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Abstract

Dirac's classical theorem asserts that, if every vertex of a graph G on n vertices has degree at least

n

2

then G has a Hamiltonian cycle.

We give a fast parallel algorithm on a CREW �PRAM to �nd a Hamiltonian cycle in such graphs. Our

algorithm uses a linear number of processors and is optimal up to a polylogarithmic factor. The algorithm

works in O(log

4

n) parallel time and uses linear number of processors on a CREW � PRAM . Our method

bears some resemblance to Anderson's RNC algorithm [An] for maximal paths: we, too, start from a system

of disjoint paths and try to glue them together. We are, however, able to perform the base step (perfect

matching) deterministically.

We also prove that a perfect matching in dense graphs can be found in NC

2

. The cost of improved

time is a quadratic number of processors.

On the negative side, we prove that �nding an NC algorithm for perfect matching in slightly less dense

graphs (minimum degree is at least (

1

2

��)jV j) is as hard as the same problem for all graphs, and interestingly

the problem of �nding a Hamiltonian cycle becomes NP -complete.
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1. Introduction

In recent years parallel computation has attracted a great deal of attention in the theory of algorithms.

Some problems, easy to solve sequentially in polynomial time, became non-trivial questions in parallel

computation. The maximal independent set problem was one of them. The problem is now known to be in

NC ([KW],[Lu],[ABI],[GS]).

Other important problems like maximum matching (matching of maximum size) are still not known

to be in NC. There exist methods ([Lo1], [KUW],[MVV]) which show that matching is in RNC (random

parallel polylog time) (in fact, in Las Vegas-NC [Ka]). One relaxation of the maximum matching problem

is maximal matching (maximal with respect to inclusion). This is obviously in NC, as a consequence of the

result for maximal independent sets. A more e�cient algorithm can be found in [IS].

Another attack on a \hard" problem might be a restriction on the possible inputs. Depending on the

problem, di�erent classes of input have been studied. For example for maximum matching there are several

NC algorithm which work for special classes ([DK1],[GK]). We introduce a measure of the density of a graph

G. �(G) =

minimal degree of G

number of vertices of G

. A graph G is �-dense i� �(G) � �. We refer to

1

2

-dense graphs as

dense graphs.

Recently, the complexity of problem for dense graphs has received growing attention ([Br],[Ed]). Dirac's

([Di],[Be],[Bo],[Lo2]) theorem also points out this special class. One can state Dirac's theorem in the following

form: Any dense graph has a Hamiltonian circuit. In terms of complexity theory one can say that the decision

problem whether a graph has a Hamiltonian circuit or not is trivial for dense graphs.

The Hamiltonian circuit problem in general is NP -complete. There are known classes of graphs where

all the members are Hamiltonian. One class is the tournaments (oriented complete graphs) (see [So]).

At FOCS'87 M. Goldberg proposed the problem: Is there any NC algorithm which �nds a Hamiltonian

cycle for dense graphs? In this paper we answer Goldberg's question a�rmatively, giving an optimal up to

polylogarithmic factor algorithm. The earlier papers [DK3] and [H] gave a non-optimal NC solution for this

problem.

If we vary � than the class of �-dense graphs G

�

= fG : G G is � -denseg connects the general set of

graphs (0-density) and the empty set of graphs (1-density). We propose the question that how the complexity

of �nding Hamiltonian cycle in a �-dense graph varies as we change �. Dirac's theorem shows the decision

question for the Hamiltonian graph problem changes complexity drastically as � increases and reaches

1

2

.

We are going to show that the

1

2

is the exact threshold. We will show that the Hamiltonian cycle problem

for �-dense graphs (where � <

1

2

) is NP-complete.

Although a Hamiltonian cycle induces a perfect matching (for even n), we shall present a separate

algorithm for the perfect matching problem. The reason is that maximum matching is a fundamental problem

([LP]) and the algorithm for it is simpler and is faster (NC

2

), while the Hamiltonian cycle algorithm is in

NC

3

. Although both problems, Hamiltonian cycle, and perfect matching can be computed in O(log

4

n)

parallel time, and linear number of processors, the perfect matching algorithm enjoys much better constant

factors, and deserves an independent analysis.

