
On connectivity related extremal problems

�

Peter Hajnal

Bolyai Institute, University of Szeged

Aradi V�ertan�uk tere 1., Szeged, Hungary 6720

hajnal@math.u-szeged.hu

Let f

k

(n) be the maximal number of edges of a simple graph on n vertices

without k connected subgraph. W. Mader started to investigate the order of

magnitude of this function. The �rst results on f

k

(n) are due to W. Mader who

proved that (3k � 4)=2(n� (k � 1)) � f

k

(n) � (1 + 1=

p

2)(k � 1)(n � (k � 1)),

assuming that n is large enough. He also conjectured that the lower bound is the

right order of magnitude of f

k

(n). Further improvement is due to Matula, who

proved that f

k

(n) � 5=3(k � 1)(n� (k � 1)). In this paper we improve Matula's

upper bound by proving that f

k

(n) � (1 +

p

6=4)kn � 1:612kn.

The improvement is not a major breakthrough but we think that the problem

deserves more attention. We also want to popularize other related questions. We

present applications of this results to Ramsey theory on connectivity and vertex

partition of graphs with conditions on connectivity. These applications shed light

on other connectivity related open problems.

0. Introduction

Extremal graph theory is a major research direction in graph theory with various

applications (see combinatorial geometry for many excellent examples).

We want to shed light on few extremal questions related to graph connectivity. (For

other problems in this direction see [5] and [6].) The most natural question (following

Tur�an's theorem's lead) is: How many edges guarantee a k connected subgraph in a simple

graph on n nodes? An equivalent formulation is: What is the maximal number of edges

in a simple graph on n vertices with no k connected subgraph? First W. Mader exhibited

an example. Let k � 1 be a divisor of n. Our vertex set will be divided into n=(k � 1)

many k � 1 element sets. The induced subgraphs of these k � 1 element sets will be

cliques with one exception when the corresponding subgraph is an empty graph. The

additional edges are all the edges connecting the independent k � 1 set to the vertices of

the cliques. Easy to check that the graph does not contain a k connected subgraph and it

�

Partially supported by OTKA F021271

1



has (3k � 4)=2 � (n � (k � 1)) edges. In terms of the function introduced in the abstract

it means that (3k � 4)=2 � (n � (k � 1)) � f

k

(n) at least for certain values of n. It is not

so hard to construct graph with more edges than (3k � 4)=2 � (n� (k � 1)) and without k

connected subgraph. All the known examples are small in terms of the number of vertices.

For the author there is no example known with more than (3k� 4)=2 � (n� (k� 1)) edges,

without k connected subgraph and with more than (k � 1)

2

=2 vertices. It is plausible to

conjecture [4] that (3k� 4)=2(n� (k� 1)) � f

k

(n) for large enough n (with a lower bound

condition on n, that is a function of k). The conjecture is veri�ed in the case of k � 7

([4]), but the general case is still open. To underline the di�culty we mention that various

counterexamples exist for small values of n, with completely di�erent structures. Even the

large examples, showing the sharpness of the conjecture, are showing diversity.

Next we state the current best upper bound on f

k

(n) due to D. Matula.

Theorem. (Matula [7]) Let G be a simple graph with jV (G)j � 2(k � 1) and jE(G)j >

�

1 +

p

2=2

�

(k � 1) (jV (G)j � (k � 1)) then G has a k connected subgraph.

Our main contribution is to improve the upper bound.

Theorem. Let k � 3. Let G be a simple graph assuming that

n = jV (G)j � (k � 1) +

1

2

p

6k

2

� 18k + 16

and

jE(G)j >

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n� (k � 1)) :

Then G has a k connected subgraph.

The order of magnitude of our bound is (1 +

p

6=4)kn � 1:612kn.

Finally we mention few applications and related problems.

1. Notations

We use standard notation (for example see [3]). All graphs are supposed to be simple

undirected graphs. V (G) denotes the vertex set of the graph G and E(G) denotes its edge

set. C � V (G) is a cutset of a connected graph G if after deleting the vertices in C the

resulting graph (G�C) is not connected. G is k connected i� it has more than k vertices

and it has no cutset of size smaller than k.

If G has more than k vertices and it is not k connected, then it must have a cutset

C of size k � 1. In this case we think about G as a graph obtained by gluing together

two graphs (G

1

and G

2

) along Gj

C

(the subgraph of G induced by C, consisting of the

elements of C as vertices, and all the edges of G, connecting two elements of C as edges).

Both G

1

and G

2

have at least k elements, and V (G

1

) \ V (G

2

) = C.
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If G has at least k vertices and it does not have a k connected subgraph then G itself

is not k connected, so G can be thought as a graph built up from G

1

and G

2

by gluing

them along a k � 1 element set. In this case of course both G

1

and G

2

do not have a k

connected subgraph. Hence both of them can be thought as a graph on k vertices or a

graph obtained from two graphs by gluing them along a k � 1 element set. To summarize

the ideas above G can be built up from graphs with k vertices by a gluing procedure: in

each step of the procedure we glue two already built up graph along a set of size k � 1.

