min(s,t). It can be easily seen from the proof that if s = 3, then g(s,t) <t+4
and if s = 2, then g(s,t) < t+3. The complete graph K1, shows that g(s,t) > s+t+1.
The following corollary sums up our results.

Corollary 2.4. Ifmin(s,t) <4, then g(s,t) =s+t+1, if min(s,t) >4, then s+t+1 <
g(s,t) <s+t+1+ (min(s,t) —4). |

In the proof we used only the following conditions on the set S:
(1) S satisfies (),
(2) ifx €S, then S — {z } does not satisfy (x),
(3) ifzeSandy ¢S, thene(S—{z}uU{y}) <e(S).
Based on this observation we give an algorithm which has a graph G with minimum
degree at least 2s + ¢ — 3 as input and a partition {.S,7 } as output.

91

Algorithms 2.5. Step 0. Let S=V(G).

Step 1. If there exists an « € S such that S — { z } satisfies (x), thenlet S =5 —{z}
and restart the algorithm with the new S.

If there is no appropriate x, go to step 2.

Step 2. If there is an € S and y ¢ S such that e(S —{x} U{y}) > e(95), then let
S=8—{xz}U{y} and restart step 2 with the new S.

If there is no (z,y) pair as above, then from the above remark {S,V(G) — S} is a
valid partition.

Step 1 is executed O(n) many times. Between two executions of step 1 the step 2 is
called O(n?) many times. The execution of a step takes O(n?) inspections. Consequently
the running time of the whole algorithm is O(n®).

3. Estimating the function f(s,t)

Theorem 3.1. [Mad72] If |V(G)| > 2n — 1 (n > 2, natural number) and e(G) > (2n —
3)(|V(G)| — (n— 1)) for a simple graph G, then G has an n-connected induced subgraph.

In fact the proof of this theorem gives the following result:
Theorem 3.2. [Mad72] If G is a graph as above, Voy C V(G) and |Vy| is minimal such
that |Vp| > 2n — 2 and

(2n —2)(2n — 3)
2 ?

e(Vo) > (2n —3)(|Vo| = n+1) = (2n — 3)|Vo| —

then Vo induces an n-connected subgraph. |
Using this result, we prove the following theorem:

Theorem 3.3. If s > 3,t > 2 and G is an (s +t — 1)-connected graph with d(V(G)) >
4s + 4t — 13, then there exists a partition {S,T } of V(G) such that G(S) and G(T) are
s-connected and t-connected, respectively.

Proof. Consider the following conditions on S C V(G):
|S| Z 2s — 27

(2s — 2)(2s — 3)

e(S) > (25— 3)|S| - >

92

Choose an S such that |S| is minimal and (if there are more than one such S) e(S) is
maximal under the conditions above. {S,T =V(G)— S} is a partition of V(G) which
can be proved the same way as it was done in theorem 2.1.

By theorem 3.2 S induces an s connected subgraph.

On the other hand by theorem 2.3 d(y,S) < 2(2s —2) —3 = 4s -7 for y € T.
Consequently, d(T") > 4t — 6. So

|T| > 2t —2, and

4t —6)|T
LRI

By Mader’s theorem 3.2 there exists a subset Ty C T' with G(7Tp) t-connected.

After this, we can follow the proof of Thomassen. Let S and T" be non-empty, disjoint
sets such that G(S) and G(T) are s-connected and t-connected, respectively, and |S U T|
is maximal.

We are going to prove that SUT = V(G). Suppose that A = V(G) — (SUT) # 0.
Since [(SU A)UT| > |SUT| by the maximality of |S UT| we have that G(S U A) is not
an s-connected graph, i.e. G(S U A) has a cut-set B such that |[B| < s — 1. Let Gy be a
component of G((SUT) — B) such that C = V(Gy) C A. [(TUC)US| > |SUT], so
G(T'UC) is not a t-connected graph. Let D be a cut-set of G(T'UC') such that |[D| < t—1.