Section 2 introduces basic notation and terminology. In Section 3 we have a reduction of the general

input case to the low density case. In Section 4 we discuss the parallel complexity of maximal matching and

describe our NC

2

algorithm for the perfect matching problem in dense graphs. In Section 5 we present a

parallel algorithm for the construction of a Hamiltonian cycle in dense graphs.

2. De�nitions and notation

We use standard graph theoretical notation and terminology. We refer the reader to [Lo2]. G = (V;E) will

always denote the input of the algorithm, i.e., a simple graph, with vertex set V , edge set E. n = jV j is the

number of vertices. d(u) is the degree of the vertex u. For S � V we use d

S

(u) to denote the number of

edges joining vertex u to S. A matching of (V;E) is a subset M of disjoint edges. A matching is maximal if

it is not a proper subset of any matching. It is maximum if it has maximum cardinality among all matching

of G.
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3. Lower densities

Now we consider the class of �-dense graphs G = (V;E) for � <

1

2

, i.e. graphs with minimal degree of

at least �jV j.

Theorem 3.1. For every � <

1

2

, the Hamiltonian cycle problem restricted to �-dense graphs is NP -

complete.

Proof. We reduce the existence problem of a Hamiltonian path in a graph G to the existence problem of

a Hamiltonian cycle in an �-dense graph G

0

. We construct G

0

= (V

0

; E

0

) from a given G = (V;E) as follows:

� the vertex set of G

0

is a disjoint union of the vertex set of G and two other sets, V

0

= V

_

[X

_

[Y , where

jX j = jY j+ 1 = k = d

�

1�2�

(jV j+ 1)e.

� the edge set of G

0

consists of: (i) the edge set of G, (ii) the complete bipartite graph between V and X ,

(iii) the complete bipartite graph between X and Y

Each Hamiltonian cycle in G

0

must have a subpath x

1

y

1

x

2

y

2

. . .x

k�1

y

k�1

x

k

, where X = fx

1

; . . . ; x

k

g

and Y = f y

1

; . . . ; y

k�1

g. The rest of the Hamiltonian path passes throughG. ThereforeG has a Hamiltonian

path if and only if G

0

has a Hamiltonian cycle. It is easy to check that G

0

is �-dense if we set the size of X

and Y as we did.

We know that the decision question is trivial in the case of dense graphs. The main result of section 5

is that �nding the Hamiltonian cycle can be done even in NC.

Similar scenario happens in the case of the Matching problem. Section 4 gives a fast parallel algorithm

if the input is dense (

1

2

-dense). If the input graph is �-dense (� <

1

2

) than the Matching problem is not

easier than the general question.

Theorem 3.2. For any � <

1

2

the general matching problem is NC reducible to the same problem restricted

to �-dense graphs. This means that an NC-algorithm for the matching problem restricted to graphs of

minimal degree �jV j would imply an algorithm for the general perfect matching problem.

Proof. Let G = (V;E) be any graph. We construct a graph (in NC) G

0

= (X

_

[Y

_

[V;E

0

) as follows:

� X and Y are sets of equal size. We choose the size of X to be jX j = d

�

1�2�

jV je.

� X and Y is an independent set in G

0

and G is an induced subgraph of G

0

by the vertex set V . Every

vertex in X is adjacent to all vertices in G

0

�X . There are no other edges.

Every perfect matching in G

0

has jX j many edges between X and Y plus a perfect matching in G.

Hence deciding the existence a perfect matching or �nding one in G

0

reduces to the same question in G.

A similar proof technique was used by A. Broder [Br], when he showed that determining the permanent

on \dense" bipartite graphs is #P -hard.

4. Finding a perfect matching in dense graphs

We need as a subroutine, the following result of Israeli and Shiloach [IS].

Procedure Approximate matching

Given: G, a simple graph.