2. Proofs

First we prove a lemma which is only interesting for small graphs, but in that case

the given bound is sharp. The lemma is present in [7] but we state it with proof for the

sake of completeness.

Lemma. Let G be a simple graph on n(> k) vertices and

jE(G)j >

1

6

�

n

2

+ (4k � 7)n+ (4k � 2k

2

)

�

:

Then G has a k connected subgraph.

Proof. We prove the claim by induction on n.

If n = k + 1, then the assumption on the number of edges gives us that jE(G)j >

�

k+1

2

�

� 1, hence G is a complete graph on k + 1 vertices, itself a k connected graph.

Let us assume that we know the claim for graphs on fewer that n = jV (G)j vertices.

If G is k connected we are done. If not then G is obtained by gluing G

1

and G

2

along

a k � 1 element set, C. Let n

1

= jV (G

1

)j and n

2

= jV (G

2

)j ((n

1

� (k � 1)) + (n

2

�

(k � 1)) = n � (k � 1), k � 1 < n

1

; n

2

< n). W.l.o.g. we assume that n

1

� n

2

, hence

n

1

� (n+ (k � 1)) =2 > k.

If jE(G

1

)j > 1=6 �

�

n

2

1

+ (4k � 7)n

1

+ (4k � 2k

2

)

�

, then the induction hypothesis can

be applied and we are done.

If jE(G

1

)j � 1=6 �

�

n

2

1

+ (4k � 7)n

1

+ (4k � 2k

2

)

�

, then we can bound the number of

edges in G by estimating the edges of G outside G

1

by the number of edges of the complete

graph on V (G

2

) � C plus the number of edges of the complete bipartite graph between

the color classes C and V (G

2

)� C:

jE(G)j �

1

6

�

n

2

1

+ (4k � 7)n

1

+ (4k � 2k

2

)

�

+

�

n

2

� (k � 1)

2

�

+ (k � 1) (n

2

� (k � 1)) :

Using the assumption on the number of edges of G we get

1

6

�

n

2

+ (4k � 7)n+ (4k � 2k

2

)

�

<

1

6

�

n

2

1

+ (4k � 7)n

1

+ (4k � 2k

2

)

�

+

�

n

2

� (k � 1)

2

�

+ (k � 1) (n

2

� (k � 1)) :
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After rearranging the inequality we obtain n

2

> n

1

that contradicts our assumption. This

completes the proof of the lemma.

The above lemma is sharp when k+1 � n � 2k�2, at least if n = k�1+2

l

then there

exists simple graph on n vertices with 1=6 �

�

n

2

+ (4k � 7)n+ (4k � 2k

2

)

�

many edges and

with no k connected subgraph:

We de�ne G by describing its complement.

�

G will have components as follows:

K

1;1

; K

2;2

; K

4;4

; : : : ; K

2

l�1

;2

l�1
and (k � 1) � (2

l

� 2) many isolated nodes. The num-

ber of edges of G can be calculated easily and it turns out to be the promised value. Now

we are going to prove that G has no k connected subgraph.

The vertices not in the K

2

l�1

;2

l�1 component of

�

G give us a cutset C

0

of size k� 1 in

G. Hence any k connected subgraph of G must be inside this cutset with one component

of G � C

0

. Either way the assumed k connected subgraph must lie in a graph G

1

that

the complement of the graph with components: K

1;1

; K

2;2

; K

4;4

; : : : ; K

2

l�2

;2

l�2 and (k �

1) � (2

l

� 2) + 2

l�1

many isolated nodes. The vertices not in the K

2

l�2

;2

l�2 component

of

�

G

1

give us a cutset C

1

of size k � 1. Hence any k connected subgraph of G must be

inside this cutset with one component of G

1

� C

1

. Either way the assumed k connected

subgraph must lie in a graph G

2

that is the complement of the graph with components:

K

1;1

; K

2;2

; K

4;4

; : : : ; K

2

l�3

;2

l�3
and (k � 1) � (2

l

� 2) + 2

l�1

+ 2

l�2

many isolated nodes.

We can continue this procedure till we force the assumed k connected subgraph into a k

element subset of V (G), where \there is no enough room".

After the preliminary lemma we can prove the main theorem.

Theorem. Let k � 3. Let G be a simple graph assuming that

n = jV (G)j � (k � 1) +

1

2

p

6k

2

� 18k + 16

and

jE(G)j >

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n� (k � 1)) :

Then G has a k connected subgraph.

Proof. We prove the theorem by induction on n.

1. case: (k � 1) +

1

2

p

6k

2

� 18k + 16 � n � (k � 1) +

p

6k

2

� 18k + 16.

Then it is easy to check that

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n� (k � 1)) � 1=6

�

n

2

+ (4k � 7)n+ (4k � 2k

2

)

�

;

hence the lemma is applicable, providing the claim.

2. case: (k � 1) +

p

6k

2

� 18k + 16 � n.

If G itself is k connected we are done.