It is easy verify that BU D is a cut-set of G. But |BU D| < s +t — 2, contradicting
the (s + t — 1)-connectivity of G. |

If G is (4s + 4t — 13)-connected, then G satisfies the conditions of theorem 3.3. Hence
we obtained that if s > 3, ¢ > 2, then f(s,t) < 4s+ 4t — 13. The graph K441 shows that
f(s,t) > s+t + 1. The following corollary sums up our bounds on f(s,1):

o(T) > (2t~ 3) || — (¢~ 1)]-

Corollary 3.4. If s> 3 andt > 2, then

s+t+1< f(s,t) <4s+4t—13. |

93

REFERENCES

[A28] W. Ackermann, Zum Hilbertschen Aufbau der reelen Zahlen, Math. Ann. 99
(1928), 118-133.

[AKV] R. Adamec, M. Klazar and P. Valtr, Forbidden words, Preprint, Department of
Mathematics, Karlovy University, Prague, Czechoslovakia.

[Ad78] L. Adleman, Two theorems on random polynomial time, Proc. 19th IEEE FOCS
(1978), 75-83.

[ASS] P. Agarwal, M. Sharir and P. Shor, Sharp upper and lower bounds on the length
of general Davenport-Schinzel sequences, Preprint.

[AA88] A. Aggarwal and R.J. Anderson, A random NC'-algorithm for depth first search,
Combinatorica 8 (1988), 1-12.

[AAKS89| A. Aggarwal, R.J. Anderson and M.Y. Kao, Parallel depth-first search in gen-
eral directed graphs, Proc. 21st ACM STOC (1989), 297-308.

[AHU74] A. Aho, J.Hopcroft and J. Ullman, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Menlo Park, CA, 1974.

[ABHKPRSzT86] M. Ajtai, L. Babai, P. Hajnal, J. Komlés, P. Pudldk, V. Rédl, E.
Szemerédi, Gy. Turan, Two lower bounds for branching programs, Proc. 18th ACM
STOC (1986), 30-38.

[AKS87] M. Ajtai, J. Komlés and E. Szemerédi, Deterministic simulation in
LOGSPACE, Proc. 19th ACM STOC (1987), 132-140.

[AWS85] M. Ajtai and A. Wigderson, Deterministic simulation of probabilistic constant
depth circuits, Proc. 26th IEEE FOCS (1985), 11-19.

[ABI86] N. Alon, L. Babai and A. Itai, A fast and simple randomized parallel algorithm
for the mazimal independent set problem, Journal of Algorithms 7 (1986), 567-583.

[AB87] N. Alon and R. Boppana, The monotone circuit complexity of Boolean functions,
Combinatorica 7 (1987), 1-22.

[AMS86] N. Alon and W. Maass, Ramsey theory and lower bounds for branching programs,
Proc. 27th IEEE FOCS (1986), 410-417.

[And87] R.J. Anderson, A parallel algorithm for the maximal path problem, Combina-
torica 7 (1987), 315-326.

[An85] A. E. Andreev, On a method of obtaining lower bounds for the complexity of
individual monotone functions, in Russian, Dokl. Akad. Nauk SSSR 282/5 (1985),
1033-1037.

94

[AV79] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian
circuits and matchings, Journal of Computer and System Sciences 19 (1979), 155-193.

[BHSzT87] L. Babai, P. Hajnal, E. Szemerédi and Gy. Turdn, A lower bound for
read-only-once branching programs, J.C.S.S. 35 (1987), 153-162.

[BPRSz| L. Babai, P. Pudlak, V. R6dl and E. Szemerédi, Lower bounds to the complexity
of symmetric Boolean functions, submitted for publication.

[Ba85] D. A. Barrington, Width-3 permutation branching programs, draft, MIT (1985).

[Ba86] D. A. Barrington, Bounded-width polynomial size branching programs recognize
ezactly those languages in NC*, Proc. 18th ACM STOC (1986), 1-5.

[Be86] P. Beame, Limits on the power of concurrent-write parallel machines, Proc. 18th
ACM STOC (1986), 169-176.

[BC85] P. Beame and S. Cook, private communication.

[BO83] M. Ben-Or, Lower bounds for algebraic computational trees, Proc. 15th ACM
STOC (1983), 247-248.

[Be73] C. Berge, “Graphs and Hypergraphs,” North-Holland - American Elsevier, 1973.

[BBL74] M.R. Best, P. van Emde Boas and H.W. Lenstra, Jr., A sharpened version
of the Aanderaa— Rosenberg conjecture, Report ZW 30/74, Mathematish Centrum,
Amsterdam (1974).