Compute: A vertex cover A of G (i.e. a set of vertices such that every vertex of V (G) �A is adjacent to at

least one element of A) and a matching M such that each edge in M has at least one endvertex in A and M

covers at least half of the vertices of A.

It is very elementary to see that the matching, outputted by this process, has size at least one quarter

of the size of a maximum matching.

By iterating the approximate matching procedure of Israeli and Shiloach �nds a maximal matching.

The analysis is summarized in the following theorem.

Theorem 4.1. ([IS]) (i) Procedure Approximate matching can be implemented in O(log

3

n) parallel time

with O(m+ n) processors on a CREW � PRAM .

(ii) Program Maximal matching can be implemented in O(log

4

n) parallel time with O(m + n) processors

on a CREW � PRAM .
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Now we present an NC

2

-algorithm constructing a perfect matching in dense graphs.

Find perfect matching

Given: A dense graph G = (V;E), with an even number of vertices.

Compute: A perfect matching of G.

1) Compute a maximal matching M

1

of G.

fEach edge contains at least one vertex which is also an endvertex of an element of M

1

. At least

jV j

2

vertices belong to an edge of M

1

. g

2) Let fx

1

; � � � ; x

2k

g be the set of vertices of G not belonging to an edge of M

1

and de�ne G

0

= (V

0

; E

0

) as

follows:

The vertex set V

0

consists of the edges of M

1

(V

1

) and of the unordered pairs x

2i�1

x

2i

; i = 1; . . . ; k

(V

2

). The edge set is de�ned as follows: x

2i�1

x

2i

and yz 2 M

1

are joined by an edge in E

0

i� x

2i�1

y

and x

2i

z 2 E or x

2i�1

z and x

2i

y 2 E.

fNote that G

0

is bipartite graph with each edge connecting V

1

and V

2

.g

3) Compute a maximal matching M

2

of G

0

.

fEach vertex of G

0

of the form x

2i�1

x

2i

belongs to an edge of M

2

.g

4) For each i; 1 � i � k, consider uv 2M

1

, adjacent in M

2

to x

2i�1

x

2i

. W.l.o.g. x

2i�1

u; x

2i

v 2 E. Delete

uv from M

1

and add x

2i�1

u and x

2i

v to M

1

.

fM

1

is transformed into a perfect matching.g

5) Output M

1

.

End Find perfect matching

Theorem 4.2. The Find perfect matching algorithm is correct, i.e. it �nds a perfect matching in any dense

graph.

Proof. One must check the correctness of the comment after each step. The only problem is to show

that M

2

covers the whole set V

2

. Let (x

2i�1

x

2i

) be any pair in V

2

and m

i

be the i

th

edge in the matching

M

1

(there is a corresponding vertex of G

0

in V

1

). Count how many edges of G connects the set fx

2i�1

; x

2i

g

and the endvertices of m

i

. If the number is at least 3 then we guaranteed to have an edge in G

0

between

the corresponding vertices. Our goal is to show that this must happen for several m

i

's, i.e. each vertex in

V

2

has high degree.

Fix x = (x

2i�1

x

2i

). Let a be the number of edges in M

1

such that its endvertices are connected to x

with at most 2 edges in G. b = jM

1

j � a. We estimate the total number of edges e connecting x and the

vertices covered byM

1

. e � 4b+2a = 2jM

1

j+2b is obvious by the de�nition. On the other hand this number

is just the sum of the degree of x

2i�1

and x

2i

(they are not adjacent sinceM

1

is a maximal matching). Using

density we have e �

jV j

2

+

jV j

2

= jV j.

Combining and rearranging this inequalities we get,

d

G

2

(x) � b �

jV j � 2jM

1

j

2

= jV

2

j:

A simple argument shows that if this bound holds then any maximal matching in G

2

covers the whole

set V

2

.

The analysis of the algorithm easily follows from previous implementation of the steps in our procedure.

Theorem 4.3. (i) For each dense graph of an even number of vertices a perfect matching can be constructed

in NC

2

(ii) For each dense graph of an even number of vertices a perfect matching can be constructed in O(log

4

n)

time on a CREW � PRAM using linear number of processors.