If not then G is obtained fromG

1

and G

2

by gluing them together along a k�1 element

set, C. Let n

1

= jV (G

1

)j and n

2

= jV (G

2

)j ((n

1

� (k� 1)) + (n

2

� (k� 1)) = n� (k� 1),
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k � 1 < n

1

; n

2

< n). W.l.o.g. we assume that n

1

� n

2

, hence n

1

� (n+ (k � 1)) =2 �

(k � 1) +

1

2

p

6k

2

� 18k + 16.

If jE(G

1

)j >

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n

1

� (k � 1)), then we can apply the in-

duction hypothesis and obtain a k connected subgraph of G

1

.

If jE(G

1

)j �

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n

1

� (k � 1)), then we consider two sub-

cases.

1. subcase: n

2

� (k � 1) +

1

2

p

6k

2

� 18k + 16.

As above we can assume that jE(G

2

)j �

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n

2

� (k � 1))

and we obtain an upper bound on the number of edges in G:

jE(G)j �jE(G

1

)j+ jE(G

2

)j

�

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n

1

� (k � 1))

+

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n

2

� (k � 1))

=

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n� (k � 1)) :

This contradicts the conditions of our theorem.

2. subcase: n

2

< (k � 1) +

1

2

p

6k

2

� 18k + 16.

Now we can bound the number of edges in G by estimating the edges of G outside G

1

by the number of edges of the complete graph on V (G

2

)� C plus the number of edges of

the complete bipartite graph between the color classes C and V (G

2

)� C. Hence

jE(G)j �

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n

1

� (k � 1))

+

�

n

2

� (k � 1)

2

�

+ (k � 1) (n

2

� (k � 1)) :

Using the assumption on the number of edges of G we get

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n� (k � 1))

<

�

1

4

p

6k

2

� 18k + 16 + k �

3

2

�

(n

1

� (k � 1))

+

�

n

2

� (k � 1)

2

�

+ (k � 1) (n

2

� (k � 1)) :

After rearranging the inequality we obtain that n

2

> (k � 1) +

1

2

p

6k

2

� 18k + 16, that

contradicts our assumption. This completes the proof of the theorem.
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We needed the complicated formulas to make the induction to work. The following

corollary makes the claim a little bit weaker but the order of our upper bound on f

k

(n) is

more transparent.

Corollary. Let n be at least k + 1. Then

(3k � 4)=2 � (n� (k � 1)) � f

k

(n) � (1 +

p

6=4)kn � 1:612kn:

Proof. The lower bound comes from [4]. Easy to check that (1+

p

6=4)kn is greater than

the lemma's bound on the number of edges if k+1 � n � (k�1)+

1

2

p

6k

2

� 18k + 16 and it

is greater than the theorem's bound on the number of edges if (k�1)+

1

2

p

6k

2

� 18k + 16 �

n.

3. Applications

We mention two simple applications of the above result. Both of them is just plugging

our result into existing proofs.

The �rst application is vertex partition problem of E. Gy}ori [1]. He asked whether

there exists a function f(s; t) such that the vertices of any f(s; t) connected graph can be

partitioned into two sets S and T such a way that Gj

S

is an s connected graph and Gj

T

is a t connected graph.

The question was answered a�rmatively by C. Thomassen [9], M. Szegedy [8] and

P. Hajnal [2]. Further on f(s; t) denotes the minimal possible value that is allowed. The

proofs use the f

k

(n) function. If one plugs our new bound into the best proof ([2] Theorem

4.3.) obtains the following theorem.

Corollary. If s � 3, t � 2 and G is a (2+

p

6=2)(s+ t) connected graph, then there exists

an fS; Tg partition of its vertex set such that Gj

S

is s connected and Gj

T

is t connected.

The second application is Ramsey theory for connectivity. The classical Ramsey

theorem says that there exists a function R

c

(k) that for arbitrary c coloring of the edges

of a complete graph on R

c

(k) vertices there must be monochromatic clique of size k.

Determining the minimal value of R

c

(k) is one of the major open question of graph theory.

D. Matula asked what happens if we look for k connected monochromatic subgraph.

The problem turned out to be signi�cantly simpler than the case of complete graphs. It

is easy to see that there exists a function F

c

(k) such that for arbitrary c coloring of the

edges of a complete graph on F

c

(k) vertices there must be monochromatic clique of size k.

Further on F

c

(k) denotes the minimal possible value.

D. Matula gave upper and lower bounds (they are constant factor apart) for F

c

(k).

The upper bound uses the f

k

(n) function. Hence our improved bound immediately gives

the following result.

Corollary. F

c

(k) < (2 +

p

6=2)c � k.
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4. Open problems

The major question is W. Mader's conjecture: Is it true that f

k

(n) = (3k�4)=4 � (n�

(k � 1)) for large enough n?

One can also consider other classes of graph, like graphs without k connected minor.

What is the maximal number of edges in a simple graph on n vertices without k connected

minor?

The two applications of our result also hide two nice conjectures.

C. Thomassen conjectures that f(s; t) = s+ t+ 1.

D. Matula conjectures that F

c

(k) = 2c � (k � 1) + 1.

The later two conjectures has relation to the f

k

(n) function through existing proof

techniques. Settling Mader's conjecture does not resolve the later two problems. Their

complete solutions require new ideas.
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