[BGy| D. Bienstock and E. Gyo6ri, An extremal problem on sparse 0 — 1 matrices, to
appear in SIAM J. Disc. Math..

[BI84] N. Blum, A boolean function requiring 3n network size, Theoritical Computer
Science 28 (1984), 337-345.

[BI87] M. Blum and R. Impagliazzo, Generic oracles and oracle classes, Proc. 28th IEEE
FOCS (1987), 118-126.

[Bo77] B. Bollobds, Complete subgraphs are elusive, J. Combinatorial Theory Ser. B 20
(1976), 1-7.

[Bo78] B. Bollobas, “Extremal Graph theory,” Academic Press, London, 1978.
[Bo85] B. Bollobas, “Random graphs,” Academic Press, London, 1985.

[BE78] B. Bollobas and S. E. Eldridge, Packing of graphs and applications to computa-
tional complexity, J. of Combinatorial Theory Ser. B 25, 105-124.

[Bo] R. Boppana, for a description see [SW86], unpublished.

[BoS88] R. Boppana and M. Sipser, The complezity of finite functions, preprint, 1988, to
appear in “The Handbook of Theoretical Computer Science”, edited by J. van Leewen
et al., North-Holland, Amsterdam.

[Bor77] A. Borodin, On relating time and space to size and depth, SIAM J. Comput. 6
(1977), 733-744.

95

[BFKLT81] A. Borodin, M.J. Fischer, D.G. Kirkpatrick, N.A. Lynch and M. Tompa, A
time-space tradeoff for sorting on nonoblivious machines, J.C.S.S. 22 (1981), 351-364.

[BDFP83] A. Borodin, D. Dolev, F. E. Fich and W. Paul, Bounds for width-2 branching
programs, Proc. 15th ACM STOC (1983), 87-93.

[BK87] J. Boyar and H. Karloff, Coloring planar graphs in parallel, J. Algorithms 8
(1987), 470-479.

[Br86] A.Z. Broder, How hard is it to marry at random, Proc. 18th ACM STOC (1986),
00-38.

[Br66] W.G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math.
Bull. 9 (1966), 281-285.

[BS77] D. Burns and S. Schuster, Every (p,p — 2) graph is contained in its complement,
J. Graph Theory 1 (1977), 277-279.

[BS78] D. Burns and S. Schuster, Embedding (p,p — 1) graphs in their complements,
Israel J. Math. 30 (1978), 313-320.

[Ca74] P. A. Catlin, Subgraphs of graphs I., Discrete Math. 10 (1974), 225-233.

[CFL83] A. K. Chandra, M. L. Furst and R. J. Lipton, Multiparty protocols, Proc. 15th
ACM STOC (1983), 94-99.

[Ch52] H. Chernoft, A measure of asymptotic effiency for tests of a hypothesis based on
the sum of observations, Annals of Math. Stat. 23 (1952), 493-509.

[Co85] S. Cook, A Taxonomy of Problems with Fast Parallel Algorithms, Information
and Control 64 (1985), 2-22.

[CDR86] S. Cook, C. Dwork and R. Reischuk, Upper and lower bounds for parallel
random access machines without simultaneous writes, STAM J. Comput. 15 (1986),
87-97.

[DS65] H. Davenport and A. Schinzel, A combinatorial problem connected with differen-
tial equations, I and II,, Amer. J. Math., 87 (1965), 684-694 and Acta Arithmetica,
17 (1971), 363-372.

Y

[DM86] M. Dietzfelbinger and W. Maass, Two lower bound arguments with ‘inaccessible
number, Structure in Complexity Theory, Lecture Notes in Computer Science, 223,
Springer, Berlin - New york, 1986, 163—-183.

[Di52] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2
(1952), 69-81.

[Du85] P.E. Dunne, Lower bounds on the complexity of 1-time-only branching programs,
FCT Proc., Lect. Notes in Comp. Sci. 199 (1985), 90-99.

[EH91] H. Edelsbrunner and P. Hajnal, A lower bound on the number of unit distances
between the vertices of a convex polygon, JCT ser. A 56 (1991), 312-316.

96

[Erd7] P. Erd6s, Some remarks on the theory of graphs, Bulletin Amer. Math. Soc. 53
(1947), 242-294.