Proof. In the algorithm Find perfect matching, the most expensive step is �nding maximal matching.

If we use Luby's algorithm for the line graph in order to accomplish this we obtain an NC

2

implementation

of our algorithm. If we use the maximal matching algorithm of Israeli and Shiloach then we use up O(log

4

n)

time but save on processors, yielding (ii).
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5. Finding a Hamiltonian circuit in dense graphs

5.1. The outline of the algorithm

First, our algorithm �nds a Hamiltonian path in the given graph. Having done so it will be easy to

�nish the algorithm, i.e., to �nd a Hamiltonian cycle.

The main idea of �nding a Hamiltonian path is that we maintain a path system that covers the graph,

i.e., a set of disjoint paths covering the entire vertex set. The algorithm consists of phases. In each phase

we try to merge di�erent paths. This way we can reduce the number of paths by a constant factor. In order

to merge paths we use a special operation (to be de�ned later).

We want to merge several paths into others in parallel. We might have conicts during the parallel

merging. To overcome this problem for each path we want to �nd several ways to merge into another path.

fP

i

g

k

i=0

will denote a set of paths in G such that [

i

V (P

i

) = V (G) and the V (P

i

) are disjoint. We will

refer to this as a path-cover of G.

5.2. Sociable paths

In this section we give the formal de�nition of our elementary merging operation and introduce di�erent

types of paths. The basic idea of these types comes from Lemma 5.2.5, which says that if the endvertices of

a path are connected with a lot of edges to another path then there are several possible ways to merge that

path into the other.

De�nition 5.2.1. Let P = (u

1

; . . . ; u

l

) and Q = (v

1

; . . . ; v

m

) be two disjoint paths If u

1

v

i

and u

l

v

i+1

are

edges of the graph then v

1

:::v

i

u

1

:::u

l

v

i+1

:::v

m

is a path. If u

1

v

i+1

and u

l

v

i

are edges of the graph then

v

1

:::v

i

u

l

:::u

1

v

i+1

:::v

m

is a path. In either case we say that we merged P into Q along the edge v

i

v

i+1

. We

call this step an elementary merging operation.

We need some other operations too.

De�nition 5.2.2. Let P and Q be two disjoint paths. If there is an edge connecting an endvertex of P

and an endvertex of Q, then we can use this edge to concatenate these two paths. We call this operation a

concatenation.

De�nition 5.2.3. Let C and D be two disjoint cycles. If there is an edge connecting a vertex from C and

a vertex from D then we can use this edge to get a path which passes through all the vertices of C and D.

We call this operation a cycle merging.

De�nition 5.2.4. Let P be a path in G. Let u; v be the two endvertices of P . We call P sociable if

d

V (P )

(u) + d

V (P )

(v) + 1 � jV (P )j:

We say a path P is introverted if it is not sociable.

We need the following lemma.

Lemma 5.2.5. Let P and Q be disjoint. Let u; v be the endvertices of P . Let us assume that there are no

edges from any endvertex of P to an endvertex of Q. Then Q has at least

d

V (Q)

(u) + d

V (Q)

(v) + 1� jV (Q)j

edges along which one can merge P into Q via an elementary merging operation.

Proof. Let Q = (q

1

; q

2

; :::; q

l

). Let d = d

V (Q)

(u) and e = d

V (Q)

(v). Let f q

i

1

; :::; q

i

d

g be the neighborhood

of u in V (Q). By assumption, 1 < i

1

and i

d

< l. Let F = f q

i

1

�1

; q

i

1

+1

; q

i

2

+1

; :::; q

i

d

+1

g. F contains d + 1

di�erent vertices from Q. If v is adjacent to one of them then one can easily �nd an edge where elementary

merging can be performed. Actually we can assign di�erent edges of Q to di�erent elements of F in such a

way that an edge between v and an element of F gives a possible elementary merging operation along the

corresponding edge. If d

V (Q)

(u) > jV (Q) � F j then one can �nd a way to merge. Actually there will be at

least e� (l � (d+ 1)) edges joining v to F . This proves the lemma.
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The lemma above has the following important consequence for the path covering.

Corollary 5.2.6. Let fP

i

g

k�1

i=0

be a path-cover of G. We assume that P

0

is sociable and there are no edges

going from its endvertex to the endvertices of other covering paths. Then there are at least k edges on

[

k�1

i=1

P

i

along which one can merge P

0

into another path.

Proof. Let u; v be the endvertices of P

0

. Let d

i

(i = 0; :::; k � 1) be the degree of u toward P

i

and let

e

i

(i = 0; :::; k � 1) be the corresponding degrees of v. Let n

i

be the number of vertices on P

i

. Using this

notation we have

k�1

X

i=0

d

i

+

k�1

X

i=0

e

i

= d(u) + d(v) �

n

2

+

n

2

= n =

k�1

X

i=0

n

i

:

After rearrangement we get

k�1

X

i=0

(d

i

+ e

i

+ 1� n

i

) � k:

We can delete the nonpositive terms in the sum and the inequality remains valid. We assumed that P

0

is

social so during the simpli�cation above the term d

0

+ e

0

+1� n is at most 0 and will be deleted. After the

deletion we have

k�1

X

i=1

maxf d

i

+ e

i

+ 1� n

i

; 0 g � k:

By Lemma 5.2.5 we get the result.

In the case of introverted paths we need an additional trick. We need the following generalization of

Corollary 5.2.6, a direct consequence of the proof above.

Lemma 5.2.7. Let S be a subset of V (G) and fP

i

g

k�1

i=1

be a path-cover of V (G)�S. Let P be a path in S

with endvertices u; v. Let us assume that d

S

(u) + d

S

(v) + 1� jSj � 0 and that there are no edges fu; v g to

any endvertex of the path-cover. Then there are at least k edges on [

k�1

i=1

P

i

along which P can be merged

into a covering path.

5.3. Introverted paths

First we prove that an introverted path can be closed to a cycle, i.e., the graph induced on the vertex set of

an introverted path has a Hamiltonian cycle.

Lemma 5.3.1. Let P be an introverted path between endvertices u and v. Then one of the following three

statements is true:

(a) P is a single vertex or edge.

(b) There exists an edge between the two endvertices of P .

(c) There exists a neighbor u0 of u on P and a neighbor v0 of v on P such that u0 and v0 are adjacent via an

edge of P and u0 is between v0 and v on P .

Proof. Let us assume that P has more than 2 vertices. Let fw

1

; :::; w

l

g be the vertex set of P

(w

1

= u and w

l

= v). The order on the path is the same as the order of the indices. Let d = d

V (P )

(u)

and e = d

V (P )

(v). We can assume that there is no edge between u and v. Let fw

2

; w

i

2

; :::; w

i

d

g be the

neighborhood of u. If (c) is not valid then fw

1

; w

i

2

�1

; :::; w

i

d

�1

; w

l

g cannot be adjacent to v. This means

that l � (d+ 1) � e. So P is social. This contradicts our assumption.

In Case (a), the path has only endvertices. In the other two cases one can easily �nd a Hamiltonian

cycle in the graph induced by the introverted path. This allows cycle merging.
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5.4. The general case

We need some additional tricks to handle the general case.

The algorithm starts with an initial path-covering. We shall require each path to have at least 2 vertices.

Because of this, the initialization step is not totally obvious. After initialization, using the results of the

previous sections, we reduce the number of paths by a constant factor.

Procedure Initialization

Given: G, a graph of minimal degree at least

n

2

where n is the number of vertices in G.

Compute: A path-cover of G such that each path in the cover has at least two vertices.

1) In the case of odd vertex set add a new vertex to the graph and connect it to all old vertices.

2) Find in parallel a perfect matching in the extended graph.

3) In the case of even vertex set output this matching as a path cover. If the vertex set is odd then the

perfect matching found gives us a partial matching of the original graph. Adding one edge we extend

this to a path cover.

End Initialization

Procedure Reduce path cover

Given: G, a graph of minimal degree at least

n

2

where n is the number of vertices in G, and a path-cover of

G with at least 2 paths.