[ERS66] P. Erdés, A Rényi and V.T. S6s, On a problem of graph theory, Studia Sci.
Math. Hungar. 1 (1966), 215-235.

[ESi66] P. Erdgs and M. Simonovits, A limit theorm in graph theory, Studia Sci. Math.
Hungar. 1 (1966), 51-57.

[ES74] P. Erd6s and J. Spencer, “Probabilistic methods in combinatorics,” Akadémia
Kiado, Budapest, 1974.

[ESt46] P. Erdds and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math.
Soc. 52 (1946), 1087-1091.

[FT87] U. Faigle and Gy Turdn, The complezity of interval orders and semiorders, Dis-
crete Math 63 (1987), 131-141.

[FT88] U. Faigle and Gy. Turdn, Sorting and recognition problems for ordered sets,
SIAM J. Comput. 17 (1988), 100-113.

[FRSS81] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs
in their complements, Csechoslovak Math J. 31 (1981), 53-62.

[FMP] M. J. Fischer, A. Meyer and M. S. Paterson, 2(nlogn) lower bounds on length
of Boolean formulas, STAM J. Computing 11 (1982), 416-427.

[FHS78] S. Fortune, J. Hopcroft, E. M. Schmidt, The complezxity of equivalence and
containment free single variable program schemes, Fifth Internat. Colloq., Udine,
Lecture Notes in Computer Science, 62, Springer, Berlin - New York, 1978, 227-240.

[FW78] S. Fortune and J. Wyllie, Parallelism in random access mashines, Proc. 10th
ACM STOC (1978), 114-118.

[Fi] Z. Fiiredi, The mazimum number of unit distances in a conver n-gon, to appear in

J. Combinatorial Th., A..

[FH] Z. Fiiredi and P. Hajnal, Davenport-Schinzel theory of matrices, to appear in Dis-
crete Mathematics.

[GJ79] M. Garey and D. Johnson, “Computers and intractability: A guide to the theory
of NP-completeness,” W.H. Freeman and Company, San Francisco, 1979.

[GPS87] A. Goldberg, S. Plotkin and G. Shannon, Parallel symmetry-breaking in sparse
graphs, Proc. 19th ACM STOC (1987), 315-324.

[GS87] M. Goldberg and T. Spencer, A new parallel algorithm for the mazimal indepen-
dent set problem, Proc. 28th IEEE FOCS (1987), 161-165.

[Go77] L.M. Goldschlager, Synchronous parallel computation, Ph. D. Thesis, University
of Toronto (1977); see also, J. ACM 29 (1982), 1073-1086.

[GRS80] R. L. Graham, B. Rothschild and J. Spencer, “Ramsey Theory,” Wiley, New
York, 1980.

97

[GyL76] A. Gyarfds and J. Lehel, Packing trees of different order into K, in: “Combi-
natorics”, Akadémia kiadé, Budapest, 1976, 463—469.

[Gy81] E. Gy6ri, An n-dimensional search problem with resticted questions, Combina-
torica 1 (1981), 377-380.

[HMT88] A. Hajnal, W. Maas and Gy. Turdn, On the communication complexity of
graph properties, Proc. 20th ACM STOC (1988), 186-191.

[Ha83] P. Hajnal, Partition of graphs with condition on the connectivity and minimum
degree, Combinatorica 3 (1983), 95-99.

[Ha] P. Hajnal, On the number of unit distances between vertices of a convex polygon,
Manuscript.

[Ha88] P. Hajnal, Fast parallel algorithm for finding a Hamiltonian cycle in dense graphs,
The University of Chicago, Technical Report 88003, April 1988.

[Ha90] P. Hajnal, On the power of randomness in the decision tree model, Proc. 5th
Structure in Complexity Theory Conf. (1990), 66-77.

[Ha91] P. Hajnal, An Q(n4/3) lower bound on the randomized complexity of graph prop-
erties, Combinatorica (11(2)), 131-143.

[HaSz] P. Hajnal and M. Szegedy, On packing bipartite graphs, To appear in Combina-
torica.

[HSz88] P. Hajnal and E. Szemerédi, Parallel Brooks coloring, SIAM J. Disc. Math 3
(1990), 74-80.

[HS86] S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of
generalized path compression schemes, Combinatorica 6 (1986), 151-177.