Compute: A new path-cover with at most

15

16

as many paths.

1) In parallel classify each path as sociable or introverted.

2) Arbitrarily divide the set of introverted paths into pairs of mates (with at most one path left alone).

Call two mates linked if there is an edge between them.

3) Repeat until there are only unlinked pairs of introverted paths.

For all linked pairs of introverted path do a)-d):

a) For each pair �nd an edge between a path and its mate.

b) Find a Hamiltonian cycle on the vertex set of each introverted path having at least 3 vertices.

c) Do cycle merging.

d) Divide the set of new introverted paths into pairs of mates.

f When we exit this loop we have a path-cover of G. The cover consists of sociable paths, pairs of

independent introverted paths and a possible single introverted path. We will refer to the sociable paths

and to the pairs of introverted paths as generalized components of the cover. Hence the generalized

components cover the whole vertex set but the vertices of the possible single introverted path. g

4) Consider the subgraph induced by the endvertices of the covering paths. Find an approximate matching

in this subgraph. Using these edges concatenate paths. Kill all resulting cycles by deleting one new

edge of each.

f The approximate matching procedure (see in Section 3) in addition gives us a vertex cover. We refer

to a generalized component that lies outside this vertex cover as an untouched component. At this point

there are no edges between endvertices of di�erent paths belonging to untouched components. In the

rest of the algorithm, we shall attempt to merge untouched paths into other paths. g

5) For every untouched component do the following: If it is a pair of introverted paths then take the smaller

one, otherwise take the component itself (a sociable path). Now we have a path and we want to merge

it into another one. Find all the edges on the path system along which an elementary merging can be

performed.

6) For each untouched component we have many possible merging operations. For di�erent untouched

components �nd a merging from Step 5 which uses di�erent edges. We will see that this can be solved

in the following way. We construct an auxiliary bipartite graph H

1

between the untouched components

and the edges along the paths. A component will be connected to an edge i� along it there is a possible

merging (found in Step 5) into the corresponding path. An approximate matching of H

1

will give the

1-1 map from a constant fraction of untouched components into edges.

9



7) Perform as many elementary operations, found above, as possible. This can be done as follows. Make

the following auxiliary directed graph H

2

. The vertices will correspond to paths in the cover. There is

an edge going from a path P to a path Q i� one of the merging operations, found in Step 6 merges P

into Q. In this digraph every vertex has outdegree 1 or 0. Each component of such a digraph contains

at most one cycle. We kill one edge of each cycle and perform the merging operations corresponding to

the remaining edges in parallel.

End Reduce path cover

In steps 1-4 we do easy merging operations like concatenating paths. The problem is that it is possible

that in this stage we don't make a progress. In terms of the introduced notation we have too many untouched

components after these steps. In this case we will be able to use lemma 5.2.7 and in steps 5-7 obtain the

promised progress. The correctness of the algorithm is proven in lemma 5.4.2. Before the formal checking

let us show how to �nish the whole algorithm by closing a given Hamiltonian path to a Hamiltonian cycle.

Program Find Hamiltonian circuit

Given: G, a graph of minimal degree at least

n

2

where n is the number of vertices in G.

Compute: A Hamiltonian circuit of G.

1) Initialization

2) Repeat while there are at least two paths

a) Reduce path cover

fAt this point of the algorithm we have a Hamiltonian path f v

1

; :::; v

n

g of G.g

3) If v

1

v

n

is not an edge of G then �nd a pair of edges of the form v

1

v

i+1

and v

n

v

i

.

fWe will see that in this speci�c case this kind of edge pair exists in the graph.g

4) Output the cycle v

1

:::v

n

v

1

or v

i�1

:::v

1

v

i+1

:::v

n

v

i

v

i�1

according to the case in Step 3.

End Find Hamiltonian circuit

For the proof of correctness we will need the following very simple but useful remark.

Lemma 5.4.1. Let H be a bipartite graph between sets A and B. Let us assume that every vertex in A

has degree at least jAj. Then every maximal matching of H covers the whole set A.

Lemma 5.4.2. Reduce path cover and Find Hamiltonian cycle algorithms work as promised.

Proof. Let p be the number of path in the path-cover at the beginning of the algorithm. In step 2 we

de�ne c

1

sociable paths, c

2

pairs of paths and possibly one single introverted path (p � 1 � c

1

+ 2c

2

� p).

After executing step 3 several times we end up c

0

1

sociable path, c

0

2

paired paths and possible one single

introverted path. Let p

0

= c

0

1

+ 2c

0

2

, and c

0

= c

0

1

+ c

0

2

, the number of generalized components. It is obvious

that p

0

� p.

In one execution of the loop 3 we halve the number of paths contained in the linked pairs. The unlinked

pairs will be untouched and they are going to stay that way. This implies that steps 3a-3c will be executed

at most O(log n) many times. It is obvious that the returned c

0

2

paired pairs (containing all the introverted

paths with one possible exception) will be not linked.

Let m be the size of the matching found by Approximate matching in step 4. The procedure also returns

a vertex cover A. (The matching and the vertex cover lie in the graph spanned by the end vertices of the

paths.) By [IS] we know that jAj � 4m. The algorithm deletes a few edges of the matching and uses the

remaining m

0

edges to merge some paths. m

0

�

m

2

since we deleted just one edge for each cycle in the

merging process. We have that m

0

�

jAj

8

.

We called a component untouched if the path(s) in it do(es) not contain any vertex from A. Let u be

the number of untouched components. Hence we have that u � c

0

1

+ c

0

2

� jAj �

p

0

2

� 8m

0

. A was a vertex

cover in the graphs of end vertices of our paths. Hence the end vertices of the untouched components will

be independent. (We need this for applying lemma 5.2.7.)
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At this point we have p

0

�m

0

many paths. If m is a constant fraction of p then we already made enough

progress. The rest of the correctness proof shows that if m is small and hence we have several untouched

components then steps 5-7 guarantee the progress.

Now we apply lemma 5.2.7. Let C be any untouched components. Let S be the vertex set of C. Let

fP

i

g

k�1

i=1

be the path-cover outside S. If C contains only one (sociable) path then it will be P . If it contains

two (introverted) paths then the shorter one will be P . Using this scenario we satisfy the assumption of

lemma 5.2.7. The independence of endvertices are given by the previous steps. The degree assumption is

satis�ed by de�nition when P is social. In the case of introverted P the degree condition easily follows from

the facts that P and its pair are independent and P is the smaller. (This argument is the only place where

the pairing of the introverted paths is substantially used. This pairing is a notational di�culty in the whole

algorithm and the reason for it is that it allows us to handle them just as social paths.)

The conclusion of the lemma says that in step 6 we �nd at least p

0

� 2 possible merging operations for

each untouched component. In terms of the graph H

1

it means that it satis�es the condition of lemma 5.4.1,

where A is the set of untouched generalized components and B contains the edges along our path-cover.

The lemma guarantees that a maximal matching covers the whole set A. Hence the Approximate matching

procedure matches

u

4

the components to di�erent edges. The execution of the elementary merging operations

at least halves the number of the matched components. So we reduce the number of path with at least

u

8

.

To �nish the proof we summarize our remarks. After �nishing an execution of Reduce path cover we

have at most

(p

0

�m

0

)�

u

8

� (p

0

�m

0

)� (

p

0

16

�m

0

) =

15p

0

16

�

15p

16

path.

This proves the correctness of Reduce path cover. This immediately give that in step 2 of

Find Hamiltonian circuit we �nd a Hamiltonian path in the given dense graph.

The correctness of Find Hamiltonian circuit easily follows from this result. We need to show that in

step 3 we can �nd the edge v

1

v

n

or the edges v

1

v

i+1

and v

i

v

n

for some i. This claim is true because of the

density condition and the pigeon hole principle.

Now we need to say a few words about implementation and running time.