[Ha86] J. Hastad, Improved lower bounds for small depth circuits, Proc. 18th ACM
STOC (1986), 6-20.

[HHS81] S.M. Hedetniemi, S.T. Hedetniemi and P.J. Slater, A note on packing two trees
into K,,, Ars Combinatorica 11 (1981), 149-153.

[HR72] R.C. Holt and E.M. Reingold, On the time required to detect cycles and connec-
tivity in directed graphs, Math. Systems Theory 6 (1972), 103-107.

[HB84] K. Hwang and F.A. Briggs, “Computer architecture and parallel processing,”
McGraw-Hill, New York, 1984.

[I178] N. Illies, A counterexample to the generalized Aanderaa—Rosenberg conjecture,
Info. Proc. Letters 7 (1978), 154-155.

[IS86] A. Israeli and Y. Shiloach, An improved paralle algorithm for mazimal matching,
Inf. Proc. Letters 22 (1986), 57—60.

[Ju87] S.P. Jukna, Lower bounds on the complezity of local circuits, preprint, 1987.

98

[KSS84] J. Kahn, M. Saks and D. Sturtevant, A topological aproach to evasiveness,
Combinatorica 4 (1984), 297-306.

[KN88] M. Karchmer and J. Naor, A fast parallel algorithm to color a graph with A
colors, J. of Algorithms 9 (1988), 83-91.

[Ka85] H. J. Karloff, Fast parallel algorithms for graph theoretical problems, M.Sc. The-
sis, University of California, Berkeley.

[Ka86] H. Karloff, A Las Vegas RNC' algorithm for mazimum matching, Combinatorica
6 (1986), 387-392.

[Ka88] H. Karloff, An NC algorithm for Brooks’ theorem, Theoretical Computer Science
68 (1988), 89-103.

[KUWS86] R.M. Karp, E. Upfal and A. Wigderson, Constructing a perfect matching is
in random NC, Combinatorica 6 (1986), 35-48.

[KaW85] R.M. Karp and A. Wigderson, A fast parallel algorithm for the mazximal inde-
pendent set problem, JACM 32 (1985), 762-773.

[Ki88] V. King, Lower bounds on the complexity of graph properties, Proc. 20th ACM
STOC (1988), 468-476.

[Kir74] D. Kirkpatrick, Determining graph properties from matriz represantation,, Proc.
6th SIGACT Conf. (1974), 84-90.

[KS86] D. Kirkpatrick and R. Seidel, The ultimate planar convex hull algorithm, STAM
J. Comput. 15 (1986), 287-299.

[KK80] D.J. Kleitman and D.J. Kwiatkowski, Further results on the Aanderaa—Rosen-
berg congecture, J. Combinatorial Theory 28 (1980), 85-95.

[KM75] D.E. Knuth and R.W. Moore, An analysis of alpha-beta pruning, Artificial In-
telligence 6 (1975), 293-326.

[Ko88] P. Komjath, A simplified construction of nonlinear Davenport-Schinzel se-
quences,, J. of Comb. Theory A49 (1988), 262-267.

[KST54] T. Kévari, V.T. Sés and P. Turdn, On a problem of Zarankiewicz, Colloq.
Math. 3 (1954), 50-57.

[Kr87] M. Krause, Lower bounds for depth-restricted branching programs, preprint, 1987.

[Kr88] M. Krause, Exponential lower bounds on the complezity of local and real-time
branching programs, J. Inform. Process. Cybernet. 24 (1988), 99-110.

[KW86] K. Kriegel and S. Waack, Lower bounds on the complezity of real-time branching
programs, preprint,1986.

[Le59] C. Y. Lee, Representation of switching functions by binary decision programs, Bell
Syst. Tech. Journal 38 (1959), 985-999.

99

[Lo66] L. Lovasz, On decomposition of graphs, Studia Sci. Math. Hung. 1 (1966),
237-238.

[Lo79] L. Lovész, “Combinatorial Problems and Exercises,” North Holland, Amsterdam,
1979.

[Lo79b| L. Lovasz, Determinants matchings and random algorithms, in: “Foundamentals
of Computation Theory FCT ‘79” (ed. L. Budach), Akademie-Verlag, Berlin, 1979,
56-574.

[Lu86] M. Luby, A simple parallel algorithm for the mazimal independent set problem,
SIAM J. Comput. 15 (1986), 1036-1053.