Theorem 5.4.3. The program Find Hamiltonian cycle terminates in O(log

4

n) time on a CREW�PRAM ,

uses linear number of processors and, outputs a Hamiltonian cycle of G.

Proof. The most expensive step of the algorithm is step 2. There we execute Reduce path coverO(log n)

many times. We need to prove that Reduce path cover works in O(log

3

n) time on a CREW � PRAM .

The analysis of Reduce Path Cover is as follows:

Step 1 can be trivially done in O(log n) time by O(n+m) processors counting the edges inside any path

whose other endvertex is also a vertex of the path.

Step 2 can be done in O(log n) time and O(n) processors by sorting (making introverted paths smaller

than social paths) pairing the introverted path on place 2i� 1 with the introverted path on place 2i.

In step 3 we run through the loop O(log n) many times. Each time we spend O(log n) time.

The cost of step 4 in Reduce path cover is O(log

3

n). This comes from the execution of approxi-

mate matching. Finding the cycles in the merging process is negligible to this since the process can be

described by a graph of maximum degree 2.

Step 5 and step 6 can be implemented by constructing the set P of paths as follows:

a) For each untouched component which is a pair of introverted paths select the smaller one and add

it to P . If an untouched component is a sociable path take itself into P . This can be done by O(n)

processors in constant time.

b) Compute H

1

: Direct each path of P in the direction of an endvertex. For each edge xy such that

x is an endvertex of p 2 P , y 2 p

0

2 P and p

0

6= P , let y

0

be the successor of y with respect to the

direction of p

0

. Let x

0

be the other endvertex of P . If x

0

y

0

2 E then (P; (y; y

0

)) is an edge of H

1

.

This partial step can be done by O(n+m) processors in O(log n) time.

c) Compute an approximate matching for H

1

. This needs O(n +m) processors and O(log

3

n) time.

Step 7 consists of three parts:

11



a) Compute the directed graph H

2

(which can be done by O(n) processors in constant time).

b) Erase cycles in H

2

. This substep is done as follows: Compute the connected components of H

2

and

a spanning forest F for the underlying undirected graph (by [SV] it can be executed in O(log

2

n)

time by O(n) processors). Clearly each connected component of H

2

has at most one cycle which is

also the unique cycle in the underlying undirected graph. { To make H

2

cycle-free we just take for

each edge e of the spanning forest F exactly one of its directed edges corresponding to e. This can

be done by O(n) processors in constant time.

c) Concatenate merged paths: This substep is partitioned as follows:

{ Compute path edges: For each path p 2 P with the endvertices x

p

, y

p

and with (p; xy) 2 M : If

xy belongs to the path p

0

and (p; p

0

) 2 H

2

then erase xy from the set of path edges and add x

p

x

and y

p

y to the set of path edges. This step needs O(n) processors and constant time.

{ Detect the new paths: This is done by computing the connected components of the graph which

is induced by the new path edges. This can be done in O(log

2

n) time by O(n) processors.

The analysis gave us the exponent 4. A main reason for this is that we used approximate matching

instead of maximal matching. If we don't worry about the running time then our algorithm can be simpli�ed.

6. Conclusion and open problems

The sequential deterministic algorithm computing a Hamiltonian cycle for any dense graph seems related

to the probabilistic solution of Angluin and Valiant [AV] which computes a Hamiltonian cycle with high

probability for any graph if it has one. One would hope to be able to turn Frieze's [Fr] probabilistic parallel

algorithm into a deterministic algorithm. But we were not successful in dividing any dense graph into two

dense graphs of nearly equal size by an NC-algorithm.

There are more su�cient conditions for having Hamiltonian cycles ([Be],[Bo],[Lo2]). It would be desirable

to extend our results to the corresponding classes of graphs.

Another relaxation similar to the Hamiltonian path problem is a maximal cycle problem. One can �x

some elementary operations for enlarging a cycle. One example is the following. Let us assume that some

vertex not on the cycle is adjacent to two neighbors on the cycle. One can then easily merge this vertex

into the cycle. Is there any NC algorithm which �nds a maximal cycle in a graph, maximal respect to this

operation?
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