[Mad72] W. Mader, FEzistenz n-fach zussamenhdngender Teilgraphen in Graphen
genigend grossen Kantendichte, Abh. Math. Sem. Hamburg Univ. 37 (1972), 86-97.

[MT85] U. Manber and M. Tompa, The complexity of problems on probabilistic
non-deterministic and alternating decision trees, J. ACM 32 (1985), 732-740.

[Ma74] Z. Manna, “Mathematical Theory of Computation,” McGraw-Hill, New York,
1974.

[Mas76] W. Masek, A fast algorithm for the string editing problem and decision graph
complezity, M.Sc. Thesis, MIT (1976).

[M84] F. Meyer auf der Heide, A polynomial linear search algorithm for the n-dimensional
knapsack problem, J. ACM 31 (1984), 668-676.

[MHS85a] F. Meyer auf der Heide, Fast algorithms for n-dimensional restrictions of hard
problems, J. Assoc. Comput. Mach. 35 (1988), 185-203.

[MHS85b] F. Meyer auf der Heide, Non-deterministic versus probabilistic linaer search
algorithms, Proc. 26th IEEE FOCS (1985), 65—-73.

IMW74] E.C. Milner and D.J.A. Welsh, On the computational complezity of graph the-
oritical properties, Univ. of Calgary, Res. Paper No.232 (1974).

IMW76] E.C. Milner and D.J.A. Welsh, On the computational complexity of graph
theoritical properties, in: Proc. Fifth British Combinatorial Conf. (ed: C.St.J.A.
Nash-Williams and J. Sheehan), Utilitas Math., Winnipeg, Ontario, Canada, 1976,
471-487.

[M] J. Mitchell, Shortest rectilinear paths among obstacles, SORIE Technical report No.
739, Cornell University, 1987.

[Ne66] E. I. Neciporuk, On a Boolean function, Dokl. Akad. Nauk SSSR 169 (1966),
765-766; English translation: Soviet Math Doklady 7 (1966), 999-1000.

[VN28] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Annalen 100 (1928),
295-320.

[Ni] N. Nisan, CREW PRAMs and decision trees, Proc. 21th ACM STOC (1989),
327-335.

100

[Pe80] J. Pearl, Asymtotic properties of minimax trees and game-searching procedures,
Artif. Intell. 14 (1980), 113-126.

[Pe82] J. Pearl, The solution for the branching factor of the alpha beta pruning algorithm
and its optimality, Comm. ACM 25 (1982), 559-564.

[Pr87] H.J. Promel, Counting unlabeled structures, J. Combinatorial Th. Ser. A 44
(1987), 8393

[Pu84] P. Pudldk, A lower bound on complezity of branching programs, Proc. Conf. on the
Mathematical Foundations of Computer Science, Springer Lecture Notes in Computer
Science 176 (1984), 480-489.

[Ra85a] A. A. Razborov, Lower bounds for the monotone complexity of some Boolean
functions, in Russian, Dokl. Akad. Nauk SSSR 281 (1985), 798-801; English trans-
lation: Soviet Mathematics Doklady 31 (1985), 354-357.

[Ra85b] A. A. Razborov, A lower bound for the monotone network complezity of the log-
ical permanent, in Russian, Matematicheskie Zametki 37:6 (1985), 887-900; English
translation: Math. Notes of the Acad. of Sci. of the USSR 37, 485—493.

[Ra87] A. A. Razborov, Lower bounds on the size of bounded depth networks over a
complete basis with logical addition, in Russian, Matematicheskie Zametki 41:4 (1987),
598-607; English translation: Math. Notes of the Acad. of Sci. of the USSR 41:4
(1987), 333-338.

[Re72] E. Reingold, On the optimality of some set algorithms, J. ACM 19 (1972),
649-659.

[RV76] R. Rivest and S. Vuillemin, On recognizing graph properties from adjacency ma-
trices, Theor. Comp. Sci. 3 (1976), 371-384.

[Roi81] I. Roizen, On the average number of terminal nodes examined by alpha-beta,
UCLA Cognitive Systems Laboratory Technical Report (1981).

[Ro73] A. L. Rosenberg, On the time required to recognize properties of graphs: A prob-
lem, SIG ACT News 5 (1973), 15-16.

[Sa] M. Saks, Recognition problems for transitive relations, submitted for publication.

[SW86] M. Saks and A. Wigderson, Probabilistic boolean decision trees and the complexity
of evaluating game trees, Proc. 26th IEEE FOCS (1986), 29-38.

[SS78] N. Sauer and J. Spencer, Edge-disjoint replacement of graphs, J. of Combinatorial
Theory Ser. B 25 (1978), 295-302.

[Sav76] J. E. Savage, “The Complexity of Computing,” Wiley, New York, 1976.

[Sh49] C.E. Shannon, The synthesis of two-terminal switching circuits, Bell Syst. Techn.
J. 28, 59-98.

[Sh87] M. Sharir, Almost linear upper bounds on the length of generalized Daven-
port-Schinzel sequences, Combinatorica 7 (1987), 131-143.

101

[Sh] J. B. Shearer, announced in [Ba86].

[STYS85] P.J. Slater, S.K. Teo and H.P. Yap, Packing a tree with a graph of the same
size, J. Graph Theory 9 (1985), 213-216.

[Sm87] S. Smale, On the topology of algorithms I., J. Compl. 3 (1987), 81-89.

[Sm87] R. Smolensky, Algebraic methods in the theory of lower bound for Boolean circuit
complezity, Proc. 19th ACM STOC (1987), 77-82.

[Sn85] M. Snir, Lower bounds for probabilistic linear decision trees, Theor. Comp. Sci.
38 (1985), 69-82.

[Sp87] J. Spencer, “Ten lectures on the probabilistic method,” STAM, Philadelphia, 1987.

[SY] M. Steele and A. Yao, Lower bounds for algebraic decision trees, J. Algorithms 3
(1982), 1-8.

[Sz82] M. Szegedy, Personal communication.

[Sz74] E. Szemerédi, On a problem by Davenport and Schinzel, Acta Arithmetica 15
(1974), 213-224.

[Ta83] M. Tarsi, Optimal search on some game trees, J. ACM 3 (1983), 389-396.

[TY87] S.K. Teo and H.P.Yap, Two theorems on packing of graphs, Europ. J. Combina-
torics 8 (1987), 199-207.

[Tho82] C. Thomassen, Graph decomposition with constraints on the connectivity and
minimum degree, Journal of Graph Theory 7 (1983), 165-167.

[Tu37] A. Turing, On computable numbers with an application to the entscheidungsprob-
lem, Proc. of the London Math. Soc. 42 (1936-7), 230-265.

[Ya77] A. Yao, Probabilistic computation: towards a unified measure of complezity, Proc.
18th IEEE FOCS (1977), 222-227.

[Ya79] A. Yao, Some complexity questions related to distributed computations, Proc. 11th
ACM STOC (1979), 209-213.

[Ya81] A. Yao, A lower bound to finding convex hulls, J. ACM 28 (1981), 780-789.

[Y82] A. Yao, Theory and applications of trapdoor functions, Proc. 23the IEEE FOCS
(1982), 80-91.

[Ya83] A. C. Yao, Lower bounds by probabilistic arguments, Proc. 24th IEEE FOCS
(1983), 420-428.

[Ya85] A. C. Yao, Separating the polynomial-time hierarchy by oracles, Proc. 26th IEEE
FOCS (1985), 1-10.

[Y87] A. Yao, Lower bounds to randomized algorithms for graph properties, Proc. 28th
IEEE FOCS (1987), 393-400.

102

[Y88] A. Yao, Monotone bipartite graph properties are evasive, SIAM J. Comput. 17
(1988), 517-520.

[We87] I. Wegener, On the complexity of branching programs and decision trees for clique
functions, TAPSOFT’87, Vol. 1., Lecture Notes in Computer Science, 249, Springer,
Berlin - New York, 1987, 1-12.

[Wi86] A. Wiernik, Planar realizations of Nonlinear Davenport-Schinzel sequences by
segments, to appear in Discret and Comput. Geom., Procedings, 27th IEEE Found.
of Comput. Sci. (1986), 97-106.

[Wi] A. Wigderson, unpublished.

[Z484] S. Zék, An exponential lower bound for one-time-only branching programs, Proc.
Conf. on Mathematical Foundations of Computer Science, Springer Lecture Notes in
Computer Science 176 (1984), 562-566.

103

